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A B S T R A C T

Accurate extrinsic calibration is essential for minimizing alignment errors between LiDAR and cameras,
ensuring precise sensor data registration, and enhancing the robustness and accuracy of Simultaneous
Localization and Mapping (SLAM) systems. Although previous calibration techniques employing plane and
point features, as well as neural networks, have shown promise, they are not devoid of limitations. Particularly,
prominent point features such as chessboard corners may lack precise counterparts in the sparse point clouds
generated by LiDAR. To address these challenges, we introduce a novel LiDAR–camera extrinsic calibration
method that leverages edge registration with known correspondences. This approach significantly reduces
calibration discrepancies associated with imprecise correspondences and systemic noise, providing a systematic
and rigorous framework to improve the precision of extrinsic calibration between LiDAR and camera systems.
Additionally, the flexibility of our method allows for the use of common everyday objects, such as boxes, books,
or sheets of paper, for calibration purposes, simplifying the procedure and enhancing its practical applicability.
1. Introduction

Multi-sensor systems that integrate LiDAR and camera technologies
are essential for enhancing three-dimensional perception and environ-
mental understanding. LiDAR is capable of acquiring high-precision
3D information, exhibiting strong resistance to interference from light-
ing and weather conditions, yet it is limited by its low resolution
and lack of color information. On the other hand, cameras provide
high-resolution color information but are more susceptible to interfer-
ence and variations in lighting. The complementary nature of LiDAR
and camera data fusion allows for the acquisition of richer infor-
mation. Compared to single-sensor systems, these integrated systems
offer deeper environmental insights, enabling a suite of critical ap-
plications, including spatial localization [1,2], obstacle detection and
tracking [3–6], map building and scene reconstruction [7,8], object
recognition and classification [9,10], and pose estimation and motion
analysis [11–13]. The prerequisite for multi-sensor fusion is the ac-
curate determination of extrinsic parameters, specifically the rotation
matrix and translation vector between the LiDAR and camera coordi-
nate systems. However, precisely calibrating multiple sensors within a
system remains a significant challenge.

In the external calibration of multi-sensor systems, establishing ac-
curate correspondences between features across different sensor modal-
ities is crucial. Despite the existence of various methods proposed in
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the literature [14–22], the accuracy of point feature and plane feature
matching methods remain challenges in the field. For instance, in sparse
point clouds captured by LiDAR, it may be difficult to find precise cor-
respondences for salient point features such as chessboard corners. On
the other hand, plane features [23,24] are relatively easier to establish
correspondences, but their constraints are not strong enough, leading
to less accurate calibration results. In contrast, edge features not only
provide rich structural information but also exhibit high robustness
to illumination changes and noise, combining the advantages of both
point and plane features. Therefore, the introduction of edge features
offers a more accurate and robust solution for the calibration of multi-
sensor systems, facilitating higher-quality 3D environment perception
and understanding.

To this end, we present a novel calibration method that uses edge
registration with known correspondences to refine the extrinsic pa-
rameters between the LiDAR and camera systems. By concurrently
capturing data from LiDAR and camera sensors, we elaborately extract
the edges of target objects from both datasets. For image edges, to ex-
pedite the identification of target locations, we initially adopt a manual
annotation approach to obtain a rough outline, which is then refined
by fitting it with the edge contours extracted from the image, thereby
achieving precise extraction. As for the point cloud edges, considering
that the calibration board can be perceived as two-dimensional, we
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Fig. 1. An illustrative diagram of the overall calibration process, from data acquisition to obtaining the extrinsic parameters through edge registration.
can directly apply a convex hull algorithm to acquire the edge contour
of the target object. Moreover, given the significant noise inherent
in the point cloud, we further enhance the edge extraction by fitting
it with the ground truth contour derived from the calibration board.
Utilizing edge registration process, we are able to compute the extrinsic
parameters that articulate the spatial relationship between the sensors.

The framework of our proposed system is depicted in Fig. 1, offering
a visual overview of the system’s architecture and workflow. Our key
contributions include:

• We have established a complete calibration system capable of
efficiently extracting the edges of the target calibration board
from both image and point cloud.

• By optimizing poses using corresponding edges, we can achieve a
more accurate determination of the rigid transformation between
sensors.

