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In general, mesh smoothing is performed by minimizing the discrete energy func-
tion for the surface. One of the major problems in mesh smoothing is to prevent the
mesh from shrinking. In this paper, we propose a novel volume constraint to address
the shrinking problem in mesh smoothing. Our key observation is that the mesh can
be efficiently smoothed patch by patch in a signal processing manner, and then a
local volume preserving constraint can be easily imposed to the energy minimization
problem associated with the small patch, called the smoothing stencil, so as to effec-
tively avoid the mesh shrinkage. In our implementation, the smoothing stencil is the
1-ring neighboring region of an edge or a triangle. And the constrained minimization
problem is solved by a 2-step approximation method for efficiency. A series of ex-
amples demonstrate that the proposed smoothing method can be applied to remove
noise from a mesh or remove rough detail from an original mesh to generate a smooth
model in object reconstruction and geometry modeling. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In the computer graphics community, triangular meshes have become more and more
popular for their simplicity and flexibility in modeling complex shapes. With the devel-
opment of 3D scanning and surface reconstruction techniques, creating triangle meshes
of high complexity is not a hard task [1–4], but how to effectively process such meshes
remains a challenging problem. For example, 3D scanning systems commonly give rise to
noisy meshes due to the factors related to measurement; thus, some practical smoothing
techniques need development to generate fairing surfaces by removing noise or undesired
rough features from triangular meshes. Hoppe et al. proposed a mesh optimization method
[5] to optimize the reconstructed triangular mesh by removing noises, reconstructing crease
features, and saving the number of vertices and triangles. Since it needs minimization of an
extremely complex energy–cost function, the efficiency of the mesh optimization method
is very poor. In recent years, a number of smoothing methods have been introduced for
the fairing purpose and used for fair surface design [12–14]. The basic idea of surface
smoothing is to minimize the surface energy or to remove the high frequency content from
surfaces.

Based upon a discrete approximation of the Laplacian operator on a mesh, Taubin [6]
proposed a signal processing approach to address the fairing problem for discrete meshes.
In this approach the Laplacian operator is repeatedly performed over the mesh to remove the
noises. Because of the linear complexity in both time and memory, this method can smooth
large meshes very quickly. More detailed examination on the filter design for fairing meshes
is further discussed in [7]. In the discrete fairing method for arbitrary triangular meshes
[8], Kobbelt derived a similar linear smoothing operator to that of Taubin under a specified
parameterization for the local mesh patch, which was then successfully applied in their
multiresolution modeling scheme [9]. The Laplacian operator is also called an umbrella
operator. We refer to the above smoothing method based on the Laplacian operator as the
Laplacian smoothing method.

Laplacian smoothing can be thought of as forward time integration of the heat equation
on an irregular mesh. The stability criterion for the forward integration requires that the time
step be less than 1. In order to avoid this limitation, Desbrun et al. developed an implicit
fairing approach to smooth meshes more efficiently and stably [10], which allows for a very
large time step at the cost of solving a linear system. Designing a nonuniform relaxation
procedure, Guskov et al. generalized basic signal processing tools such as up-sampling,
down-sampling, and filters to irregular triangular meshes [11]. Since the weights in the
relaxation procedure depend on the mesh geometry as well as the mesh connectivity, it is
suitable for processing irregular meshes and is therefore superior to previous works. The
relaxation procedure is adopted to build a set of multiresolution signal processing tools for
meshes together with a multiresolution mesh hierarchy, including multiresolution filtering,
editing, enhancement, and so on.

