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Abstract

In raster graphics, a line is displayed as a sequence of connected pixels that best approximate the line with minimum

deviation. The displacement code of a line is a sequence of binary codes, each of which represents the displacement of a

pixel on the line to its immediate predecessor pixel on the line. In fact, the displacement code records the entire process

of drawing a line with successive pixels and it is deterministic for each specific line. In this paper, we study the important

properties of the binary representation of displacement code, called BRDC, including calculation formula, periodicity,

complement, decomposition etc. At last, we put forward an efficient adaptive multi-pixel line drawing algorithm based

on exploited properties of BRDC, which demonstrates that BRDC is significant for designing efficient line drawing

algorithms. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Line is one of the most fundamental elements in

computer graphics. In raster graphics, a line is displayed

as a sequence of connected pixels, which best approx-

imate the line with minimum deviation. Many efforts

have been paid to developing efficient line drawing

algorithms [1]. These algorithms can be classified into

two types. One type relates to single-step algorithms,

which generate one pixel on the line during each

iteration. The other relates to multi-step algorithms,

which generate multiple successive pixels on the line

during each iteration. One of the best-known single-step

algorithms is the Bresenham algorithm [2] proposed by

Bresenham in 1965, which involves only arithmetic

operations of integers, i.e., one integer addition and one

sign judgment for each pixel’s generation. Because of its

simplicity, it is well-suited for hardware implementation.

Many attempts [3–8] later have been tried to improve the

efficiency of the Bresenham algorithm. One way to

accelerate the line drawing process is generating multiple

pixels on the line during each iteration [9–13]. Taking

advantage of the symmetry of a line from either

endpoint, the bi-directional method is proposed in [9]

to draw a line from both directions. The double-step

algorithm in [10] generates two pixels each time

according to the line’s slope. Also in [11] a triple-step

approach is proposed. Bao et al. analyzed all the

possible configurations of four pixels, called the quad-

ruple-step running codes of line, and proposed a Quad-

step algorithm in [12]. A general N-step method

proposed in [13] considers even larger steps to accelerate

the process of line drawing. In these multi-step

algorithms, a pre-determined fixed number, for example

2, 3, or 4 etc, of pixels are generated at each iteration. In

addition, there are some other adaptive multi-step

algorithms [14–17], which adaptively determines the

step according to the slopes of the lines. In [17], three

kinds of pixel approximations of a line are discussed,

and a new algorithm is given, which is 20 times faster

than the original Bresenham algorithm.

After reviewing the published line drawing algo-

rithms, we found that the entire line drawing process

can be represented by the displacement codes, which

record the displacement of each pixel on the line to its

immediate predecessor pixel on the line. The major
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difference between various line drawing algorithms is

how they determine the displacement code. The binary

representation of displacement code (BRDC) is inter-

esting for addressing line drawing problem, because: (1)

For a given line, its BRDC is unique, and (2) the BRDC

of a line can be determined prior according to its slope.

(3) BRDC has lots of nice properties, which can be

employed to improve the line drawing process. In the

next section of this paper, we will first give a formal

definition of BRDC. Then we examine the important

properties of the BRDC, including calculation formula,

periodicity, decomposition, etc. in Sections 3 and 4.

Then in Section 5, we put forward an adaptive multi-

pixel line drawing algorithm based on the BRDC, and

we show that the BRDC is significant for designing

efficient line drawing algorithms. In the last section some

future work are addressed.

2. Definition of BRDC

A raster graphics display is logically a 2D grid of

pixels as shown in Fig. 6. The task of drawing a line is to

determine which pixels belong to the line. Due to the

limited resolution of the display, it is an approximation

process. For example, L is a line from Aðxa; yaÞ to

Bðxb; ybÞ; as shown in Fig. 1. Without loss of generality,

we suppose that the slope m of line L is in the interval

[0, 1]. The intersection of L and a grid line x ¼ xi is

ðxi;Y ðxiÞÞ; where xi ¼ xa þ i; i ¼ 0; 1; 2;y;xb � xa; and
Y ðxiÞ ¼ xa þ mðxi � xaÞ:
Obviously the nearest pixel to the intersection is

ðxi; yiÞ; where yi ¼ ½Y ðxiÞ þ 0:5�: [ � ] is the truncation

operator. Therefore, the pixel approximation of line L is

fðxi; yiÞji ¼ 0; 1; 2;y; xb � xag:
Although it is straightforward to represent a line by

the coordinates of all pixels on the line, the representa-

tion is somewhat complex, since it is location-dependent.

