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SpatialCrafter: Unleashing the Imagination of Video Diffusion Models
for Scene Reconstruction from Limited Observations
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Figure 1. Overview. Our method, SpatialCrafter, generates additional novel views of a scene from few inputs by leveraging camera
trajectory-guided video diffusion models, which alleviates the ambiguity of sparse view reconstruction and robustly reconstructs the scene
from the generated video frames. It demonstrates impressive performance in both indoor and outdoor scenes, while also exhibiting gener-
alization capabilities in real scenes and synthetic images. More visualization results can be found in the supplementary material.

Abstract

Novel view synthesis (NVS) boosts immersive experiences in
computer vision and graphics. Existing techniques, though
progressed, rely on dense multi-view observations, restrict-
ing their application. We tackle the task of reconstructing
photorealistic 3D scenes from only one or a few input views.
We introduce SpatialCrafter, a framework that leverages the
rich knowledge in video diffusion models to generate plausi-
ble additional observations, thereby alleviating reconstruc-
tion ambiguity. Through a trainable camera encoder and
an epipolar attention mechanism for explicit geometric con-
straints, we achieve precise camera control and 3D consis-
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tency, further reinforced by a unified scale estimation strat-
egy to handle scale discrepancies across datasets. Further-
more, by integrating monocular depth priors with semantic
features in the video latent space, our framework directly
regresses 3D Gaussian primitives and efficiently processes
long-sequence features using a hybrid network structure.
Extensive experiments show our method enhances sparse
view reconstruction and restores the realistic appearance of
3D scenes. Project page: https://franklinz233.

github.io/projects/spatialcrafter/.
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1. Introduction

Novel View Synthesis (NVS), as a key technology in com-
puter vision and graphics, provides crucial support for im-
mersive experiences in fields such as video games and
mixed reality. Although neural reconstruction techniques
have made significant progress in recent years [25, 39,
42, 62, 66], these methods typically rely on dense multi-
view observation data, which face numerous limitations in
practical applications. Therefore, this paper focuses on a
more practically valuable challenge: how to achieve high-
quality 3D scene reconstruction and synthesize realistic
novel views from sparse or even single-view observation.

This problem is hard because (1) real-world scenes are
diverse and complex, (2) occluded regions are unseen in
sparse captures, and (3) geometric cues are too few to con-
strain reconstruction. To address these challenges, some
methods [17, 26, 29, 40, 84, 88] constrain the optimiza-
tion process by introducing regularization terms, but these
methods need to be optimized for each scene, are not gen-
eralizable, and are difficult to cope with complex scenarios.
Recently, some feed-forward methods [7, 8, 22, 50, 55, 60,
79, 80] have achieved generalizable sparse view scene re-
construction by directly predicting 3D Gaussian primitives
for each pixel. However, such methods produce severe ar-
tifacts when reconstructing occluded regions and applying
them to the extrapolation setting. To address this challenge,
some methods [35, 45, 64, 65] have introduced the priors
from the diffusion model to achieve sparse or single-view
NVS, but they perform poorly on scene-level data and lack
precise pose control and 3D consistency. This is due to the
fact that low-dimensional camera information such as Eu-
ler angles and extrinsic struggle to provide comprehensive
control signals to the generative models.

In this paper, we propose a framework named Spatial-
Crafter for scene reconstruction and novel view synthe-
sis based on sparse or single-view inputs. Our innovation
lies in leveraging the rich physical world knowledge em-
bedded in video diffusion models to provide plausible ad-
ditional observations for scene reconstruction, thereby ef-
fectively reducing the problem complexity. Specifically, we
first focus on enhancing precise camera control and 3D con-
sistency in generated videos. To achieve this, we parame-
terize camera settings using ray embeddings [78] or met-
ric depth-warped images [77] and incorporate them into the
video diffusion model via a trainable camera encoder. Fur-
thermore, we propose an epipolar attention mechanism that
improves 3D consistency between video frames through ex-
plicit geometric constraints. Previous methods [19, 64] of-
ten experience performance degradation and difficulty gen-
erating large-motion videos when trained on multiple scene
datasets. We identified that these issues primarily stem from
scale ambiguity in scene datasets. To overcome this, we in-
troduce a unified scale estimator to calibrate scene dataset,

enabling effective joint training across multiple datasets.