However, applying the standard Laplacian operator to mesh fairing may result in serious
shrinkage, which is the major problem of many mesh smoothing methods. Taubin attenuates
such shrinkage in his signal processing approach by applying both the Laplacian and the
second order Laplacian operators alternatively, which is referred to as the λ|µ method by
Desbrun et al. [10]. However, the resulting mesh heavily depends on the choice of two mesh-
related constants λ and µ. In the implicit fairing method [10], the scale-dependent Laplacian
operator and scale-based volume preservation approach are adopted to reduce the degree
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of shrinkage and distortion. They also introduced a curvature flow operator in discrete
differential geometry to remove small scale details and to prevent the distortion. Using
anisotropic curvature evolution, Clarenz et al. proposed a multiscale method to smooth
discretized surfaces while simultaneously preserving the geometric features such as edges
and corners [15]. In 1999, Vollmer et al. presented an improved Laplacian smoothing
method [16] to attenuate the shrinkage, where the basic idea is to move the vertices of the
smoothed mesh back toward their previous locations by some distance. The constrained
mesh fairing method proposed in [17] prevents the mesh from further shrinkage by keeping
the centroid of all triangles unchanged during the smoothing procedure.

In this paper, we propose a novel volume-constrained smoothing method for triangular
meshes, which preserves exactly the mesh volume during the smoothing process, so as to
prevent the mesh from shrinking. In this method, the local volume is examined and preserved.
The advantage of local volume preserving over other volume preserving methods is that it
tends to preserve the shape of the surface, and it can process open meshes for which the
global volume is not well defined. In the next sections, we will give a brief introduction to the
Laplacian smoothing method after introducing some concepts and notations related to mesh
smoothing. In Section 3 we will describe our constrained smoothing operator and propose
an efficient 2-step approach to solve the constrained energy minimization problem. At last,
in Section 4, we give multiple examples to show the efficiency of our novel smoothing
method and finally draw conclusions and describe some future work.

2. LAPLACIAN SMOOTHING

2.1. Mesh and Notations

Throughout the rest of this paper, we consider the smoothing problem on a triangular
mesh, M, which is usually denoted as a triple M= (V,K,P), where V = {1, . . . , N } is the
vertex set and K is an abstract simplicial complex, i.e., a set of subsets of V , which contains
all the adjacency information or the connectivity information of the mesh. The subsets in K
are called simplices and come in three types, vertices v = {i} ∈ K, edges e = {i, j} ∈ K and
faces t = {i, j, k} ∈ K, so that any nonempty subset of a simplex of K is again a simplex of
K. P is a set of 3D points P = {pi = (xi , yi , zi ) ∈ R3 | i ∈ V}, which is a map from V to
R3, called the geometry realization of the mesh.

Two vertices {i} and { j} are neighbors if {i, j} ∈ K. The 1-ring neighborhood of a vertex
{i} is the set n(i) = { j | {i, j} ∈ K}. The out-degree is defined as the number of its 1-ring
neighborhood |n(i)|.

2.2. Laplacian Smoothing

Surface fairing techniques are generally based on constrained energy minimization. For
a parametric surface S : P = P(u, v), the most popular energy functions are the membrance
energy and thin-plate energy [19]:

Ememb(S) = 1

2

∮
S

(
P2

u + P2
v

)
dS,

Ethin(S) = 1

2

∮
S

(
P2

uu + 2P2
uv + P2

vv

)
dS.
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Their respective derivatives correspond to the Laplacian and the second-order Laplacian
operator:

L(P) = Puu + Pvv, (1)

L2(P) = L ◦ L(P) = Puuuu + Puuvv + 2Pvvvv. (2)

For a discrete mesh, the Laplacian at each vertex {i} can be approximated linearly using the
umbrella operator [6, 8, 9]:

L(i) = 1

|n(i)|
∑
j∈n(i)

(p j − pi ). (3)

The general form of Laplacian’s linear approximation is

L(i) = ωi,i pi +
∑
j∈n(i)

ωi, j p j , (4)

where ωi,i and ωi, j are constant combination weights and ωi, j = 0 if i �= j and vertex {i}
and vertex { j} are not adjacent. One way to smooth a discrete mesh is through a diffusion
process [10]:

∂P
∂t

= λL(P). (5)

A sequence of meshes Pk can be constructed by integrating the diffusion equation over
time using the simple forward Euler scheme:

Pk+1 = (I + λ dt L)Pk . (6)

At each diffusion step, the small disturbances or noises will disperse into its neighborhood.
From a signal processing standpoint, small disturbances or noises correspond to the high
frequency component of the surface. As k grows, we will get an increasingly smoother mesh.
As we pointed out above, the major problem with the Laplacian method is that the main
shape of the mesh will degrade more and more as it gets smoother. A shrinkage example
from Laplacian smoothing is shown in Fig. 2. Taubin [6] used signal processing analysis to
show that a combination of the two derivatives in (1) and (2), i.e., (λ + µ)L − λµL2, can
provide Gaussian filtering that minimizes the shrinkage.