In the following, we will develop a more concise

representation scheme based on the relative positions

between each pair of adjacent pixels on the line. Recall

that the slope m of line L is between 0 and 1, we have

yiþ1 � yi ¼ Y ðxiþ1Þ þ 0:5½ � � Y ðxiÞ þ 0:5½ �

¼ Y ðxiÞ þ m þ 0:5½ � � Y ðxiÞ þ 0:5½ �A½0; 1�:

Therefore, yiþ1 � yi is either 0 or 1. It is clear that the

pixel approximation fPi ¼ ðxi; yiÞji ¼ 0; 1; 2;y; xb �
xag and the binary code sequence fyiþ1 � yi ji ¼
0; 1; 2;y; xb � xag can be determined from each other.

Note that no matter which value yiþ1 � yi takes, the line

moves horizontally by a unit step. And if yiþ1 � yi is 1,

the line also moves vertically by a unit step. We

adopt code 1 to represent a step of diagonal move-

ment and code 0 to represent a step of horizontal

movement between two successive pixels on the

line. Code 1 is referred as the jumping code. There-

fore, a line can be represented equivalently by its

displacement code.

It is clear that BRDC is translation invariant, i.e. if

the line is translated to a new position in the pixel grid,

its BRDC remains unchanged. In the rest of this paper

we assume that the lines pass through the origin without

loss of generality. Under this assumption, the lines lie in

the first octant, and have the following form:

YH;kðX Þ ¼
k

H
X ;

where H and k are two integers and 0okoH : And we

adopt the notations and abbreviations in Table 1 for

convenience.

When k ¼ 1; we can easily calculate the BRDC AH;1

of line YH;1 according to the definition:

0 0? 0|fflfflfflffl{zfflfflfflffl}
T0s

1 0 0? 0 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ðH�1Þ0s

1 0 0? 00|fflfflfflfflffl{zfflfflfflfflffl}
ðH�1Þ0s

1 0 0?: ð1Þ

It is obvious that the following three claims on the

above BRDC hold:

Claim 1. AH;1 is a periodic sequence, and its period is H :

Claim 2. There is one and only one jumping code in one

period of AH;1:

C 
P 

xa xb 

ya 

yb 

L 

A 

B 

L1 
L2

Fig. 1. Pixel (grid points) Approximation of lines. Some nearby

pixels are used to approximate the lines.

Table 1

Notations and abbreviations

Notation Meaning Abbr.

H; k H; k: Integers and 0okoH

g; h g ¼ H%k; h ¼ k � g

YH;k Line:YH;kðX Þ ¼ k
H

X Yk

AH;k BRDC of line YH;k Ak

AH;k Conjugation of AH;k: AH;kðiÞ ¼ AH�k;k

ðH � 1� iÞ
Ak

TH The jumping position of AH;1 T

TH;k TH;kðiÞ ¼ ðTH � ikÞ%H Tk

SH;k Segment code of AH;k Sk
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Claim 3. In AH;1; the number of the initial 0’s is

T ¼ H�1
2

� �
, i.e. its first jump code occurs at the position

T ¼ H�1
2

� �
.

The periodic BRDC in (1) can be illustrated by a

circular chain defined on an H-sided equilateral poly-

gon, as shown in Fig. 2.

However, when k>1, the BRDC AH;k of line YH;k

may be somewhat difficult to calculate directly using its

definition. After carefully examining some specified

examples of the BRDC, we find a synthesis method to

compute AH;k; which is concluded in the following

lemma.

Lemma 1. Let H and k be two integers satisfying

0okoH. Then the BRDC Ak of line Yk can be

synthesized using the BRDC A1 of line Y1 by the

following formula:

AkðiÞ ¼
Xk�1

s¼0
A1ði � k þ sÞ: ð2Þ

Proof. According to the definition of BRDC, we have

AkðiÞ ¼ yk;iþ1 � yk;i and A1ðiÞ ¼ y1;iþ1 � y1;i:

Since

YkðxiÞ ¼
k

H
xi ¼

1

H
ðk � xiÞ ¼ Y1ðk � xiÞ ¼ Y1ðxi�kÞ:

Then

yk;i ¼ YkðxiÞ þ 0:5½ � ¼ Y1ðxi�kÞ þ 0:5½ � ¼ y1;i�k:

AkðiÞ ¼ yk;iþ1 � yk;i ¼ y1;i�kþk � y1;i�k

¼
Xk�1

s¼0
ðy1;i�kþsþ1 � y1;i�kþsÞ ¼

Xk�1

s¼0
A1ði � k þ sÞ:

&

Since A1 is a periodic sequence, Ak is also a periodic

sequence according to formula (2) in Lemma 1.