Although we can generate visually coherent video se-
quences, relying solely on generated frames to reconstruct
general scenes often leads to suboptimal solutions, par-
ticularly in large-scale outdoor environments and stylized
scenes. To address this, we propose incorporating monoc-
ular depth priors with rich semantic features extracted
from the video latent space. Leveraging these latent fea-
tures, our method directly regresses 3D Gaussian primi-
tives of the scene via a feed-forward network. Further-
more, to efficiently handle long-sequence feature interac-
tions, we design a hybrid architecture that integrates Mamba
blocks with Transformer blocks. Experiments show that our
method not only improves the sparse-view reconstruction,
but also accurately restores the appearance of 3D scenes,
especially when extrapolating from a single view and when
there are few sparse view overlaps. In conclusion, our key
contributions can be summarized as follows:

* We introduce a framework that effectively utilizes the
physical-world knowledge embedded in video diffusion
models to provide additional plausible observations for
sparse-view scene reconstruction, thus reducing the am-
biguity of sparse view scene reconstruction.

* To address the scale ambiguity problem that occurs in
joint training across datasets, we develop a unified scale
estimation approach for trajectory calibration. This solves
the performance degradation problem, thus enabling ef-
fective multi-dataset training.

* We combine monocular depth priors with semantic fea-
tures extracted from the video latent space, and directly
regress 3D Gaussian primitives through a feed-forward
manner. Meanwhile, we propose a hybrid architecture in-
tegrating Mamba blocks with Transformer blocks to effi-
ciently handle long-sequence feature interactions.

2. Related Work

2.1. Sparse-View Scene Reconstruction

NeRF [62] and Gaussian Splatting [25] have achieved pho-
torealistic representations of 3D scenes, but require opti-
mization on densely collected image sets for each scene.
To address this problem, some approaches [17, 29, 71, 88]
focus on constraining the optimization process of 3D rep-
resentations via manually designed regularization. Some
other methods [7, 8, 23, 54, 58, 69, 72, 83] are trained
on large-scale datasets and directly predict the 3D repre-
sentation in a feed-forward manner. Recently, some ap-
proaches [13, 50] based on end-to-end 3D reconstruction
models [7, 28, 60], have achieved efficient and high-quality
3D reconstruction. However, these methods cannot handle
occluded regions, and reconstruction failures (e.g., under
large viewpoint changes) can severely affect the quality of
novel view synthesis. More relevant to our work, some
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Figure 2. Overview of our pipeline. Our generative reconstruction pipeline consists of two parts: camera-controlled video generation,
and then video-based reconstruction. First, we set the exploration path based on the input views. In the video generation module, ray
embeddings are used to parameterize the camera trajectories, and a cross-attention mechanism with epipolar constraints is introduced to
improve the 3D consistency of the generated video. The video-based scene reconstruction pipeline integrates monocular depth priors with
semantic features extracted from the video latent space, and directly regress 3D Gaussian primitives via a feed-forward manner.

works [31, 34, 57] have employed priors from video dif-
fusion models to enhance the performance of sparse-view
reconstruction.

2.2. Diffusion-based Novel View Synthesis

Since text-to-image diffusion models [44] contain rich nat-
ural image priors, some methods [41, 63] directly opti-
mize 3D representations [25, 62] via score distillation sam-
pling [41]. Several approaches [0, 35, 45, 56] enable zero-
shot novel view synthesis by fine-tuning the image and
pose-conditioned generative models on large-scale 3D ob-
ject [10] or scene [56, 87] datasets. However, they still have
difficulty synthesizing consistent novel views. To solve
this, some approaches [5, 15, 36, 38, 47, 65, 85] generate
multi-views simultaneously and model the correlation be-
tween multiple views with ground-truth poses. Some re-
cent methods [30, 37] proposed to use large-scale unposed
images to train NVS methods. In addition, some meth-
ods [9, 12, 14, 48, 76, 82] utilize depth-based warping to
synthesize novel views and employ the T2I model to inpaint
the warped images. However, the novel views generated by
these methods tend to suffer from artifacts and cumulative
errors, limiting their use in generalized scenes.