• Calibration can be efficiently executed utilizing a standard cali-
bration board, or alternatively, with the simplicity of everyday
objects such as a box or a book.

2. Related work

In the domain of multi-sensor system calibration, an array of in-
novative methodologies has been proposed, each making a significant
contribution to the advancement of calibration techniques [25–29]. The
pursuit of enhanced precision and robustness in calibration has led to
the recent emergence of numerous approaches, particularly targeting
the calibration of LiDAR and camera systems.

Feature-Based Calibration One prominent approach in this field
capitalizes on feature extraction and matching techniques, focusing
on planar-based or point-based features. Notably, Zhang et al. [14]
and Pandey et al. [15] have advocated for the use of planar feature
constraints to refine the extrinsic parameters of LiDAR–camera systems.
Their methodology involves fitting the corners detected by the camera
to a plane and aligning the corresponding 3D points with this plane,
effectively using geometric scene constraints to bolster calibration ac-
curacy. Conversely, Huang et al. [17] have explored a different avenue,
employing targets with known dimensions and geometries to enhance
the estimation of target pose. By leveraging the targets’ known dimen-
sions, they address the quantization and systematic errors present in
LiDAR data, thereby improving the precision of the calibration process.
This technique shows particular advantage in scenarios characterized
by targets with distinct shapes and sizes. Beltran et al. [19] proposed
to extract reference points from additional sensor data for accurate
calibration. By registering these points, they determine an optimal
rigid transformation, demonstrating the efficacy of their approach in
managing sensors of varying resolutions and orientations. They have
engineered a calibration board that captures both two-dimensional and
three-dimensional features, facilitating calibration through the use of
2 
pre-established correspondences.
Reflectivity-Based Calibration Furthermore, the reflectivity in-

tensity of LiDAR point clouds has been recognized for its utility in
corner point extraction [16,18]. The variability in point reflectivity,
influenced by factors such as material properties, incident angles, and
colors, provides valuable information for feature extraction. Wang
et al. [16] introduced a fully automated and accurate extrinsic calibra-
tion method for 3D LiDAR and camera systems based on laser reflection
intensity. Cui et al. [18] present a fully automated calibration tech-
nique for non-repetitive scanning Solid-State LiDAR (SSL) and camera
systems. A temporal-spatial-based geometric feature refinement, and
reflectance intensity distribution-based 3D corner estimation pipeline
for point clouds from non-repetitive scanning SSL is presented. Despite
the promise of this method, the sparsity of point cloud data presents a
significant challenge in the precise detection of corners, which is crucial
for the reliability of extrinsic calibration. Our method leverages edges
with known correspondences for calibration, mitigates the impact of
point cloud sparsity.

Deep Learning-Based Calibration Beyond traditional techniques,
there is a growing interest in applying deep learning to sensor cal-
ibration tasks [30–33]. Schneider et al. [30] present RegNet, which
casts all three conventional calibration steps (feature extraction, feature
matching and global regression) into a single real-time capable CNN.
Shi et al. [31] present CalibRCNN, not only uses the LSTM network
to extract the temporal features between 3D point clouds and RGB
images of consecutive frames, but also uses the geometric loss and
photometric loss obtained by the interframe constraint to refine the
calibration accuracy of the predicted transformation parameters. And
Lv et al. [33] propose an online LiDAR–camera Self-calibration Network
(LCCNet), different from the previous CNN-based methods. LCCNet can
be trained end-to-end and predict the extrinsic parameters in real-time.
Deep neural networks, which have shown success across various com-
puter vision tasks, may offer a new avenue for addressing the extrinsic
calibration challenge. Training a neural network on a comprehensive
dataset of calibrated sensor pairs could potentially enable the learning
of complex mappings between sensor inputs and the desired extrinsic
parameters. This approach could simplify the calibration process and
enhance its accuracy, marking a significant step forward in the field.
Nonetheless, the refinement of calibration accuracy using deep learning
methods remains an area ripe for further exploration.