And the period of Ak is H=ðH ; kÞ according to group

theory, where (H ; k) is the greatest common divisor

of H and k:

For every k codes in A1 grouped together, formula (2)

implies that AkðiÞ is the summation of the codes in the

ith group. Taking advantage of the circular chain shown

in Fig. 2, we can obtain in order Akð0Þ;Akð1Þ;Akð2Þ;y
more conveniently through the following method: Sum

the first k codes in the circular chain to obtain one code

in Ak; then rotate clockwise the circular chain by k

codes. Note that there is one and only one jumping code

in the circular chain of Ak according to Claim 2. Since k;
the length of each segment, is oH ; the whole length of

the chain, the summation can be obtained by testing

whether the jumping position of the circular chain is ok

or not, instead of summing up all of the elements. After i

rotations, the jumping position of the circular chain

becomes

TkðiÞ ¼ ðT � ikÞ%H: ð3Þ

Therefore,

AkðiÞ ¼
1; TkðiÞ ¼ ðT � ikÞ%Hok;

0 otherwise:

(
ð4Þ

Since Tkð0Þ ¼ Taccording to Claim 3, we can obtain

AkðiÞ and TkðiÞ one by one using the following test:

(a) If TkðiÞok; then AkðiÞ ¼ 1 and

Tkði þ 1Þ ¼ TkðiÞ � k þ H;
(b) If TkðiÞXk; then AkðiÞ ¼ 0 and

Tkði þ 1Þ ¼ TkðiÞ � k:

Taking (a) and (b) as the main loop control, we can

easily develop a line drawing algorithm, which generates

one pixel by one integer addition and one comparison,

as shown in the Algorithm 1 in Fig. 6. This algorithm

can also be considered as an efficient implementation of

Bresenham algorithm.

3. Properties of BRDC

In this section, we study some important properties of

BRDC. The first property is about the symmetry of

BRDC.

Property 1. Let H and k be two integers satisfying

0okoH : If H is an odd integer, then Ak is symmetric,

i.e.

AkðiÞ ¼ AkðH � 1� iÞ:

Proof. Since H is odd, and T ¼ H � 1
2
; then

T ¼ H � 1� T ð5Þ

According to (3), there exists an integer m; such that

TkðiÞ ¼ T � ik þ mH :
If AkðiÞ ¼ 1; then 0pTkðiÞok; i.e.

0pT � ik þ mHok:

The starting position 
of the circular chain

The position of the
jumping code

0 

0 

0 0 

0 0 0 

0 

0 

1 

0 

0 

0 
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7 

Fig. 2. Circular chain for the BRDC A12;1 of line Y12;1ðX Þ ¼
1
12

X :
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Substituting T with H � 1� T ; we have

0pT þ ði þ 1Þk � ðm þ 1ÞHok: ð6Þ

So,

TkðH � 1� iÞ ¼ ðT � ðH � 1� iÞkÞ%H

¼ ðT þ ð1þ iÞkÞ%H

¼ T þ ð1þ iÞk � ðm þ 1ÞHok:

Then AkðH � 1� iÞ ¼ 1 according to (4). Similarly, we

can prove that if AkðH � 1� iÞ ¼ 1; then AkðiÞ ¼ 1:
Therefore, AkðiÞ ¼ AkðH � 1� iÞ; i.e. Ak is sym-

metric. &

In fact, the symmetry property has been used in some

previous work to generate pixels from bi-directions to

accelerate the line drawing procedure. However, if H is

an even integer, Property 1 may be not true, since

2TaH � 1; which is critical in the proof of Property 1.

For example, A6;1ð2Þ and A6;1ð3Þ are not equal, since

A6;1ð2Þ ¼ 1 and A6;1ð3Þ ¼ 0; as shown in Fig. 3. It shows

that the previous works on bi-directional line drawing

algorithms may in fact generate fault results. From the

point of pixel approximation, this is due to the

ambiguity of the nearest pixel when the intersection of

the line and the grid line is the midpoint of its lower pixel

and upper pixel, which may occur as H is an even

integer.