2.3. Controllable Video Generation

While recent text-to-video diffusion models have achieved
remarkable progress, they inherit the controllability lim-
itations of their text-to-image counterparts, often requir-
ing additional conditioning mechanisms to align generated

videos with user intent. Several works [18, 24, 61, 70]
have been carried out to introduce a variety of condi-
tions into video generation models. Recently, attention
has focused on controlling the camera motion of the video.
Some approaches [ 18, 53] employs motion-specific training
for predefined camera movements, though this framework
struggles with complex trajectory synthesis. Some meth-
ods [1, 19, 20, 64, 67] enable more complex camera control
by parameterizing the camera trajectory and injecting it into
a pre-trained video diffusion model via a trainable camera
encoder. Another line of work [34, 43, 74, 77] advances
this direction by enabling pixel-accurate view compositing
through a point-based rendering approach.

3. Method

This section begins by explaining our camera-controlled
video generation model (Section 3.1), which employs ray
embeddings for precise pose control. Then, we describe
how to use epipolar geometry constraints to enhance 3D
consistency in the video frames. Next, we introduce
ourscene reconstruction pipeline (Section 3.2), which aims
to perform stable 3D reconstruction based on the generated
video latents.

3.1. Camera-Conditioned Video Generation

Scale Alignment. To address this challenge, our approach
first employs VGGT [58] to estimate initial camera param-
eters, represented by the extrinsic matrix P = [R|T], and



a corresponding depth map d,, for each video frame. To es-
tablish a consistent scale across these datasets, we leverage
the Metric3D [73] to infer a canonical metric depth map,
denoted d,,. We then align our initial depth prediction, d,,
to the canonical scale by calculating a scale factor s, de-
fined as the ratio of the inter-percentile ranges (IPR) of the
two depth maps: s = IPRg 50.2(dy)/ IPRo.s,0.2(dy ). This
scale factor is then used to adjust the translation component
of the camera extrinsics, resulting in Pg.qe¢ = [R|s - T).
This procedure yields camera extrinsics with a consistent
absolute scale, effectively resolving alignment issues when
fusing data from different sources.
Camera Injection. Inspired by recent methods [19, 49, 78],
we chose to use ray embeddings [19] or the depth warping
frames [77] to represent the camera information. Specifi-
cally, for a ray defined by the origin o € R? and the normal-
ized direction d € R?, we canrepresentitas (oxd,d) € RS.
Given the camera parameters, the direction of the ray d’ cor-
responding to the pixel coordinates (u, v) can be calculated
as d = RK~!(u,v,1)" + T. For depth warping frames,
we leverage the pretrained depth estimation model [59] to
map the reference image into a 3D point cloud. Subse-
quently, we render novel views at specified camera poses
by projecting this point cloud via the target camera param-
eters. Afterwards, we use a trainable conditional encoder to
inject the camera information into the video model instead
of fine-tuning all model parameters. The training objective
is:

L=Ee o [le—eo(zi20,t,6CDIF] O

where ¢(C') represents the camera conditional encodings,
zo denotes the latent embeddings of the reference frame,
and t indicates the timestamps.

Epipolar Feature Aggregation. Camera embedding en-
hances control but 3D video consistency remains challeng-
ing due to dense self-attention allowing unrestricted cross-
frame pixel interactions. We address this by incorporat-
ing epipolar geometric constraints, and aggregating features
along epipolar lines. For a pixel p = (u,v) in frame i,
its corresponding epipolar line l;;, in frame k is computed
as l;y(p) = Fy, - p, where p = (u,v,1)" are the ho-
mogeneous coordinates, and F';;, € R3%3 ig the funda-
mental matrix. The fundamental matrix is decomposed as
Fy = K; "EyK; "', where K;, K; € R* are the
camera intrinsics, and E ;. is the essential matrix. We then
convert epipolar lines into attention masks by computing
per-pixel distances and applying a threshold, restricting at-
tention to geometrically valid regions.

