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Efficiently simulating large deformations of flexible objects is a challenging problem in computer graphics. In this paper, we
present a physically based approach to this problem, using the linear elasticity model and a finite elements method. To handle
large deformations in the linear elasticity model, we exploit the domain decomposition method, based on the observation that
each sub-domain undergoes a relatively small local deformation, involving a global rigid transformation. In order to efficiently
solve the deformation at each simulation time step, we pre-compute the object responses in terms of displacement accelerations
to the forces acting on each node, yielding a force-displacement matrix. However, the force-displacement matrix could be too
large to handle for densely tessellated objects. To address this problem, we present two methods. The first method exploits
spatial coherence to compress the force-displacement matrix using the clustered principal component analysis method; and
the second method pre-computes only the force-displacement vectors for the boundary vertices of the sub-domains and resorts
to the Cholesky factorization to solve the acceleration for the internal vertices of the sub-domains. Finally, we present some
experimental results to show the large deformation effects and fast performance on complex large scale objects under interactive
user manipulations.

1. Introduction

Deforming and animating soft objects have a wide
range of applications in geometric modeling, com-
puter animation, video games and surgery simula-
tion, since many real world objects are soft and de-
formable. Physically based modeling has become an
important approach to graphics modeling and anima-
tion. One of the simplest physically based models is
the mass-spring system [1,2], which has been success-
fully used to simulate clothes [3–5]. Recent research
trends have moved away from the simple mass-spring
systems toward the more sophisticated finite element
method (FEM) [6], since it is physically more accu-
rate. Using FEM, an object’s deformation behavior
can be easily specified by a few material properties
that have physical meanings.

There are two models in FEM based deformation
approaches to measure the strain with respect to de-
formation in terms of displacement. One is the linear
elasticity model that approximates the elastic forces
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as the product of a constant stiffness matrix and the
displacement vector, yielding a numerically fast and
stable simulation system. However, it can only model
small deformations accurately. The other is the non-
linear elasticity model that models large deformations
accurately with the cost of reevaluating the stiffness
matrix at every time step, yielding a slow simulation
and introducing numerical instabilities. By partition-
ing complex non-rigid behavior into global rotational
motion and local deformations, a fast and stable sim-
ulation for large deformations can be obtained using
the linear elasticity model [7–10].

In finite element methods, the simulated objects are
tessellated into a set of elements, to approximate the
continuous dynamic equations. It is easy to get hun-
dreds and thousands of elements for objects of mod-
est scale in graphics applications. Therefore, it is in
general computationally expensive to solve the defor-
mation at each simulation time step, and this cannot
meet the interactive response requirements of graph-
ics applications.

Our goal in this paper is to develop an efficient
physically based simulation approach for large defor-
mation of flexible objects. A preliminary version of
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this method appeared in [11]. The basic idea behind
our approach is to decompose the simulated objects
into several sub-domains, such that the deformation
of each sub-domain undergoes a relatively small lo-
cal deformation, involving a global rigid transforma-
tion. We exploit the domain decomposition method
to handle the physical interaction between the con-
nected sub-domains. In our approach, we tessellate
the volume of the simulated object as a tetrahedral
mesh, and take a finite element method to solve the
physical motion equation. Since the local deforma-
tion of each sub-domain is relatively small, it can be
efficiently modeled with the linear elastic model.

As shown in Section 3, we need to solve a lin-
ear system for the deformation at each simulation
time step. One of the most challenging issues in
the domain decomposition method is how to ef-
ficiently maintain the consistency of the boundary
points shared by the neighboring parts. We pro-
pose to precompute the inverse matrix of the linear
system, called a force-displacement matrix, for each
sub-domain, such that the next frame deformation
could be obtained by matrix and vector multiplica-
tions. Since the force-displacement matrix could be
too huge to handle for densely sampled objects, we
further propose two methods to reduce its storage and
the computation in matrix-vector multiplications. The
first method compresses the force-displacement ma-
trix using the clustered principal component analysis
method [12] by exploiting its spatial coherence. The
second method only records a small part of the force-
displacement matrix corresponding to the boundary
vertices of sub-domains, and resorts to the Cholesky
factorization to solve for the internal vertices. Since
Cholesky factorization maintains the matrix’s sparse
structure, the second method is often more efficient.
An additional advantage of using precomputed force-
displacement matrix is that it allows for dynamically
introducing constraints for interactive user manipula-
tion.