In light of the aforementioned methods, it is clear that the ex-
traction of point cloud features, is a pivotal component of extrinsic
calibration, directly affecting the calibration outcome. Building upon
this understanding, this paper introduces a novel extrinsic calibration
method for LiDAR and camera systems. Our approach is based on
known corresponding edges, leveraging the extraction of corresponding
edge features from both LiDAR and camera data to optimize extrinsic
parameters. This method not only enhances the precision of extrinsic
calibration but also addresses the challenge of point cloud sparsity,
offering a streamlined and effective solution to the calibration process.
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Fig. 2. (a) Input data from camera and LiDAR, the plane point cloud is extracted from the overall point cloud. (b) Edge extraction. (c) 3D edge points registration. Red points:
edge extraction from plane point cloud. Green points: edge extraction from ground-truth calibration board. (d) Edge registration. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
3. Our approach

Our approach involves optimizing the extrinsic parameters [R T]
between the LiDAR and camera by identifying corresponding 3D–2D
edges. For this, we employ an iterative optimization method to refine
the 3D points from LiDAR point cloud and 2D edge lines from RGB
image. The objective function is defined as follows:

ar gmin
𝐑∈𝑆 𝑂(3),𝐓∈𝐑𝟑

∑

𝐋𝑗 ,𝑋𝑒𝑑 𝑔 𝑒
‖𝑒(𝐋𝑗 ,𝐑𝑋𝑒𝑑 𝑔 𝑒 + 𝐓)‖2, (1)

where R and T represents rotation and translation from LiDAR to
camera. P is the projection operation from 3D to 2D on the image plane
and X edge are points sampled from the edges of plane point cloud. Lj is
the corresponding edge line in RGB image.

Plücker coordinates. An edge line can be represented by the Plücker
coordinates [34]. Given two points pl1 and pl2 on an edge line, the
Plücker coordinates of the edge line have the form:

𝐋 = [𝐦;𝐝],𝐦 = 𝐩𝑙1 × 𝐝 𝑎𝑛𝑑 𝐝 =
𝐩𝑙2 − 𝐩𝑙1

‖𝐩𝑙2 − 𝐩𝑙1‖2
(2)

where × represents the cross product. The Plücker coordinates are
homogeneous coordinates. Here we normalize d, as this can lead to
more concise formulas in the following description. Using the Plücker
coordinates in (2), we can write the distance from a point p to L as

𝑒(𝐋,𝐩) = 𝐦 − 𝐩 × 𝐝 (3)

To enhance the optimization process, we propose a method that
aligns edge points from the fused LiDAR point cloud with image edges.
However, the presence of noise in the LiDAR data presents a challenge
as it can introduce errors during the edge extraction process. To over-
come this issue, we utilize two types of measurement tools to obtain
accurate edge points, which serve as the ground truth for the calibration
board. The first tool is a standard tape measure used to measure the
length of the board’s edges, enabling us to construct a quadrilateral
with precise dimensions. The second tool is a high-precision scanner
capable of capturing 3D data with an accuracy of less than 0.02 mm.
These meticulously collected ground truth data are registered into the
LiDAR point cloud’s coordinate system and subsequently employed in
the image edge registration process, thereby improving the accuracy
of the calibration results. In the following sections, we will discuss
the calibration process using the following methodologies: (i) direct
calibration using derived edge points from the extracted plane point
cloud, (ii) calibration using points constructed based on tape measure-
based edge length measurements, and (iii) calibration using edge points
obtained from the scanner as the ground truth of the calibration board.
3 
3.1. Calibration with a unknown-sized board

In a controlled experimental scenario, a calibration board is posi-
tioned to ensure that both the LiDAR and camera systems capture the
board within their respective fields of view simultaneously. Our system
framework, illustrated in Fig. 1, includes three main modules: (1) Data
acquisition. (2) Edge extraction. (3) Edge registration.

Data acquisition. In the deployment of the LiDAR–camera system within
the calibration scene, the equipment is initiated in a stationary state
to simultaneously acquire image and point cloud data. Throughout the
calibration process, the relative positioning between LiDAR and camera
is consistently maintained to ensure a stable reference frame. Given
the intrinsic sparsity characteristic of LiDAR point clouds, achieving
comprehensive data capture of the calibration target necessitates the
deliberate movement of the LiDAR–camera system, thereby facilitating
the acquisition of a complete and dense point cloud representation of
the calibration board.