Sparse-View Setting. To adapt to the sparse view input
setting, we formulate the task as a video frame interpola-
tion problem conditioned on the given start and end frames.
To maximally preserve the priors from the pre-trained mod-
els [4], we inject boundary frame conditions in both latent
and semantic space. Specifically, we combine latent fea-

tures of the first and last frames with their noisy latent rep-
resentations, and then concatenate the extracted CLIP em-
beddings from both frames for cross-attentional feature in-
jection. The training objective is:

L= Ez,zmz”@Ci ||€ - 69(2’t; 205 Zns ta ¢(C)))||§:| (2)

where z,, and zg are the latent embeddings of the final and
initial frames, respectively. During the inference phase, we
use VGGT [58] to estimate the extrinsic and intrinsic pa-
rameters for the input views.

3.2. Video-based Scene Reconstruction

Motivation. There are several challenges in reconstruct-
ing scenes directly from generated videos. First, the lim-
ited number of generated frames makes it difficult to cap-
ture complete scene information. In addition, the diverse
styles of video frames can pose a challenge to traditional re-
construction techniques. Furthermore, the generated video
frames may contain imperfect or low-quality areas, making
the reconstruction process unstable. Moreover, In stylized
scenes, previous methods often yield poor results, as recov-
ering poses and sparse point clouds from video frames is
difficult, leading to many artifacts. To address this, a pow-
erful reconstruction module specifically designed to handle
the generated videos is required.

Latent Feature Fusion. Given input video latents z €
RTXHXWXC and camera poses encoded as ray embed-
dings p € RTXHXWX6 'we transform them into token se-
quences through a patchification process. Specifically, we
apply spatial patchification to latent features to obtain la-
tent tokens z; € RV*?: while ray embeddings undergo
3D-patchification to produce pose tokens p; € RN*d,
To incorporate explicit geometric guidance, we leverage
monocular depth estimation within our pipeline. For each
input RGB video frame, we estimate dense depth maps
D € RT*HXWX1 " which are processed by a dedicated
depth encoder to yield depth tokens d; € R™*94_ The three
token sets are channel-wise concatenated to form a unified
representation x = [z;; p;;d;] € RYX(d=tdptda) ywhich
is then linearly projected to a lower-dimensional space x’ €
RN %4 before being fed into a sequence of mamba and trans-
former blocks. Mamba [16] achieves the same token se-
quence processing functionality as Transformer, but reduces
computational complexity from O(L?) to O(L), making
it particularly suitable for dense reconstruction tasks. In
our Mamba blocks, we implement bi-directional scanning
across the token sequence. First, we compute state parame-
ters A, B, C € RV *? from the input tokens using a linear
projection. Then, we execute the State Space Model in both
forward (y ¢) and backward (y3) directions. The final output
of each Mamba block is computed as y = y ¢ +y; followed
by a final linear transformation.
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Figure 3. Qualitative comparison of generated videos. Compared to other benchmark methods, the videos generated by our method have
better foreground object-background consistency, while also being able to generate videos with larger motion amplitude.

Method FVD, FID| R.,| T.,| LPIPS| PSNR{ SSIM*{
RealEstate10K

MotionCtrl [64] 22,65 230.12 0.234  0.798 0.299 14.72 0.404
CameraCtrl [19] 2148 18821 0.054 0.127 0.230 17.33 0.516
ViewCrafter [77] 2096 204.18 0.055 0.153 0.215 18.95 0.503
Ours 1825 18325 0.052  0.103 0.207 19.21 0.523
Tanks-and-Temples

MotionCtrl [64] 3025 29038 0.838  1.505 0.315 14.64 0.388
CameraCtrl [19] 2441 24482 0.118 0.294 0.285 15.38 0.469
ViewCrafter [77] 2250 23135 0.126 0307 0.247 16.24 0.508
Ours 20.17 192,52 0.097 0.175 0.228 16.12 0.501
DL3DV

MotionCtrl [64] 25.65 24951 0473 1.118 0.312 14.38 0.386
CameraCtrl [19] 2276 23354 0.095 0.238 0.262 16.33 0.489
ViewCrafter [77] 2059 21124 0.093 0.244 0.242 17.12 0.521
Ours 1821 17152 0.063  0.134 0.225 17.02 0.537

Table 1. Quantitative comparison to the camera conditioned
video generation method on RealEstate10K [86], DL3DV [32],
and Tanks-and-Temples [27] dataset.