The previous warped stiffness methods [7,13,14]
also factorize the global deformation into a global ro-
tational deformation and a local deformation. But,
they need to estimate the local rotation for each
node/cell, which requires significant computational
cost during simulation. Our method based on domain
decomposition need only estimate the local rotation
for each sub-domain, whose cost is far less than that

of the warped stiffness methods. And, the stiffness
matrix of each sub-domain remains constant for a ro-
tation, which enables us to greatly improve the perfor-
mance via pre-computing the force-displacement ma-
trix. The previous modal analysis methods and the
subspace integration method can achieve very high
performance, but they need to reduce the DOFs of
the deformation dramatically down to a very small
number, which suffers a major limitation that the user
constraints, e.g. position constraints, are not guaran-
teed to be satisfied. Our method using CPCA in Sec-
tion 5.1 bears some similarity to modal analysis based
methods [15] when there is only one cluster. But, we
can achieve more accuracy with the same number of
modes by dividing a dynamic deformation into sev-
eral sub-domains.

In the rest of this paper, we will first review some
related work on physically based deformation in Sec-
tion 2, followed by an overview of physically based
deformation with the finite element method in Sec-
tion 3. Then we will introduce our domain decompo-
sition based large deformation method in Section 4.
Then we will introduce a CPCA based clustering
method and a hybrid method for efficiently solving
the deformation in Section 5. Finally, we will present
some experimental results in Section 6 and conclude
this paper with some discussion in Section 7.

2. Related Work

In the last two decades, many ingenious physi-
cally based techniques for modeling deformable ob-
jects have been proposed, which can be found in geo-
metrical modeling, surgical simulation and computer
animations. We will only review some work related
to the finite element method and the linear elasticity
model for solid shapes. See [16,17] for a general sur-
vey.

Finite element solvers are computationally expen-
sive. There are many approaches for quickly solving
the discretized equations using adaptive methods to
avoid wasting time on minor details. Some recently
proposed representative work are [18–21]. Capell
et al. proposed a multiresolution framework for dy-
namic simulation using volumetric subdivision [18].
By adaptively refining the basis functions, Grinspun
et al. proposed another simple framework for adaptive
simulation [19], called CHARMS. Wu et al. [20] and
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Debunne et al. [21] developed other kinds of adaptive
methods using progressive meshes and LOD tetrahe-
dral meshes. Debunne et al. also took adaptive time
steps during simulation [21] to further avoid unneces-
sary computation.

Modal analysis with finite element methods, which
decompose non-rigid dynamics into a sum of inde-
pendent vibration modes, has been a well established
mathematical tool in mechanical engineering [6].
By discarding the small-amplitude, high-frequency
modes, an efficient and stable simulation with visu-
ally acceptable accuracy can be obtained [22–24,15].
Similar to modal analysis, the subspace integration
method presented in [25] reduces the degrees of free-
dom (DOFs) of the simulated objects using some pre-
computed deformation basis.

To achieve high performance, a linear Cauchy
strain model is usually employed that gives a constant
stiffness matrix. However it usually gives severe de-
formation artifacts when the simulated object under-
goes a large rotational motion away from its rest state.
Muller et al. suppress these artifacts with a warped
stiffness approach by tracking the rotational motion
of the vertices and cells [7,13]. Choi et al. [14] take
an approach similar in sprit to the warped stiffness in
their extended modal analysis formulation.

Recently, James et al. [10] proposed a data driven
approaches to interactive dynamic simulation. These
approaches basically precompute the Green’s func-
tion, and model the deformation as a boundary value
problem in terms of the precomputed Green func-
tions. And it has been shown that the discrete Green
functions of real world objects can be computed from
some measured quantities [26]. Our approach also de-
rives a deformation model using a precomputed force-
displacement matrix. But, we model the interior of
the solid objects as well as the boundary, which dif-
ferentiates our work from those of James et al. [27,
10,28]. And we compress the force-displacement ma-
trix using the CPCA method, while James et al. [28]
deals with it using wavelet decomposition based on a
multiresolution representation of the object’s bound-
ary surface. The advantage of the CPCA based com-
pression method is that it does not require any special
(multiresolution) structure on the mesh of the object
undergoing deformation.