Property 2. Let H and k be two integers satisfying

0okoH: If H is an odd integer, then Ak and AH�k are

complementary, i.e.

AkðiÞ ¼ 1� AH�kðiÞ:

Proof. If AkðiÞ ¼ 1; according to the proof of Property 1
there exists an integer m; such that (6) holds, i.e.

0rT þ ði þ 1Þk � ðm þ 1ÞHok:

Then

H � kpT � iðH � kÞ � ðm � iÞHoH ;

TH�kðiÞ ¼ ðT � iðH � kÞÞ%H

¼ T � iðH � kÞ � ðm � iÞHXH � k:

So, AH�kðiÞ ¼ 0 according to (4).

Similarly we can prove that, if AH�kðiÞ ¼ 1; then

AkðiÞ ¼ 0: Therefore,

AkðiÞ ¼ 1� AH�kðiÞ:

&

When H is an even integer, Property 2 may not

be true. For example, A6;1ð2Þ and 1� A6;5ð2Þ are not

equal, since A6;1ð2Þ ¼ 1 and A6;5ð1Þ ¼ 0; as shown

in Fig. 3. Therefore, we must be careful when general-

izing algorithms designed for lines in the first half

of the first octant to lines in the second half of the

first octant.

We define the reverse of the AH�k as the conjugation

of Ak; denoted by Ak; i.e.

Ak ¼ AH�kðH � 1� iÞ:

According to Properties 1 and 2 , when H is odd, we

have

AkðiÞ ¼ 1� AkðiÞ:

We call this conjugate complementary. One of the most

interesting things is that the conjugate complementary

property holds also when H is an even integer, as shown

in Property 3.

Property 3. Let H and k be two integers satisfying

0okoH : Then

AkðiÞ ¼ 1� AkðiÞ:

Proof. According to (3), there exists an integer m; such
that TkðiÞ ¼ T � ik þ mH:
If AkðiÞ ¼ 1; then 0pTkðiÞok according to (4). Then

0pT � ik þ mHok;

H � kpT � ði þ 1Þk þ ðm þ 1ÞHoH ;

TH�kðH � 1� iÞ ¼ ðT � ðH � 1� iÞðH � KÞÞ%H

¼ ðT � ði þ 1ÞKÞ%H

¼ T � ði þ 1ÞK þ ðm þ 1ÞH

XH � K :

So, AH�kðH � 1� iÞ ¼ 0 according to (4), i.e.

AkðiÞ ¼ 0:

Similarly we can prove that, if AkðiÞ ¼ 0; then

AH ðiÞ ¼ AH�kðH � 1� iÞ ¼ 1:

Therefore,

AkðiÞ ¼ 1� AH�kðH � 1� iÞ ¼ AkðiÞ:

&

By observation, we find that BRDC is composed of a

few repeated patterns as shown in Fig. 4. In Fig 4(a), the

repeated patterns are 10,000 and 100,000, while in

Fig. 4(b) the repeated patterns are 01111 and 011111.

And the repeated pattern either starts with 1 and

followed by a number of 0’s, or starts with 0 and

A6,1 0 0 1 0 0 0 … 

A6,5 1 1 1 0 1 1 … 

Fig. 3. Properties 1 and 2 are not true for H ¼ 6; k ¼ 1:
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followed by a number of 1’s. We conclude these,

respectively, in Properties 4 and 5.

Property 4. Let H and k be two integers satisfying

0okoH; and w be the number of 0’s between two

adjacent 1’s in BRDC Ak: Then

w ¼
H � k

k


 �
or w ¼

H

k


 �
¼

H � k

k


 �
þ 1:

Proof. Let AkðiÞ and Akði þ nÞ be a pair of adjacent 1’s,
then w ¼ n � 1: According to (3), we have

0pTkðiÞok; Tkði þ 1ÞXk;y;Tkði þ n � 1ÞXk;

0pTkði þ nÞok:

Again according to (3) and (4), we can obtain the

following results one by one:

0pTkðiÞok;

Tkði þ 1Þ ¼ TkðiÞ � k þ HXk;y;