Subsequently, the initial frame of point cloud data serves as the
world coordinate, with all subsequent point clouds being registered to
this established coordinate system. This crucial registration process is
facilitated through the utilization of the widely employed Iterative Clos-
est Point (ICP) algorithm, which iteratively refines the transformation
by minimizing the distance between corresponding points in the two
point clouds, thereby ensuring precise alignment.

Moreover, the integration of Inertial Measurement Unit (IMU) data
has been identified as a key mechanism for enhancing motion esti-
mation and augmenting the efficacy of point cloud alignment [35,
36]. The fusion of IMU sensor data with LiDAR inputs enables a
more accurate estimation of the sensor’s motion, consequently yielding
improved alignment results. During the process, if the movement is
sufficiently slow, the incorporation of IMU data has minimal impact on
the registration results. The primary role of the IMU is to compensate
for motion-induced point cloud offsets, ensuring accurate alignment.
Fig. 2(a) visually depicts an image captured by the camera alongside
an integrated plane point cloud subsequent to the registration process.

Edge extraction. Following the acquisition of the scene data, the process
of edge extraction is initiated independently for both the image and
point cloud.

In the context of calibration scenarios, the selection of image edge
extraction techniques is contingent upon the specific characteristics
of the background. In environments with a distinct and homogeneous
backdrop, such as a green screen or a monochromatic wall, the Canny
edge detector can be effectively utilized for edge detection, succeeded
by contour detection algorithms to outline the perimeter of the calibra-
tion board. This approach leverages the simplicity of the background
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Fig. 3. Edge extraction: (a) the edge contours of the image, (b) the green points are manually marked edge points, the blue lines represent the edge contours formed by connecting
the edge points, and the red lines indicate the final optimized edges after fitting. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
to enhance the accuracy of edge delineation.
Conversely, in the absence of a suitable background, the initial

contour edge is delineated through manual intervention, serving as the
foundation for subsequent edge refinement. This refinement process is
elaborately executed to ensure that the extracted edges are precisely
aligned with the physical boundaries of the calibration board. As
illustrated in Fig. 3, the edge extraction process is exemplified within a
complex background scenario. Fig. 3(a) presents the contours extracted
directly from the image, revealing that while most of the calibration
board’s edge contours have been identified, some edges are connected
to the background due to its complexity. Simple manual intervention
quickly distinguishes the overall edge contour lines. Fig. 3(b) highlights
the manually annotated edge points in green. The blue lines represent
the preliminary edge contours constructed by connecting these anno-
tated points. The red lines denote the refined edges post-optimization,
which are the outcome of a fitting procedure aimed at enhancing the
accuracy of edge representation.

In this process, four edge lines are optimized, each line L is rep-
resented as Plücker coordinates [m;d]. Specifically, within Fig. 3(b),
fifty points are uniformly sampled along each of the blue lines and
paired with the nearest points from Fig. 3(a) to form the target point
set pt . This set serves as the basis for optimizing the values of [m;d].
The objective function is outlined as follows:

ar gmin
𝐦,𝐝∈𝐑𝟑

∑

𝐩𝑡
‖𝑒(𝐋,𝐩𝑡)‖2, (4)

where m, d represent the Plücker coordinates of the edge line.
For the precise extraction of edges from the point cloud, it is

imperative to eliminate all points that do not correspond to the target
plane across the entire data set. Fig. 4 provides a visual representation
of the results from the point cloud extraction of the calibration board.
In Fig. 4(a), the comprehensive point cloud of the scene is depicted,
showcasing the full range of captured data. Fig. 4(b) presents the point
cloud specifically associated with the calibration board, highlighted
in red. This subset has been filtered based on the analysis of nor-
mal vectors and spatial coordinates. The initial step in the process
involves the identification of all planar structures within the point
cloud, followed by the removal of non-continuous points to preserve the
most extensive connected segment. Continuing with the refinement, the
filtered plane point clouds are employed to determine the orientation
and position of the plane. Subsequently, constraints based on distance
and normal vector analysis are applied to precisely locate the target
plane. Ultimately, the filtered point cloud, treated as effectively two-
dimensional, is processed using a concave hull detection algorithm to
extract the edge points. The edges extracted from the planar point cloud
are visually depicted in Fig. 2(b).
4 
Edge registration. The calculation of the extrinsic parameters [R T]
is predicated on identifying multiple sets of corresponding 3D edge
points from the LiDAR point cloud and their 2D counterparts from
the camera image. These correspondences facilitate the determination
of the extrinsic parameters using Eq. (1). Initially, an estimation of
the extrinsic parameters is established, which is refined iteratively to
improve precision. This refinement is guided by the alignment of the
edge points, ensuring that the computed parameters more closely match
the actual spatial relationship between the LiDAR and the camera.