3. Overview

In this section, we will give the basic formulations
for physically based simulation. Let Ω⊂R3 be a solid
shape to be deformed, and p(x, t) : Ω× R → R3 be
the time dependent motion function of the shape. We
represent the motion function p(x, t) as the sum of the
rest state and a displacement q(x, t):

p(x, t) = x+q(x, t).

In the finite element method, the shape domain
Ω is divided into elements of finite size. And the
continuous displacement field in each element is in-
terpolated using the displacement qi(t) on the nodal
points and a set of piecewise linear basis functions
{φ i(x) : i = 1,2, . . . ,n} on Ω:

q(x, t) = qi(t))φ i(x).

Let q(t) = [q1(t), . . . ,qn(t)]t be the time dependent
displacement vector. Then, the Euler-Lagrange mo-
tion equation for the deformation dynamics becomes:

Mq̈+Dq̇+Kq = fext + fψ ,

where M,D,K are the mass, damping, and stiffness
matrices of the simulation system, fext is the external
force added to the deformable object, and fψ is the
constraint force added on the constrained node set ψ .
In our system, the constrained nodes set ψ is dynam-
ically determined during the simulation according to
user manipulation.

Let h be the time step for simulation, and ∆q̇ =
q̇(t + h)− q̇(t). We use the implicit Euler method to
solve the above dynamic equation, yielding the fol-
lowing linear system:

(M+hD+h2K)∆q̇ = h(fext−Dq̇−K(q+hq̇)+fψ).
(1)

After solving the above linear system, the displace-
ment vector at the next time step can be easily ob-
tained by:

q(t +h) = q(t)+h(q̇+∆q̇).

For simplicity, we rewrite (1) as follows:

A∆q̇ = f, (2)



4 J. Huang et al

where A = M + hD + h2K, and f = h(fext −Dq̇−
K(q + hq̇) + fψ). Note that the mass matrix M and
the damping matrix D are constant matrices, while
the stiffness matrix K changes with q, which makes
A change accordingly and imposes a huge amount
of computational cost on the simulation. Therefore,
most previous works use a linear elastic model by re-
stricting the deformation to only relatively small local
deformations, which gives a constant stiffness matrix
K and a corresponding constant matrix A.

The above approach using the linear elasticity
model is only applicable to small deformations near
the rest state regarding a global rotation. Otherwise,
there will be noticeable deformation exaggeration, es-
pecially when the object undergoes a global rotation.
As long as the local deformation is small, it has been
shown that such error due to the global rotation can
be handled by tracking the global rotation and formu-
lating the deformation in the object’s local/reference
coordinate frame. Terzopoulos and Witkin proposed
such a method in [29] to fulfill the linear elastic equa-
tion. If the object is not rotating rapidly, ignoring the
motion of rigid reference will not lead to large er-
ror. Let R3×3 be the estimated global rotation matrix
(see [7]) and

R =

R3×3 0 0

0
. . . 0

0 0 R3×3


3n×3n

.

Then, after transforming the force and displacement
quantities into the local coordinate frame, the global
large deformation can be easily simulated using:

RARt
∆q̇ = f, ∆q̇ = RA−1Rt f. (3)

Note that each 3×3 block element (gi j)3×3 of A−1

gives the i-th node’s response in terms of displace-
ment acceleration to the force acting on the j-th note
for a time period of h. Therefore, we intuitively call
A−1 the force-displacement matrix of the deformation
system and denote G ≡ A−1, where each of the three
column vectors of G is called the force-displacement
vector of the corresponding nodes.

4. Domain Decomposition Method

The above basic approach is not suitable for an
object with long and soft components, since there

does not exist such a global rotation matrix, as shown
in Figure 1. For such objects, we propose to par-
tition the whole object into simple sub-objects and
solve the deformations using Domain Decomposition
Methods (DDM). DDM has been extensively studied
in applied mathematics and mechanical engineering
for partial differential equations (PDEs) in the last two
decades [30], which is indeed a basic concept of nu-
merical methods for PDEs in general. The principle
of DDM is to split the original domain of computation
into smaller simpler sub-domains, compute local sim-
plified solutions, and use efficient algebraic solvers to
properly interface these solutions.

(a) (b) (c) (d)

Figure 1. Deformation results with a linear elastic-
ity model. The bar shown in (a) is deformed under
the gravity with one end fixed. (b) Results with ex-
aggeration artifacts; (c) Improved result by tracking a
global rotational motion; (d) Further improved result
produced by using our DDM based method.