Gaussian Decoding. We design a lightweight decoder
module that efficiently transforms output feature tokens into
per-pixel Gaussian parameters. The decoding module con-
sists of 3D-DeConv layers, which generates refined Gaus-
sian feature map G € R(T*H*W)x12 Thjs 12-channel rep-
resentation precisely encodes the complete set of Gaussian
parameters: RGB color (3 channels), scale factors (3 chan-
nels), rotation quaternion (4 channels), opacity (1 channel),
and ray distance (1 channel). The final output of the model
is the merge of 3D Gaussians from all input video frames.
Training Objective. During training, we render images
from predicted Gaussians using randomly selected super-
vision views. Our approach employs a composite loss that
integrates three components:

‘Crecon = )\1 £7nse + >\2£perc + )\SEdepthy (3)

where L,,s. represents pixel-wise mean squared error,
Lperc denotes perceptual loss, and Lgep:n, enforces depth
consistency. This formulation jointly optimizes for photo-
metric accuracy, high-level perceptual fidelity, and geomet-
ric coherence.

4. Experiment

4.1. Experiment settings

Datasets. To comprehensively capture the underlying dis-
tribution of real-world scenarios, we trained our video diffu-
sion model on three diverse datasets: RealEstate-10K [86],
ACID [33], and DL3DV-10K [32]. The Re10K dataset from
YouTube comprises 67,477 training and 7,289 testing in-
door and outdoor camera trajectories. The ACID dataset fo-
cuses on natural landscapes, with 11,075 training and 1,972
testing scenes. The DL3DV-10K dataset is a large-scale col-
lection featuring 10,510 scenes captured under controlled,
standardized conditions.

Implementation Details. Our video generation model is
based on SVD [3], an image-video diffusion model based
on UNet. In our experiments, we use a relative camera sys-
tem in which all camera poses are converted to poses rel-
ative to the first frame. The camera in the first frame is
located at the world origin. In the first stage, we train the
model at a resolution of 320 x 512 for 50,000 iterations
with the frame length set to 25. Subsequently, we train on
576 x 1024 for 10,000 iterations to adapt to high resolu-
tion. The learning rate is set to le — 5 with a warmup of
1,000 steps, using the Adam optimizer. We chose Light-
ning as the training framework, using mixed-precision fp16
and DeepSpeed ZeRO-2. We trained the proposed method
and its variants on 16 NVIDIA A800 GPUs with a batch
size of 32. During inference, we adopt DDIM sampler [51]
with classifier-free guidance [21].

Progressive Training. Controlling a video generation
model to generate arbitrary motion trajectories remains a
challenging task. To enable robust arbitrary trajectory gen-
eration, we employ a three-stage curriculum learning strat-
egy. The model first trains on smooth camera motions with
small temporal intervals, then progressively adapts to more
complex motion patterns through linear interval schedul-
ing, and finally incorporates random sampling intervals.
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Figure 5. Qualitative comparison on DL3DV and Tank-and-
Temples dataset. Our method reconstructs better than baselines,
even with limited image overlap and in non-overlapping regions.

Figure 4. Qualitative comparison on Rel0K [86]. Compared to
baselines, we obtain superior reconstruction from limited overlap,
and enhanced geometry reconstruction in non-overlapping regions.