The initial step in the extrinsic parameter estimation process in-
volves establishing a correspondence between the four corner points of
a plane point cloud and their associated edge lines in the image. Each
corner point can be related to two distinct edge lines. This correspon-
dence is fundamental for deriving the initial transformation matrix,
which serves as a precursor for further refinement of the parameters.
If an initial transformation matrix is already established, this step can
be omitted, allowing for a direct transition to the subsequent phase of
the procedure.

The second step entails projecting all points of the plane point cloud
edge onto the UV coordinate system based on the initial transformation
matrix as follows:

⎛

⎜

⎜

⎝

𝑢
𝑣
1

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑓𝑥 𝛾 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎞

⎟

⎟

⎠

∗
⎛

⎜

⎜

⎝

𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

⎞

⎟

⎟

⎠

∗

⎛

⎜

⎜

⎜

⎜

⎝

𝑥
𝑦
𝑧
1

⎞

⎟

⎟

⎟

⎟

⎠

(5)

Eq. (5) illustrates the projection of the 3D points after applying the [R
T] transformation. Then, search for the nearest neighboring edge of the
image, and iteratively optimize the rigid transformation [R T] by fitting
the edge in accordance with Eq. (1).

Fig. 2(d) demonstrates that following 15 iterations, there is a close
alignment between the edge points of the planar point cloud and the
edges detected in the image.

3.2. Calibration with a known-sized board

In practical applications, the accuracy of calibration can be signifi-
cantly affected by the presence of noise in LiDAR data. To mitigate this
challenge, a robust approach involves acquiring ground-truth data from
the calibration target as an initial step. This ground-truth data provides
a reliable benchmark for the actual spatial relationship between the
LiDAR and the camera, serving as a reference for comparison. Lever-
aging this ground-truth data enables the refinement and verification of
the transformation matrix during optimization, thereby enhancing the
accuracy and robustness of the calibration process.

Given the rectangular shape of our calibration board, we can di-
rectly construct the rectangle by measuring its edge lengths. Tools
such as rulers and tape measures enable the straightforward acquisi-
tion of precise measurements, typically at the millimeter level. The
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Fig. 4. Plane extraction: (a) the point cloud of the calibrate scene, (b) the red points represent the plane extracted from the scene point cloud. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. The ground truth of board scanned by Shining3d FreeScan Trio [https://www.shining3d.cn/gongye3d/shouchi/FreeScanTrio] with an error of only 0.02 mm. The mean
registration error with the extracted contour from the LiDAR point cloud is about 2 cm.
accessibility and accuracy of these tools make them well-suited for ob-
taining reference measurements, effectively overcoming the challenges
associated with acquiring ground-truth data for the calibration board.

3D edge registration. Using a standard tape measure, we obtained mea-
surements for the edges of the calibration board with an impressive
margin of error of less than 1 millimeter. Utilizing these measurements,
we constructed a quadrilateral that serves as a reliable geometric rep-
resentation of the calibration board. The upper left corner of the board
was designated as the reference origin, and the board’s edges were
aligned with the 𝑥 and 𝑦 axes. The complete structure of the board was
meticulously assembled based on the precisely measured dimensions.
This quadrilateral, constructed using measured dimensions, exhibited
superior accuracy compared to the edge points directly extracted from
the plane point cloud.