Suppose that the object Ω is partitioned into m
non-overlapping sub-objects Ω = Ω1∪ . . .∪Ωm. The
shared nodes between neighboring sub-objects are
duplicated. Under the DDM framework, each sub-
object Ωi is modeled independently, yielding a sys-
tem matrix Ai, and a force-displacement matrix Gi.
According to Eq. (3), we have

RiAiRt
i∆q̇i = fi, ∆q̇i = RiGiRt

ifi, (4)

where Ri is the global rotation matrix of sub-object
Ωi being tracked during simulation, and qi and fi are
respectively the displacement vector and force vector
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of Ωi. Denote Hi = RiAiRt
i , Ji = RiGiRt

i , and

q̆ =

q1
...

qm

 , ∆ ˙̆q =

∆q̇1
...

∆q̇m

 , f̆ =

f1
...

fm

 ,

H =

H1 0 0

0
. . . 0

0 0 Hm

 , J =

J1 0 0

0
. . . 0

0 0 Jm

 .

Then, we have H∆ ˙̆q = f̆ and H−1 = J.
Recall that there are some duplicate nodes between

the neighboring sub-objects, which should have the
same displacement quantities to maintain geometry
continuity. This can be accomplished by introducing
a vector of Lagrange multipliers λ to enforce a group
of point-to-point constraints [31]. Therefore, we have
following equations:

B∆ ˙̆q = c,

where c is a vector of zero, and B is a matrix of 3×3
blocks. Each row of B corresponds to a pair of du-
plicated nodes. Let the k-th row of B correspond to
the i-th and j-th node in q̆, then Bki = −Bk j = I3×3,
and Bkl = 0 for l 6= i, j. Then, we have the following
linear system for each simulation step in our domain
decomposition method:(

H Bt

B 0

)(
∆ ˙̆q
λ

)
=

(
f̆
c

)
. (5)

Note that other linear constraints for user manipula-
tion can be easily formulated as above by appending
more rows to B, and some values to c.

Applying the elimination method, the solution of
Eq. (5) can be obtained by:

∆q̇i = RiA−1
i Rt

i (fi−Bt
iλ ) ,

Wλ = ∑i BiRiA−1
i Rt

ifi− c, (6)

where W = ∑i BiRiA−1
i Rt

iBt
i . Each simulation step

mainly requires the calculation of the following quan-
tities:

a) Rt
ifi, A−1

i (Rt
ifi), and Ri(A−1

i (Rt
ifi));

b) Rt
iBt

i , A−1
i (Rt

iBt
i), and BiRi(A−1

i (Rt
iBt

i));
c) λ and ∆q̇i.

The quantities involving A−1
i can be formed by solv-

ing some linear systems with matrix Ai. Since A−1
i

is sparse and symmetric in our problem, some itera-
tive algorithms, such as the conjugate gradient (CG)
solver, could be used. Since there are quite number of
quantities involving A−1

i (each pair of shared bound-
ary nodes correspond to one), the naive CG-based do-
main decomposition method will be extremely slow
for a modest scale of simulated object, and cannot
meet interactive simulation requirements. In the fol-
lowing sections, we present two novel methods to de-
velop an efficient deformation system.

5. DDM Solvers

5.1. Clustering Method
The first method is based on the observation that

if the force-displacement matrix Gi for each sub-
domain is available, then the solution of the linear
systems with matrix Ai can be obtained simply by
matrix-vector multiplications. However, the force-
displacement matrix Gi is usually dense, which may
require a huge amount of memory and flops doing the
matrix-vector multiplication, yielding an even slower
performance. Therefore it is necessary to first com-
press the force-displacement matrix. We note that
there have been considerable efforts in directly ap-
proximating an inverse matrix using a sparse ma-
trix [32–34]. However they are developed to obtain
better pre-conditioners for fast convergence.