2.3. Local Smoothing Method

Another way to smooth the discrete mesh is to directly perform surface energy minimiza-
tion. Adhering to the idea of signal processing, we propose a local minimization method
for the surface energy function. Consider a small patch N , centered at an edge e = {i, j} as
shown in Fig. 1a. The associated energy function is defined as

E = 1

2

{
L2(i) + L2( j) +

∑
b∈B

L2(b)

}
, (7)

where B= n(i)
⋃

n( j)\{i, j} denotes the set of vertices at the patch boundary. The small
patch N is called the smooth stencil. Keeping the position of the stencil’s boundary fixed,
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FIG. 1. Smoothing stencils: (a) edge stencil, and (b) triangle stencil. In our local smoothing method, the
stencils are smoothed through the volume constrained energy minimization, providing a lower pass mesh filtering.

the above energy E is a function of pi and p j , and can be represented in the following matrix
form

E(pi , p j ) = 1

2
‖Ki pi + K j p j − Q‖2 = 1

2
‖KP − Q‖2, (8)

where Ki and K j are the coefficient matrices consisting of the combination weights in the
Laplacian’s approximation such as the umbrella operator in (3) and (4). Q consists of the
Laplacian responses after subtracted by the corresponding weighted sums of pi and p j .
P = (pi p j )T , K = (Ki K j ). Taking the edge stencil in Fig. 1a as an example, the coefficient
matrices are

Ki =




k0,i
...

k7,i

k8,i

k9,i




, K j =




k0, j
...

k7, j

k8, j

k9, j




, Q =




q0
...

q7

q8

q9




,

where ks,v = ωbs ,v , k8,v = ωi,v , k9,v = ω j,v , qs = ks,i pi + ks, j p j − L(bs), q8 = k8,i pi +
k8, j p j − L(i), q9 = k9,i pi + k9, j p j − L( j), for v ∈ {i, j} and 0 ≤ s ≤ 7.

By minimizing the energy function defined on the stencil, we obtain the following local
smoothing result:

P = (KT K)−1KT Q. (9)

FIG. 2. A sphere smoothed by the unstrained Laplacian method. (a) The original mesh; (b), (c), and (d)
Smoothed mesh after one, six, and ten times of Laplacian iterations with λ dt = 1. This example shows that the
main shape degrades substantially.
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FIG. 3. Smooth results comparison. The original mesh is shown in Fig. 2a. (a) and (b) are smoothed meshes
by the volume-constrained method with respectively one and six iterations; (c) and (d) are smoothed meshes by
the local smoothing method with respectively one and six iterations. (a) and (b) show that the volume-constrained
method can preserve the mesh’s main shape very well, while there is significant shape degradation in (c) and (d),
which shows that the local smoothing method still suffers from shrinkage.

Applying the above energy minimization method to all edge stencils in turn, we can
obtain a smoothed mesh, as seen in the example of a sphere mesh in Figs. 3c and 3d. This
example shows a similar smoothing result as that in Fig. 2; i.e., the smoothed meshes all
suffer from great shrinkage.

3. VOLUME CONSTRAINED SMOOTHING

The advantage of the local smoothing method in Section 2.3 is that it can easily be mod-
ified to address the shrinkage problem by introducing a constraint of volume preservation.
The major observation is that the volume V between the original mesh and the smoothed
mesh can be easily obtained and then used to measure the shrinkage. Imposing the constraint
of V = 0 onto the stencil energy minimization problem will provide an anti-shrinking mesh
smoothing method. As shown in Fig. 1, the volume V is