3-view 6-view 9-view
PSNRT SSIMt LPIPS| PSNRT SSIMtT LPIPS| PSNRT SSIM{ LPIPS |

Method

Mip-NeRF360

Zip-NeRF [2] 1277 0.271 0.705 13.61 0.284 0.663 14.30 0.312 0.633
ReconFusion [65] 15.50 0.358 0.585 16.93 0.401 0.544 18.19 0.432 0.511
CAT3D [15] 16.62 0.377 0.515 17.72 0.425 0.482 18.67 0.460 0.460
ReconX [34] 17.16 0.435 0.407 19.20 0.473 0.378 20.13 0.482 0.356
ViewCrafter [77] 14.51 0.315 0.682 15.87 0.336 0.665 16.45 0.348 0.655
Ours 17.32 0.439 0.418 19.42 0.510 0.371 20.19 0.536 0.345
DTU

Zip-NeRF [2] 9.18 0.601 0.383 8.84 0.589 0.370 9.23 0.592 0.364
FSGS [88] 17.34 0.818 0.169 21.55 0.880 0.127 24.33 0.911 0.106
ReconFusion [65]  20.74 0.875 0.124 23.62 0.904 0.105 24.62 0.921 0.094
CAT3D [15] 22.02 0.844 0.121 2428 0.899 0.095 2592 0.928 0.073
ViewCrafter [77] 15.63 0.522 0.383 15.03 0.525 0.408 14.92 0.487 0.452
Ours. 27.92 0.879 0.103 28.82 0.895 0.082 29.03 0.905 0.065
LLFF

Zip-NeRF [2] 17.23 0.574 0.373 20.71 0.764 0.221 23.63 0.830 0.166
FSGS [88] 20.31 0.652 0.288 24.20 0.811 0.173 2532 0.856 0.136
ReconFusion [65]  21.34 0.724 0.203 2425 0.815 0.152 2521 0.848 0.134
CAT3D [15] 21.58 0.731 0.181 24.71 0.833 0.121 25.63 0.860 0.107
ViewCrafter [77] 17.73 0.521 0.332 17.43 0.512 0.345 17.33 0.488 0.351
Ours 22.04 0.741 0.165 25.11 0.814 0.124 2595 0.838 0.103

Table 2. Quantitative comparison of sparse view 3D reconstruc-
tion on Out-of-Domain Datasets.

This gradual transition from simple to complex trajectories
proves crucial for high-quality video generation with arbi-
trary trajectories.

4.2. Comparisons
4.2.1. Controllable Video Generation

Benchmark and Metrics. We evaluate our video gener-
ation model against three baselines [19, 64, 77] on three
benchmark datasets: RealEstate 10K [86] (500 randomly se-
lected videos with first frame as image condition and sub-
sequent frames at stride 3 for pose guidance), DL3DV-
140 [32] (500 video clips at stride 2), and Tanks-and-
Temples [27] (100 sequences at stride 4 from 14 scenes with
COLMAP-annotated poses) for out-of-domain generaliza-
tion testing.

Metrics. Our evaluation framework employs multiple met-
rics to assess performance: visual quality measured through
Fréchet Video Distance (FVD) and Fréchet Inception Dis-

RealEstate10K | ACID
| PSNRT SSIM? LPIPS| | PSNRT SSIM?T LPIPS |

Method

pixelNeRF [75] | 2043 0589 0550 | 2097 0547  0.533
GPNR [52] 2411 0793 0255 | 2528 0764 0332
AttnRend [11] 2478 0.820 0213 | 2688 0799 0218
MuRF [68] 2610 0858  0.143 | 2809 0841  0.155
pixelSplat [7] 2589 0858  0.142 | 2814 0839 0150
MVSplat [8] 2639 0869 0128 | 2825 0843  0.144
GS-LRM [79] 28.10 0892  0.114 - - -

DepthSplat [69] | 2423 0790 0217 - - -

ReconX [34] 2831 0912 0.088 | 2884 0891 0101
ViewCrafter [77] | 2422 0788 0218 | 2348  0.660  0.299
Ours 2835 0862  0.121 2893 0899  0.116

Table 3. Quantitative comparison of two-view sparse view

reconstruction methods on RealEstate]10K [86] and ACID [33]
dataset.

tance (FID); camera control precision quantified by rota-
tion error (R.,.) and translation error (7,,.) computed from
camera poses extracted via COLMAP and normalized rela-
tive to the first frame; and visual consistency evaluated us-
ing PSNR, SSIM, and LPIPS [81] between generated and
ground-truth views. To ensure fair comparison across meth-
ods with varying output capabilities, we restrict visual simi-
larity assessment to the first 14 frames, as generated content
typically diverges progressively from the conditional single-
view input as the scene extends.