Recall that the force-displacement matrix gives the
object’s response in terms of displacement accelera-
tion to forces acting on a vertex. Nearby vertices may
have a similar response to the same forces, i.e., there
exists spatial coherence among the row vectors of the
force-displacement matrix. Based on this observa-
tion, we propose to compress the force-displacement
matrix using clustered principal component analy-
sis [12]. By the CPCA method, the row vectors of
Gi are grouped into several clusters, and each cluster
is then approximated using the conventional princi-
pal component analysis method. Therefore, the ap-
proximation to the force-displacement matrix takes
the following form (the subscript i for the sub-domain
is omitted for simplicity):

G≈

U1S1Vt
1

. . .
UkSkVt

k

≡ Ḡ, (7)

where k is the cluster number, U j and V j are the left
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and right eigen vectors of the j-th cluster, and S j are
the j-th cluster’s eigen values.

3 clusters 4 clusters 6 cluseter

Figure 2. False color visualization of the clusters gen-
erated by the CPCA method. Each cluster is indicated
by the same color.

Figure 2 shows the false color visualization of clus-
ters obtained by our clustering method. It is very in-
teresting that the clusters have spatial coherences and
reflect the shape structures. Table 1 shows the matrix
approximation errors of the clustering method for the
Torus-Knot model and the Bunny model using differ-
ent number of clusters and different number of aver-
age float elements per node (by choosing the number
of the eigen vectors). The results verify that as more
clusters and principal components are used, a more
accurate approximation is obtained.

There are two practical issues with our clustering
method. One issue regards the dimension size of
G. For an object with 10K nodes, G is a 30K×30K
matrix, and uses 3.6GB storage. It is obviously not
practical to directly run the CPCA method on such
a huge matrix. So, it is necessary to reduce the di-
mension of the row vectors before applying the CPCA
method. Recalling the physical meaning of the force-

Bunny
flp† 20 60 100 140

1 708.42 170.67 125.39 105.70
cluster 0.2364 0.1493 0.1311 0.1205

3 1616.9 154.77 113.38 95.364
clusters 0.2476 0.1310 0.1223 0.1114

6 2894.8 210.59 136.73 106.91
clusters 0.3377 0.1461 0.1270 0.1136

Torus-Knot
flp† 20 60 100 140

1 1315.9 87.757 48.688 39.225
cluster 0.2796 0.0821 0.0659 0.0592

3 1252.7 84.452 43.710 35.658
clusters 0.2212 0.0758 0.0608 0.0546

6 1604.7 103.48 48.139 35.881
clusters 0.2472 0.0733 0.0610 0.0539
flp† denotes the average float elements per node.

Table 1
Approximation error of the compressed force-
displacement matrices using 1, 3 and 6 clusters, and
20, 40, 100 and 140 float elements per node. In each
cell, the top value is ||G− Ḡ||F , and the bottom value
is the sum of the eigen values of G− Ḡ.

displacement matrix, a vertex also should have simi-
lar responses to the forces acting on nearby vertices.
Therefore, we first do another node clustering using
the node connectivity and coordinates to simplify the
mesh of the object down to a desired vertex number.
Based on this node clustering, we then sum up the cor-
responding columns in the force-displacement matrix
G, yielding some dimension reduced row vectors. We
then apply the CPCA method to group the dimension
reduced vectors into some clusters. Note that the re-
sulting clusters are also applicable to the original vec-
tors. So, we group the original vectors into clusters
accordingly, and perform a SVD step for each cluster.

The other issue is how to invert A to obtain the
force-displacement matrix G. It is still an open math-
ematical problem to efficiently invert a huge matrix.
In our current implementation, we first compute the
Choleschy factorization of A, then compute G’s j-th
column g j by solving Ag j = e j, where e j is the j-th
canonical basis.

With the compressed force-displacement matrix,
the solution to the linear system of Ax = b can be
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simply computed by:

x = Gb≈

U1S1(Vt
1b)

. . .
UkSk(Vt

kb)

 .

Now we analyze the compression ratio and per-
formance gain in solving Ax = b. For simplicity,
we suppose that the clusters have the same num-
ber m of principal components. Then the com-
pressed force-displacement matrix takes about (1 +
k) ·m · |G| elements, where |G| denotes the size of the
G. Therefore the storage compression ratio is about
(1+k)·m
|G| . Note that the computational cost is propor-

tional to the element number in the matrix represen-
tation, so the computational cost ratio is also about
(1+k)·m
|G| . As long as (1 + k) ·m � |G|, our cluster-

ing method greatly reduces the storage and increases
performance, compared with using an uncompressed
force-displacement matrix G. Similar analysis can
be done when the clusters have different numbers of
principal components.