Tkði þ n � 1Þ ¼ Tkði þ n � 2Þ � kXk

Tkði þ nÞ ¼ Tkði þ n � 1Þ � kok:

Combining these inequalities, we have

Tkði þ n � 1Þ ¼ TkðiÞ þ H � ðn � 1ÞkXk and

Tkði þ nÞ ¼ TkðiÞ þ H � nkok:

Since 0pTkðiÞok; then

H � ðn � 1Þk > 0 and H � nkok;

H � k

k
� 1on � 1o

H

k
;

H � k

k
� 1owo

H

k
:

H � k

k


 �
pwp

H

k


 �
¼

H � k

k


 �
þ 1:

Therefore,

w ¼
H � k

k


 �
or w ¼

H

k


 �
¼

H � k

k


 �
þ 1:

&

If koH � k; then ½ðH � kÞ=k�41: According to the

above property, the BRDC Ak is composed of some

simple pattern, which starts with a jumping code

followed by some 0’s.

Property 5. Let H and k be two integers satisfying

0okoH ; and w be the number of 1’s between two

adjacent 0’s in BRDC Ak: Then

w ¼
k

H � k


 �
or w ¼

H

H � k


 �
¼

k

H � k


 �
þ 1:

Proof. Although this lemma can be proved using a

similar method as that used for Property 4, we provide a

simpler method taking advantage of Properties 3 and 4.

According to Property 4, the number of 0’s between

two adjacent 1’s in AH�k is ½k=H � k� or ½H=ðH � kÞ� ¼
½k=ðH � kÞ� þ 1: According to the definition of Ak; the
number of 0’s between two adjacent 1’s in Ak is also

½k=ðH � kÞ� or ½H=ðH � kÞ� ¼ ½k=ðH � kÞ� þ 1: There-

fore, according to Property 3 the number of 1’s

between two adjacent 0’s in AH�k is ½k=ðH � kÞ� or

½H=ðH � kÞ� ¼ ½k=ðH � kÞ� þ 1:

If H � kok; then ½k=ðH � kÞ� > 1: According to the

above property, BRDC Ak is composed of some simple

pattern, which starts with a 0 followed by some jumping

codes.

4. Decomposition of BRDC

Properties 4 and 5 imply that the length of each

repeated simple segment is N þ 1 or N þ 2: In order to

study the distribution of the different lengths of the

simple segments, segment code Sk is defined for the

BRDC Ak as follows: If 0okoH2k; then

SkðiÞ ¼

the ith segment starts with 1

0 followed byN þ 1 00s;

1 the ith segment starts with 1

followed byN 00s:

8>>><
>>>:

Otherwise, 0oH2kok; then

SkðiÞ ¼

the ith segment starts with 0

0 followed byN 10s;

1 the ith segment starts with 0

followed byN þ 1 10s:

8>>><
>>>:

According to Property 3:

AkðiÞ ¼ 1� AH�kðH � 1� iÞ;

the following claim holds.

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 
(a) the first period of A24,5 

1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 
(b) the first period of A24,19

Fig. 4. Repeated patterns of displacement code. (a) In A24;5; the
patterns are 1000 and 10000. (b) In A24;19; the patterns are 0111
and 01111.
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Claim 4. For 0okoH2k; we have

SH�kðiÞ ¼ 1� Skðk � 1� iÞ:

Lemma 2 (Decomposition). Let H and k be two integers

satisfying 0okoH � k: There exists a certain integer m;
such that

SH;kðiÞ ¼ Ak;gðm þ iÞ:

Proof. We first suppose that H and k are relatively

prime. Let N ¼ ½ðH � kÞ=k�:
Let Pi be the index in AH;k of the jumping code of the

ith segment. Then TH;kðP0Þ ¼ TH%kok: According to

Property 4, there is at least N number of 0’s following a

jumping code. Then

TH;kðPi þ N þ 1Þ ¼ TH;kðPiÞ � k þ H � Nk

¼ TH;kðPiÞ þ H%k ¼ TH;kðPiÞ þ h:

Therefore:

(a) If TH;kðPiÞ þ hok; i.e. TH;kðPiÞog; then the

number of all 0’s following the jumping code at

Pi is N : Then

SH;kðiÞ ¼ 1 and TH;kðPiþ1Þ ¼ TH;kðPiÞ þ h

¼ TH;kðPiÞ � g þ k:

(b) Otherwise, TH;kðPiÞXg; the number of all 0’s

following the jumping code at Pi is N þ 1: Then
SH;kðiÞ ¼ 0; and TH;kðPiþ1Þ ¼ TH;kðPiÞ þ h � k ¼
TH;kðPiÞ � g:
Since H and k are relatively prime, then g and h

are also relatively prime. Then there exists a certain

integer m; such that Tk;gðmÞ ¼ ðTk � mgÞ%k ¼
TH;kðP0Þ: According to (4) and (5) in Section 2,

we have

(c) If Tk;gðiÞog; then Ak;gðiÞ ¼ 1 and

Tk;gði þ 1Þ ¼ Tk;gðiÞ � g þ k;
(d) If Tk;gðiÞXg; then Ak;gðiÞ ¼ 0 and

Tk;gði þ 1Þ ¼ Tk;gðiÞ � g;

Comparing the above (a) and (b) with (c) and (d), we

have

Tk;gðm þ iÞ ¼ TH;kðPiÞ and SH;kðiÞ ¼ Ak;gðm þ iÞ:

If H and k are not relatively prime, let F be the greatest

common divisor. Then, according to the above proof,

there exists an integer m such that SH=F ;k=F ðiÞ ¼
Ak=F ;ðH=F Þ%ðk=F Þðm þ iÞ: Since YH;k ¼ YH=F ;k=F ; then

AH;k ¼ AH=F ;k=F : Then SH;k ¼ SH=F ;k=F by the definition

of the segment code. It is clear that F is also the com-

mon divisor of k and g: Then Ak;g ¼ Ak=F ;g=F ¼
Ak=F ;ðH=F Þ%ðk=F Þ: Therefore SH;kðiÞ ¼ Ak;gðm þ iÞ: &

Taking advantage of Property 3, Claim 4 and Lemma

2, we can easily prove the following lemma.

Lemma 3 (Decomposition). Let H and k be two integers

satisfying 0okoH � k: There exists a certain integer m;
such that

SH;H�kðiÞ ¼ Ak;k�gðm þ iÞ

Since BRDC is a periodic sequence, Lemma 2 and

Lemma 3 show that the segment code is nothing, but a

simpler BRDC derived from the original BRDC.

5. Adaptive multi-pixel algorithm

In this section, we propose an adaptive multi-pixel line

drawing algorithm as the application of Properties 3–5,

and Lemma 2.

As shown in Fig. 1, the pixel approximation of line L1

and L2 can be divided into many simple segments:

horizontal segments and catercorner segments. This can

be analyzed by their BRDC. For a line in the first

hexadecant, according to Property 4, the repeated simple

segment in its BRDC starts with a jumping code

followed by a number of 0’s. By the definition of

BRDC, the repeated segments correspond to horizontal

line segments, as shown in Fig. 5. And the length of each

segment is at least X2.

For a line in the second hexadecant, according to

Property 5, the repeated simple segment in its BRDC

starts with a code 0 followed by a number of jumping

codes. Again by the definition of BRDC, the repeated

segments correspond to the catercorner line segments.

And the length of each line segment is at least X2.

Additionally, the length of each segment can be

exactly calculated according to Lemma 2. The above

conclusions suggest that, instead of pixel by pixel, we

can draw a line segment by segment so as to improve the

efficiency of line drawing. Based upon this, we propose a

more efficient line drawing algorithm accordingly.

Shown as well in Properties 4 and 5, Ak and AH�k

have the same internal characteristics according to

Pixel at origin (0,0); 

Pixel corresponding to jumping code; 

Short segment; Long segment.

Pixel corresponding to code 0;

Fig. 5. Repeated segments in a BRDC correspond to simple

line segments. In this figure, the line is Y24;5:

L. Miao et al. / Computers & Graphics 26 (2002) 401–408406



Property 3. In other words, they are equivalent under

the relationship of conjugate complements. Therefore,

we introduce the algorithm only for lines in the first

hexadecant.