V =
∑

{r,s,t}∈N

{
(pr ⊗ ps) · pt − (

p0
r ⊗ p0

s

) · p0
t

}
,

where p0
r , p0

s , and p0
t are respectively the original positions of vertex {r}, {s}, and {t}, and

p0
b = pb for any vertex b ∈ B, since the stencil’s boundary is fixed during the smoothing

process. Separating pi and p j from other points, we have

V = 	(pi , p j ) − 	
(
p0

i , p0
j

)
,

where the volume function 	 is a function from R3 ×R3 to R,

	(x, y) = ni · x + n j · y + (x ⊗ ni j ) · y, (10)

and ni , n j , and ni j are three vectors in R3, determined by the positions of the stencil
boundary vertices. Again, taking the edge stencil in Fig. 1a as an example, these three
vectors are respectively:

ni =
7∑

s=4

pbs ⊗ pbs+1 , ni j = pb0 − pb4 , n j =
3∑

s=0

pbs ⊗ pbs+1 .
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Keeping V = 0, we get a constrained energy minimization problem:

min E(pi , p j ) = 1

2
‖KP − Q‖2,

subject to 	(pi , p j ) = 	
(
p0

i , p0
j

)
.

(11)

This is a typical constrained optimization problem, which can be converted to an uncon-
strained nonlinear one using the well-known penalty approach, the Lagrange multiplier
method [27], or the elimination method (see Appendix A for details). However, general
methods may be time-consuming when smoothing large meshes. Additionally, it is very
difficult to obtain the global minimum for a nonlinear optimization problem. Therefore
we develop a 2-step approximation method to efficiently solve the minimization problem
in (11).

3.1. Two-Step Approximation

The basic idea of the 2-step method is that we first minimize the stencil energy function
without volume preservation, then in the second step we translate the edge {i, j} simulta-
neously by a vector to restore the volume of the original mesh while minimizing the energy
increment.

The first step can be achieved by the local smoothing method discussed in Section 2.3.
Let P1 = (p1

i p1
j )

T be the smoothing result in the first step. According to (9), we have:

P1 = (KT K)−1KT Q. (12)

In the second step, we translate p1
i and p1

j simultaneously to restore the mesh volume.
Let w be the translation vector; then the volume between the two meshes is


V = 	
(
p1

i + w, p1
j + w

) − 	
(
p1

i , p1
j

)
= (

ni + n j + (
p1

i − p1
j

) ⊗ ni j
) · w

= n · w,

where n = ni + n j + (p1
i − p1

j ) ⊗ ni j . After translation in the second step, the energy over
the stencil becomes

E(pi , p j ) = E
(
p1

i + w, p1
j + w

)

= 1

2
‖(ki + k j )w − (Q − KP1)‖2

= 1

2
‖(K̃w − Q̃)‖2,

where K̃ = Ki + K j and Q̃ = Q − KP1. Therefore, the volume preservation in the second
step can be formulated by the following constrained optimization problem:

min
1

2
‖(K̃w − Q̃)‖2,

subject to n · w = 	
(
p0

i , p0
j

) − 	
(
p1

i , p1
j

)
.

(13)
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The minimizer of (13) is

w = 1

α
(K̃T Q̃ − βn),

where

α = K̃T K̃ and β = 1

‖n‖2

{
(K̃T Q̃) · n − α

(
	

(
p0

i , p0
j

) − 	
(
p1

i , p1
j

))}
.

In (11), the constraint is nonlinear with respect to the arguments pi and p j , so it is some-
what difficult to obtain the minimizer. However, the constraint in (13) is linear with respect
to the argument w! Therefore, its minimizer can be easily found using Lagrange multipli-
ers [27]. This is the motivation for translating the vertex {i} and vertex { j} simultaneously
by a vector w.

The smoothing result of the above volume-constrained smoothing method for the same
mesh model in Fig. 2a is shown in Figs. 3a and 3b, where the results are obtained re-
spectively by one and six iterations of the constrained smoothing method. Compared with
the Laplacian smoothing results in Fig. 2 and the local smoothing results in Figs. 3c and
3d, these results preserve the mesh’s main shape very well. And we compared the volume
curves of the volume-constrained method, local smoothing method, and Laplacian method
in Fig. 4, which shows that the volume-constrained method is the best for anti-shrinking
mesh smoothing and the shrinkage of the local smoothing method is less than that of the
Laplacian method.