When b is sparse, the solution of Ax = b can be
formed even faster, which demonstrates another ad-
vantage of our clustering method. And in our domain
decomposition framework, most of the linear systems
have Rt

iBt
i as the right hand side vector, which are ex-

tremely sparse, as shown in Section 4.

5.2. Hybrid Method
The second method is a hybrid that takes advan-

tage of both the force-displacement matrix and the
Cholesky factorization of Ai. The basic ideas be-
hind the hybrid method are: (1) compute and reuse
the Cholesky factorization of Ai to solve the linear
systems with matrix Ai; (2) compute and reuse the
force-displacement vectors of the boundary nodes for
on-the-fly calculation of BiRi(A−1

i (Rt
iBt

i)).
To help understand the hybrid method, let us con-

sider solving a linear system Aix = b. We can solve
it either by using the compressed force-displacement
matrix Ḡi, or using the Cholesky factorization of Ai.
The performance of using Ḡi depends on the number
of the principal components used. In our experiments,
it is usually similar to the performance of using fac-
torized Ai. So this leads us to idea (1). Though the
performances are similar, we can use factorized Ai to
get rid of the heavy pre-computation stage to calculate

and compress the whole force-displacement matrix.
In our experiments, we can compute the Cholesky
factorization on the fly using the UMFPack [35].

However, if b is very sparse, e.g., b is a column
of Rt

iBt
i , then the performance of using factorized Ai

will be several times slower than that of using Ḡi.
This motivates us to incorporate idea (2). We also
compute the force-displacement vector for the shared
boundary nodes on-the-fly using factorized Ai before-
hand. In addition, for each boundary node, only a
small part of the force-displacement vector will be
used when calculating BiRi(A−1

i (Rt
iBt

i)) in Section 4.
So we need store only a very small portion of the
force-displacement vectors for the boundary nodes in
each cluster. This further reduces the memory cost
and computation cost.

In the clustering method, some eigen vectors in
A−1

i are discarded for compression, which sometimes
produces a singular matrix W. To avoid the possi-
ble instability, we have to do expensive singular value
decomposition on W to obtain a numerically stable
result for the Lagrange multiplier λ . But, in the hy-
brid method, W is always of full rank, so that λ can
be solved with standard efficient routines, e.g., dpovs
provided in LAPACK.

Now we analyze the storage cost and computa-
tional cost of the hybrid method for the i-th sub
domain. The storage consists of two major parts.
One is for the Cholesky factorization of Ai, which
is propositional to the number of the non-zero ele-
ments in Ai, which is itself proportional to the num-
ber of nodes in the sub-domain. The other is for the
force-displacement vectors, which is proportional to
the square of the boundary node number in the sub-
domain, which is usually quite small.

The computational cost consists of three parts. One
part is for solving linear systems with factorized Ai,
which is proportional to the node number in the sub-
domain. Another is for calculating BiRi(A−1

i (Rt
iBt

i)).
Since the involved elements in A−1

i have been pre-
computed for reuse, this part of the cost is propor-
tional to the square of the boundary node number in
the sub-domain. The last part is for solving the La-
grange multipliers λ for all subdomains with matrix
W. Since W is a dense matrix, this part of the com-
putation cost is O

(
|W|3

)
.
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6. Experiment Results

Figure 3. Some models used in our experiments. The
top row shows a tetrahedral mesh with colors indicat-
ing the sub-domains, while the bottom row shows a
surface mesh used for display.

In this section, we will present some experimental
results achieved with our deformation system. First,
we show some models used in the experiments in Fig-
ure 3. In our system, the simulation is run on a rela-
tively coarser tetrahedron mesh, which is then used to
deform finer surface meshes by piecewise linear in-
terpolation for display. For each vertex of the surface
mesh, we first find the tetrahedron that contains it, or
the closest one if the vertex lies out of the tetrahedral
mesh; then we compute the vertex’s barycentric co-
ordinates in the tetrahedron for runtime interpolation
when the object is deformed. The statistic numbers
of these models together with the performances are
listed in Table 2. The timing was obtained on a PC
with a Pentium IV CPU and 1 GB RAM. Our hy-
brid method can run at about 40 ∼ 100 fps on these
models, which is two times faster than the clustering
method. Interpolating the surface mesh requires some
time, but it can be easily accelerated with graphics
hardware.