Let L be a line in the first hexadecant, ðxa; yaÞ
andðxb; ybÞ be its end points and xaoxb: Then H ¼

xb � xa; k ¼ yb � ya and koH � k: Before introducing
the algorithm, several things need to be clarified. Denote

N ¼ ½ðH � kÞ=k� as in the proof of Lemma 2. Firstly, we
need to calculate the value of P0 and TkðP0Þ in the proof
of Lemma 2. Since koH � k; Ak starts with a number

n ¼ ½T=k� ¼ ½N=2� of 0’s. Then P0 ¼ n; and TkðP0Þ ¼
T � nk ¼ T%k: Secondly, the BRDC of the limited line

also ends with some 0’s. Since the BRDC is periodic, its

ending 0’s and starting 0’s together correspond to a

repeated segment. If the corresponding segment is short,

then the ending 0s’ number is n; otherwise it is n þ 1: At
last the number of repeated segments is k � 1:
In summary, the pseudo-code of the adaptive

multi-pixel line drawing algorithm is described in

Algorithm 2 in Fig. 6. In this algorithm, routine

Divide(H ; k; g; t;N ; n) takes H and k as input and

computes the values of g; t (i.e. TkðP0Þ in the proof of

Lemma 2). And starting from pixel (x; y), the routine of
DrawHSðx; y; cÞ draws a horizontal line segment of c

pixels, and the updated value of x is returned.

This algorithm is implemented in a Window NT

workstation. Noted also in the previous works, the

simple software implementation is not particular inter-

esting, since in practice it would be realized at the chip

level. Moreover, the results depend on the quality of the

code generated by the complier operating system.

Therefore, we theoretically analyze the computation

cost. Note that only integers are involved in this

algorithm, and the values of N and g can be obtained

together by one integer division operation in the routine

of Divide(y).

The computations involved in this algorithm is

summarized in Table 2, where some operations such as

‘‘division by 2’’, increment of x and y are ignored. In the

routine of Divide(y), there are totally three additions/

subtractions and one division: H2k; H21; H2k þ g or

H2g; H%k: In the initialization step of the main

routine, there are totally four additions/subtractions:

N þ 1; N þ 2; �g þ k; n þ 1: In the loop of the main

routine, there are k additions/subtractions.

Therefore, our algorithm is more efficient than the

original Bresenham algorithm. The longer the repeated

segment is, the more efficient the algorithm is. And our

algorithm can adaptively determine the pixel number of

the repeated segment for different lines.

Algorithm 1: Single-pixel line drawing algorithm. 

Input: Two end points (xa,ya) and (xb,yb) of a line in the first 

octant, and x
a
<y

a
. 

ab xxH −←

ab yyk −←

][
2

1−← HT

DrawPixel(xa, yb) 

WHILE ba xx < DO

IF kt <  THEN

1+← aa yy

Hktt +−←
ELSE 

ktt −←
END IF 

1+← aa xx

DrawPixel(xa, yb) 

END WHILE

Algorithm 2: Adaptive multi-pixel line drawing algorithm. 

Input: Two end points (xa,ya) and (xb,yb) of a line in the first 

half of the first octant, and xa<ya. 

ab xxH −←

ab yyk −←
Divide(H, k, g, t, N , n) 

DrawHS(xa, yb, n) 

1+← ayy

WHILE byy < DO

IF gt <  THEN

DrawHS(x, y, N+1)

kgtt +−←
ELSE 

DrawHS(x, y, N+2)

gtt −←

END IF 

1+← yy

END WHILE 

IF gt <  THEN

DrawHS(x, y, n) 

ELSE 

DrawHS(x, y, n+1) 

END IF 

PROC Divide(H, k, g, t, N , n) 

1][ −←
k
HN

kHg %←

][
2
Nn ←

][
2

1−← HT

IF N is odd THEN 

][
2

gkHTt −−−←

ELSE 

][
2

gHTt −−←

END IF 

Fig. 6. Adaptive multi-pixel line drawing algorithm based on

BRDC

Table 2

Comparison for line of k=Ho0:5

Bresenham algorithm Adaptive algorithm

Addition H þ 2 k þ 7

Division 0 1

Testing H k þ 2
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6. Conclusions and future works

We have presented an abstract representation

called the BRDC, and studied some important proper-

ties of the BRDC, such as periodicity, symmetric,

conjugate complementary, etc. These properties are very

useful for designing and analyzing line drawing algo-

rithms. Then we proposed a method to decompose a

BRDC into a simpler one. At last, based on the above

results, we have developed an efficient adaptive multi-

pixel line drawing algorithm, which demonstrates the

feasibility of BRDC.

Future work includes exploiting more useful proper-

ties of the BRDC of a line, and investigating the BRDC

for curves, such as circles, and ellipses, etc.
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