The surface energy will increase at the second step (if w �= 0), so it is possible for the
2-step method to increase the surface energy. Suppose that the smoothing stencil is already
the most smooth, i.e., the original positions of vertex {i} and { j} are the minimizer of (11).
In this case the surface will be less smooth after processing by our 2-step method (if the
vertex position is changed) (see Fig. 5). However, the experiments show that the surface
energy decreased during the whole process in most cases. In practice, we can reject the
results at those stencils where the surface energy tends to increase. It is clear that when two
adjacent stencils are processed in different order, the final mesh may be different. Although
the order affects the smoothing result, the difference is not noticeable for meshes with many
vertices.

FIG. 4. The volume curves of different smoothing methods. VPS, LEM, and LAP respectively denote the
volume-constrained method, local smoothing method, and Laplacian method. The vertical axis is the percentage
of the smoothed mesh’s volume to the original mesh’s volume, the horizontal axis is the number of smoothing
iterations. The original mesh is shown in Fig. 2a.
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FIG. 5. Example of volume-constrained smoothing. (a) The original coarse mesh. (b) is the smoothed meshes
by the volume-constrained method with five iterations. (c) Adaptively subdivide the mesh and smooth it again for
five iterations. (d) Repeat the operations in (c).

FIG. 6. Example of volume-constrained smoothing using triangle stencil. (a) The original coarse mesh. (b) is
the smoothed meshes by the volume-constrained method with five iterations. (c) Adaptively subdivide the mesh
and smooth it again for five iterations. (d) Repeat the operations in (c).

FIG. 7. Another example of the volume-constrained smoothing method. (a) The original coarse mesh; (b),
(c), and (d) are the smoothed meshes after performing the same operations as in Figs. 5 and 6.
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3.2. Triangle Stencil

Our volume-constrained smoothing method is applicable not only on the edge stencil,
but also on some other stencils, for example the triangle stencil as shown in Fig. 1b. For
the triangle stencils, a similar energy minimization problem to the edge stencils can be
formulated as we show using the triangle stencil in Fig. 1b as an example.

The energy function corresponding to (8) is

E(pi , p j , ph) = 1

2
‖Ki pi + K j p j + Khph − Q‖2 = 1

2
‖KP − Q‖2,

where P = (pi p j ph)T ,

Ki =




k0,i
...

k8,i

k9,i

k10,i

k11,i




, K j =




k0, j
...

k8, j

k9, j

k10, j

k11, j




, Kh =




k0,h
...

k8,h

k9,h

k10,h

k11,h




, Q =




q0
...

q8

q9

q10

q11




,

and ks,v = ωbs ,v , k9,v = ωi,v , k10,v = ω j,v , k11,v = ωh,v , qs = ks,i pi + ks, j p j + ks,hph −
L(bs), q9 = k9,i pi + k9, j p j + k9,hph − L(i), q10 = k10,i pi + k10, j p j + k10,hph − L( j), q11 =
k11,i pi + k11, j p j + k11,hph − L(h) for v ∈ {i, j, h}, 0 ≤ s ≤ 8.

The triangle stencil’s volume function corresponding to (10) is

�(x, y, z) = ni · x + n j · y + nh · z + (x ⊗ ni j ) · y + (y ⊗ n jh) · z + (z ⊗ nhi ) · x + (x ⊗ y) · z,

where

ni j = pb0 , n jh = pb3 , nhi = pb6 ,

ni =
8∑

s=6

pbs ⊗ pbs+1 , n j =
2∑

s=0

pbs ⊗ pbs+1 , nh =
5∑

s=3

pbs ⊗ pbs+1 .

And the volume between the smoothed mesh and the original mesh is

V = �(pi , p j , ph) − �
(
p0

i , p0
j , p0

h

)
.