Comparison. Table | shows that our method excels in qual-
itative results, outperforming other methods in terms of vi-
sual quality, pose control, and 3D consistency. Figure 3 fur-
ther demonstrates our advantage in 3D consistency and vi-
sual quality. This performance improvement is attributed to
the introduction of a camera parameterization method and
an epipolar attention module, which respectively enhance
pose control ability and the 3D consistency of generated
videos. In addition, training on a diverse scene dataset sig-



‘ Small ‘ Large
| PSNRT SSIM{ LPIPS| | PSNR? SSIM{ LPIPS|

pixelNeRF [75] | 18.417  0.601 0.526 20.869  0.639 0.458
AttnNeRF [11] 19.151  0.663 0.368 25.897  0.845 0.229
pixelSplat [7] 20.263  0.717 0.266 27.151  0.879 0.122

Method

MV Splat [8] 20353  0.724 0.254 | 27.408 0.884 0.116
DUSt3R [60] 14.101  0.432 0.468 16.427  0.453 0.402
CoPoNeRF [22] | 17.393  0.585 0.462 | 20464  0.652 0.358
Ours 22.514  0.784 0.213 | 27411 0913 0.109

Table 4. Quantitative comparison on the RealEstate10K [86]
dataset. Small and Large refer to input images with low and high
overlap ratios, respectively. Greater overlap means greater tempo-
ral coherence between adjacent images.

‘ Tanks-and-Temples ‘ DL3DV

| PSNRt SSIM? LPIPS) | PSNRt SSIM{ LPIPS|

LucidDreamer [9] | 14.552  0.364 0.415 15.126 0452 0.431
ZeroNVS [45] 14.734  0.381 0.480 15.163  0.464 0.466
MotionCtrl [64] 15322 0.426 0.404 16.889  0.528 0.392
ViewCerafter [77] 21.286  0.654 0.193 21.373  0.686 0.244
Ours 22.331  0.742 0.213 | 22.782  0.791 0.202

Dataset

Table 5. Quantitative comparison of single-view novel view syn-
thesis on DL3DV [32] and Tank-and-Temples [27] benchmarks.

nificantly improves the generalization ability of the model.

4.2.2. Sparse View Reconstruction

Benchmark and Metrics. To comprehensively evaluate
the performance of our method, we compare it with two
categories of reconstruction methods: (1) two-view feed-
forward reconstruction methods [7, 8, 11, 52, 69, 79], and
(2) optimization-based sparse-view reconstruction meth-
ods [13, 15, 34, 77]. The evaluation employs two types
of test sets: in-domain test sets (from RealEstate10K [86]
and Acid [33]) and out-of-domain test sets. To ensure a fair
comparison, the out-of-domain test set is the same as that
used in previous work [15, 65]. For evaluating scene re-
construction quality, we adopt three metrics: PSNR, SSIM,
and LPIPS [81]. Additionally, we categorize the evaluation
into two groups based on the overlap between input views,
with detailed overlap estimation methods provided in the
supplementary materials. The evaluation protocol follows
a consistent procedure: first, we reconstruct the 3D scene
based on the input images, then render from novel views,
and compute the metrics between the rendered images and
the reference images.

Comparison. As shown in Tables 2-4 and Figures 4-5, our
method performs well on various evaluation metrics, partic-
ularly in challenging scenarios with occlusions and limited
view overlap. This improvement can be attributed to our
approach that utilizes scene priors and sparse input views to
generate helpful additional observations, thereby enhancing
visual correlations between different viewpoints and help-
ing to reduce the complexity of sparse-view reconstruction.
Compared to the method [77] conditioning on point-based
rendering, our approach shows advantages in reconstructing

GenWarp RealmDreamer

Figure 6. Qualitative comparisons of novel views rendered from
scenes reconstructed using other 3D generation methods.

scenes with thin structures, leading to improved 3D recon-
struction results.