Figure 4 shows some deformation results on the
Bunny model, altered by a user. Figure 5 shows some
frames of a simulation sequence of the Dragon model,

Bar Torus Bunny Dragon
#Elem 2205 1354 2436 843
#Node 611 517 878 343
#NSub 3 6 4 6
#BNode 50 52 66 55
#VSurface - 32768 34835 101108

simulation time (second/step)
CG-Based 1.010 0.580 3.980 0.180
Clustering 0.035 0.030 0.064 0.020
Hybrid 0.019 0.012 0.026 0.010

Table 2
Model sizes and performance timing. #Elem and
#Node denote the tetrahedron number and node num-
ber of the tetrahedral mesh, #NSub denotes the sub-
domain number, #BNode denotes the boundary node
number, and #VSurface denotes the surface mesh ver-
tex number. The rows of CG-Based, Clustering and
Hybrid show simulation time of the naive CG based
DDM, our clustering method, and the hybrid method.

Figure 4. Simulation results of the Bunny model.

which falls due to gravity and bounces on the ground
plane. In Figure 6, we show two extremely large de-
formation results of the Dragon model achieved in our
system.

At last, we compare the simulation results of our
method with DDM and without DDM in Figure 7.
This figure clearly shows that the results without
DDM suffer from severe distortions and exaggera-
tions, especially in the area highlighted with a rect-
angle, while our DDM produces natural deformation
results.
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Figure 5. Simulation results of the Dragon model
freely bouncing on a ground plane.

Figure 6. Large deformation results of the Dragon
model.

7. Discussion

We have presented a physically based deformation
method using the precomputed force-displacement
matrix. The advantages of our method are

• It is very fast. The fast performance is achieved
by precomputing a force-displacement matrix.

• It is stable, and allows for relatively large
time steps, since essentially the implicit Euler
method is used to solve the underlying differ-
ential equations.

• Large deformations are handled very well by
tracking global rotations and using domain de-

Figure 7. Result comparison between tracking a sin-
gle global rotation method (top row) and our domain
decomposition method (bottom row). There are no-
ticeable distorted areas highlighted with a rectangle
in the top row.

composition methods. DDM improves the re-
sult more than with the linear blend described
in [15]. And compared with [7,8], our algo-
rithm can utilize more precomputed informa-
tion.

• It allows for dynamically introducing new con-
straints for user manipulations.

An open problem with the domain decomposition
method is how to partition the simulated object into
sub-domains. Recall that we assume the sub-domains
will not undergo large local deformations, and the par-
tition boundary needs to be as small as possible for
better performance. So, it is desirable to partition the
objects at the joints and the concave regions, e.g., the
root of the ear of the Bunny model. It is also desirable
to partition the object at the softest regions, if the stiff-
ness parameter varies over the simulated object. In
our current system, the partitions are manually done
by a user. And we encountered some difficulties with
the manual partitioning of complex geometric shapes,
e.g., the Torus-Knot model and the Dragon model.

Therefore, it is necessary and worthwhile to inves-
tigate some automatical partitioning methods. Re-
call that nodes with similar force-displacement vec-
tors will have similar movement acceleration, so the
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(a) (b) (c)

Figure 8. Automatic partition of the Dragon model
using the CPCA method. (a) Parition result with
6 sub-domains; (b) A simulation result with the
automatically partitioned sub-domains; (c) Another
simulation result using 6 manually partitioned sub-
domains.

(a) (b) (c)

Figure 9. Automatic partition of a bar with spatially
varying stiffness paramters. (a) False color visual-
ization of the stiffness with brighter colors indicat-
ing greater stiffness; (b) Partition result on (a); (c)
Another partitioning result on the same bar but with
uniform stiffness parameters.

CPCA clusters could give a reasonable partition of
the simulated object for the DDM method. In or-
der to run CPCA method over the tetrahedron cells,
we first assign each tetrahedron cell with the sum
of the force-displacement vectors of its four nodes.
Figure 8(a) shows an automatic partitioning of the
Dragon model. The corresponding deformation result
shown in Figure 8(b) is encouraging, compared with
the result with manual partition shown in Figure 8(c).
Figure 9 shows an automatic partitioning result on a
bar with spatially varying stiffness parameters. The
results show that the CPCA based partition method
can automatically put more clusters in the soft part of

the bar. These experimental results suggest an inter-
esting future work on automatic domain decomposi-
tion.
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