At last the same 2-step approach in Section 3.1 is used to smooth the stencil and preserve
the local mesh volume. Figure 6 shows the smoothing results for a feline claw mesh model
using the triangle stencil. One can also try a stencil smaller than the edge stencil in the same
way, such as the vertex stencil {i} ∪ n(i) centered at vertex {i}. However the vertex stencil
is so small that the volume constraint to preserve the volume may be too strong to smooth
the stencil. Larger stencils containing too many variables are not preferred since they lead
to solving a larger linear system at each local minimization process, which will hurt the
efficiency. And the simple simultaneous translation of all inner vertices in a large stencil is
also not reasonable for preserving the volume. Therefore we have currently implemented
only two kinds of stencils, the edge stencil and the triangle stencil.
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4. CONCLUSION, DISCUSSION AND FUTURE WORK

We presented a new approach to smooth a triangular mesh for surface reconstruction
and discrete fair surface design. Adhering to the idea of signal processing, the mesh is
smoothed stencil by stencil through a local energy minimization process. The volume-
constrained smoothing method has been implemented with the edge stencil and the triangle
stencil and tested on many triangular mesh models, including a very coarse model like the
noised sphere shown in Fig. 2a and many very dense models as shown in Figs. 5, 6, and 7.
In the latter three figures, the meshes are subdivided adaptively. In short, the subdivision
scheme consists of three steps. First, according to a user-specified length value δ, edges
longer than δ are uniformly subdivided such that each subedge is less than δ. Second, cast
some points inside each face such that they are distributed as evenly as possible and the
distance between nearby points is less than δ. At last, subdivide the faces using the new
points. Experimental results show that the volume-constrained smoothing method generates
very smooth models without any shrinkage due to its exact volume preservation and the
two-step approach is an effective solution to the constrained minimization problem.

Although the volume for open meshes is undefined, our volume-constrained smoothing
method can handle them naturally since it uses the local volume instead of the global volume.
Certainly, the boundary curves of an open mesh need to be processed separately. Similar
to local volume-constrained method, a local area-constrained method can be designed to
smooth boundary curves such that the hole formed by the boundary will remain the same size.

Currently the constrained smoothing method is implemented for single resolution meshes.
One topic of future work is to combine it with a multiresolution mesh representation for
multiresolution modeling purposes [9, 11, 18, 19]. We observed that when the mesh be-
comes denser, the function of the volume constraint becomes smaller. When the mesh is
extremely dense, even the standard Laplacian can smooth the mesh quite well without
any noticeable main shape shrinkage and distortion. Therefore, taking advantage of the
multiresolution mesh representation, we can perform the volume-constrained smoothing
method for coarse mesh levels to smooth the mesh and preserve the main shape, while
using the standard Laplacian smoothing method or the implicit fairing method [10] for fine
mesh levels for efficiency. For an irregular mesh, there are many simplification methods
to build the multiresolution representation [20–26], among which the method proposed by
Lindstrom et al. [25, 26] should be the most suitable for our purpose, since it also preserves
the mesh volume for decimation.

In our constrained smoothing method, the volume is preserved, but it may be transferred
to another neighboring area. Note that other operators can also be adopted in the first step
of the 2-step approach. Another area of future work is to find an alternative approach for
the first step to avoid this kind of volume transfer.

APPENDIX A

According to the volume constraint, we can eliminate a variable to convert the constrained
energy minimization in (11) into a normal minimization problem without constraint. First
the derivatives of E(pi , p j ) with respect to pi and p j can be easily obtained:

∂E
∂pi

= KT
i (KP − Q),

∂E
∂pi

= KT
j (KP − Q). (14)
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Denote F(pi , p j ) = �(pi , p j ) − �(p0
i , p0

j ); then the volume constraint becomes F(pi , p j ) =
0. Similarly, the derivatives of F(pi , p j ) with respect to pi and p j can be easily obtained
also:

∂ F

∂pi
= ni + ni j ⊗ p j ,

∂ F

∂p j
= n j − ni j ⊗ pi . (15)