4.2.3. Single View 3D Generation

Benchmark and Metrics. In single-view generation, we
compare our method with several generative methods [45,
46, 64, 77] on the Tank-and-Temples [27] and DL3DV-
140 [32] datasets. Noted that we begin by reconstructing
the 3D scene from the given images, followed by calculat-
ing the metrics using renderings from novel views. Sim-
ilarly, we used the PSNR, SSIM, and LPIPS [81] metrics
to evaluate our results. Evaluation in this underconstrained
setting is challenging, as multiple 3D scenes can produce
consistent generations for a given view. Thus, we measure
metrics using only temporally adjacent frames to the con-
ditional image, 14 sampled frames and poses captured after
the conditional image.

Comparison. As shown in Table 5, our method consis-
tently achieves superior performance on image quality met-
rics compared to the baselines. For a fair comparison with
ZeroNVS [45] and LucidDreamer [9], which are limited to
square image inputs, we crop the generated novel views be-
fore computing the quantitative metrics. Figure 6 shows that
scenes reconstructed using our method have less noise and
distortion in occluded areas. For more visualizations, see
Figure 7.

4.3. Ablation Study

Ablation on Video Diffusion Model. We evaluate the ef-
fectiveness of the design choices. As shown in Table 6,
ray embedding achieves significant improvements in cam-
era control accuracy and rendering quality compared to
other camera encoding methods by introducing denser po-
sition encoding and optimizing geometric correspondences.
Specifically, cross-frame consistency shows notable en-



Generated Videos

Figure 7. Additional visualizations of generated videos and their corresponding 3DGS representations.

Method | Terr b Renr ) COLMAP,,, | FVDJ
Raw Value Emb. | 1.592  2.376 13.5% 81.854
Quaternion Emb. | 1.457  2.394 13.1% 80.368
W/o Ray Emb. 2683  3.145 15.7% 112.843
W/o Epipolar 1125 2235 12.2% 79.547
Wio Scale Align. | 1.712  2.498 14.3% 81.679
Full model 1.014 2218 42% 78.132

Table 6. Ablation study on the video diffusion model variants.

Reference Image

Wi/o Scale Alignment W Scale Alignment

wgite

A

Figure 8. Ablation on the Scale Alignment. The video recon-
struction results obtained based on scale-alignment training ex-
hibit reduced artifacts while improving the 3D consistency of the
scene.

hancement. Furthermore, when incorporating geometric
constraints through Epipolar Attention, the system achieves
optimal performance in terms of camera controllability and
3D consistency.

Scale Alignment. As illustrated in Table 6 and Figure 8, the
incorporation of dataset metric scale alignment significantly
improves the pose control accuracy and 3D consistency of
the generated video.

Video Latent-based Reconstruction. As demonstrated in
Figure 9, incorporating generative priors and depth features
in our method significantly enhances the fidelity of fine-

Wi/o Gen. Prior Wi/o Depth Feature Ours

Figure 9. Ablation on the feed-forward Reconstruction Module.

grained geometric details in scene reconstruction. By intro-
ducing priors from video generative models, we reduced the
difficulty of sparse-view reconstruction and achieved rea-
sonable completion of unseen regions.

5. Conclusion

We present SpatialCrafter, a framework for scene recon-
struction and novel view synthesis from sparse or single-
view inputs. By leveraging video diffusion models to gener-
ate plausible additional observations, we effectively reduce
the complexity of sparse-view scene reconstruction. Our
key contributions include: (1) precise camera control via
ray embeddings or depth-warped images with a trainable
condition encoder; (2) a unified scale estimator solving the
scale ambiguity in multi-dataset training; and (3) a hybrid
Mamba-Transformer architecture that combines monocular
depth priors with semantic features from video latent space
to directly regress 3D Gaussian primitives. Experiments
show our method outperforms existing methods, especially
in single-view extrapolation and scenarios with little over-
laps. Future work will focus on extending to dynamic scene.
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