In typical cases, the derivatives are not 0. Suppose ( ∂ F
∂pi

)x is not 0 without loss of any genera-
lity (for a vector v ∈ R3, (v)x , (v)y , and (v)z are used to denote its x , y, and z components,
respectively). Then according to the volume constraint F(pi , p j ) = 0, the x component of
pi can be represented by p j and the other two components of pi . We denote it as:

(pi )x = 	((pi )y, (pi )z, p j ). (16)

Then, substituting (pi )x from (16), the energy function (8) becomes

Ẽ((pi )y, (pi )z, p j ) = E(	((pi )y, (pi )z, p j ), (pi )y, (pi )z, p j ),

and the energy minimization in (11) is converted into a normal optimization problem without
constraint:

min
(pi )y ,(pi )z ,p j

Ẽ((pi )y, (pi )z, p j ). (17)

The minimizer in (17) can be obtained using the conjugate gradient method (see [28] for
details). This method requires the derivatives of Ẽ with respect to (pi )y , (pi )z , and p j , which
can be obtained according to (14), (15), and (16):

∂ Ẽ
∂(pi )y

=
(

∂E
∂pi

)
y

+
(

∂E
∂pi

)
x

∂	

∂(pi )y
=

(
∂E
∂pi

)
y

−
(

∂E
∂pi

)
x

(
∂ F
∂pi

)
y(

∂ F
∂pi

)
x

= (
KT

i (KP − Q)
)

y − (
KT

i (KP − Q)
)

x

(ni + ni j ⊗ p j )y

(ni + ni j ⊗ p j )x
,

∂ Ẽ
∂(pi )z

=
(

∂E
∂pi

)
z

+
(

∂E
∂pi

)
x

∂	

∂(pi )z
=

(
∂E
∂pi

)
z

−
(

∂E
∂pi

)
x

(
∂ F
∂pi

)
z(

∂ F
∂pi

)
x

= (
KT

i (KP − Q)
)

z
− (

KT
i (KP − Q)

)
x

(ni + ni j ⊗ p j )z

(ni + ni j ⊗ p j )x
,

∂ Ẽ
∂p j

= ∂E
∂p j

+
(

∂E
∂pi

)
x

∂	

∂p j
= ∂E

∂p j
−

(
∂E
∂pi

)
x

∂ F
∂p j(
∂ F
∂pi

)
x

= KT
j (KP − Q) − (

KT
i (KP − Q)

)
x

ni + ni j ⊗ p j

(ni − ni j ⊗ p j )x
.

It is clear that, although (17) is a normal minimization problem without constraint, the
computation cost of the above direct solution is too great to be used for large mesh smoothing.
Additionally, the returned solution is not stable because of the possibility of multiple local
minima. This is why we propose the 2-step method approach to preserve the volume.



VOLUME CONSTRAINED SMOOTHING METHOD 181

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their valuable comments. Timely proofreading by Steve Lin
is greatly appreciated. Hujun Bao and Qunsheng Peng were supported in part by National Natural Science
Foundations of China (Grants 69925204, 60021201, and 60133020) for Distinguished Young Scholars and
Innovative Research Groups.

REFERENCES

1. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Surface reconstruction from unorganized
points, in SIGGRAPH 92 Conference Proceedings, 1992, pp. 71–78.

2. H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and W. Stuetzle, Piecewise
smooth surface reconstruction, in SIGGRAPH 94 Conference Proceedings, 1994, pp. 295–302.

3. N. Amenta, M. Bern, and M. Kamvysselis, A new Voronoi-based surface reconstruction algorithm, SIGGRAPH
98 Conference Proceedings, 1998, pp. 415–421.

4. B. Curless and M. Levoy, A volumetric method for building complex models from range images, in SIGGRAPH
96 Conference Proceedings, 1996, pp. 303–312.

5. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Mesh optimazation, in SIGGRAPH 93
Conference Proceedings, 1993, pp. 19–26.

6. G. Taubin, A signal processing approach to fair surface design, in SIGGRAPH 95 Conference Proceedings,
1995, pp. 351–358.

7. G. Taubin, T. Zhang, and G. Golub, Optimal surface smoothing as filter design, in Proceedings of the 4th
European Conference on Computer Vision, Cambridge, UK, 1996, pp. 283–292.

8. L. Kobbelt, Discrete fairing, in Proceedings of the Seventh IMA Conference on the Mathematics of Surfaces,
1997, pp. 101–131.

9. L. Kobbelt, S. Campagna, J. Vorsatz, and H. P. Seidel, Interactive multiresolution modeling on arbitrary
meshes, in SIGGRAPH 98 Conference Proceedings, 1998, pp. 105–114.

10. M. Desbrun, M. Meyer, P. Schroder, and A. H. Barr, Implicit fairing of irregular meshes using diffusion and
curvature flow, in SIGGRAPH 99 Conference Proceedings, 1999, pp. 317–324.

11. I. Guskov, W. Sweldens, and P. Schroder, Multiresolution signal processing for meshes, in SIGGRAPH 99
Conference Proceedings, 1999, pp. 325–334.

12. W. Welch and A. Witkin, Varational surface modeling, in SIGGRAPH 92 Conference Proceedings, 1992,
pp. 157–166.

13. W. Welch and A. Witkin, Free-form shape design using triangulated surfaces, in SIGGRAPH 94 Conference
Proceedings, 1994, pp. 247–256.

14. H. P. Morton and C. H. Sequin, Functional optimization for fair surface designmm, in SIGGRAPH 92
Conference Proceedings, 1992, pp. 167–176.

15. U. Clarenz, U. Diewald, and M. Rumpf, Nonlinear anisotropic diffusion in surface processing, in Proceedings
of IEEE Visualization 2000, 2000, pp. 397–405.

16. J. Vollmer, R. Mencl, and H. Muller, Improved Laplacian smoothing of noisy surface meshes, in
EUROGRAPHICS 99 Conference Proceedings, 1999, pp. 131–138.

17. X. Liu, H. Bao, P. Heng, T. Wong, and Q. Peng, Constrained fairing for meshes, Comput. Graphics Forum
20(2), 2001, 115–124.

18. D. Zorin, P. Schroder, and W. Sweldens, Interactive multiresolution mesh editing, in SIGGRAPH 97 Conference
Proceedings, 1997, pp. 259–268.

19. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, Multiresolution analysis of
arbitrary meshes, in SIGGRAPH 95 Conference Proceedings, 1995, pp. 173–182.

20. M. Garland and P. S. Heckbert, Surface simplification using quardric error metrics, in SIGGRAPH 97
Conference Proceedings, 1997, pp. 209–218.

21. H. Hoppe, Progressive meshes, in SIGGRAPH 96 Conference Proceedings, 1996, pp. 99–108.



182 LIU ET AL.

22. J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, and W. Wright, Simplification
envelopes, in SIGGRAPH 96 Conference Proceedings, 1996, pp. 119–128.

23. A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno, Multiresolution decimation based on global error,
Visual Comput. 13(5), 1997, 228–246.

24. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, Decimation of triangle meshes, in SIGGRAPH 92 Conference
Proceedings, 1992, pp. 65–70.

25. P. Lindstrom and G. Turk, Fast and memory efficient polygonal simplification, in IEEE Visualization 98
Conference Proceedings, 1998, pp. 279–286.

26. P. Lindstrom and G. Turk, Evaluation of memoryless simplification, IEEE Trans. Visual. Comput. Graphics
5(2), 1999, 98–115.

27. A. Schabak and H. Werner, Numerische Mathematik, Springer-Verlag, Berlin/New York, 1993.

28. H. William, A. Saul, T. William, and P. Brian, Numerical Recipes in C: The Art of Scientific Computing,
2nd ed., Cambridge University Press, Cambridge, UK, 1992.


	1. INTRODUCTION
	2. LAPLACIAN SMOOTHING
	FIG. 1.
	FIG. 2.
	FIG. 3.

	3. VOLUME CONSTRAINED SMOOTHING
	FIG. 4.
	FIG. 5.
	FIG. 6.

	4. CONCLUSION, DISCUSSION AND FUTURE WORK
	FIG. 7.

	APPENDIX A
	ACKNOWLEDGMENTS
	REFERENCES