Subsequently, we needed to transform the constructed quadrilateral
to the coordinate system of the plane point cloud. By identifying the
four corners of these two sets of edge points as corresponding points
and calculating an initial transformation matrix, we could effectively
initiate the optimization process with the following steps:

ar gmin
𝐑𝑀 𝑃 ∈𝑆 𝑂(3),𝐓𝑀 𝑃 ∈𝐑𝟑

‖𝐑𝑀 𝑃𝑋𝑀 + 𝐓𝑀 𝑃 −𝑋𝑃 ‖
2 (6)

where Xp are edge points of plane point cloud and XM represent tape
measured-edge-points. RMP and TMP is rotation and translation trans-
formation from tape measured-edge-points coordinate system to plane
point cloud’s. Fig. 2(c) illustrates the fitting outcome, the red points
correspond to the edge points extracted from the plane point cloud
via edge extraction, while the green points indicate the tape measured-
edge-points. As depicted in Fig. 2(c), the data procured from the LiDAR
5 
scan exhibits significant overflow at the edges, with the extracted
edge data appearing considerably larger than the actual dimensions.
Consequently, direct calibration utilizing the scan data as described in
Section 3.1 would result in substantial errors.

Following the registration of the tape measured-edge-points to the
coordinate system of the plane point cloud, a 2D Edge registration
process, as described in Section 3.1, is implemented to derive the rigid
transformation matrix [R T]. As illustrated in Fig. 2(d), the outcome
of the 2D Edge registration process is visually apparent, showcasing a
closer alignment between the measured edge points and the fitted edges
within the image space.

3.3. Calibration with a known-ground-truth board

With the continuous advancements in scanning technology, the
attainment of highly precise calibration results has become increasingly
feasible. In Fig. 5, we present the ground-truth data of the calibration
board, which was scanned using the state-of-the-art Shining3d FreeScan
Trio. This scanning device has demonstrated an exceptional accuracy
level, achieving measurements with an impressive precision of up to
0.02 mm. After the registration of the ground truth of the calibration
board with the extracted contour from the LiDAR point cloud, as
shown in Fig. 5, the average point-to-point distance is approximately
2 cm. Leveraging this captured scanned data as our ground truth, we
embarked on a comprehensive refinement process to further enhance
the calibration results, aiming to achieve optimal performance in our
system.

https://www.shining3d.cn/gongye3d/shouchi/FreeScanTrio
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Fig. 6. Comparison between ours and Yuan et al. [37].
Table 1
Rotation error with various noise intensity. Unit (rad).
Gaussian noise (m) Zhou et al. [23] Singandhupe et al. [24] Ours(unknown size) Ours(known size)

0.005 0.02431 0.03635 0.01554 0.00551
0.01 0.02815 0.03967 0.01893 0.00559
0.015 0.03552 0.04029 0.02143 0.00603
0.02 0.05857 0.04243 0.04593 0.01593
0.025 0.06563 0.04576 0.04723 0.01876
Ground-truth fitting. After obtaining the ground truth data of the cal-
ibration board, we utilized an Edge extraction technique to outline
the edges of the actual calibration board. Subsequently, we followed
a methodological approach in accordance with the established 3D
Edge registration protocol. This technique enabled the calculation of a
transformation matrix with enhanced accuracy, thereby improving the
refinement of our calibration model. The results of the fitting process,
which encapsulate the synthesis of these intricate methods, are clearly
depicted in Fig. 2(d).

4. Experimental results

To validate the effectiveness of our approach, we set up a LiDAR–
camera system consisting of a mid-360 LiDAR and an MV-CS016-10UC
camera with a resolution of 1440 × 1080 pixels. The intrinsic param-
eters of the LiDAR are pre-calibrated by the manufacturers, while the
intrinsic matrix K of the camera was calibrated using classical methods
with chessboard patterns. The calibration board was positioned within
the field of view (FOV) of the camera.

For the extraction of contours from the acquired images, we em-
ployed the Canny edge detection algorithm, supplemented by the find-
Contours function from the OpenCV library, a conventional and effec-
tive approach for contour identification within imagery. In the process
of extracting planar point clouds from the comprehensive point cloud
data, we initially utilized the SACSegmentation function to filter all
planar point clouds, followed by the application of the EuclideanClus-
terExtraction function to select the largest cluster within the planar
point clouds. Based on these points, we calculated the normal and
centroid of each plane. Subsequently, we applied distance and normal
vector constraints to identify the target plane. Specifically, we set a
distance threshold of 2.5 meters and a normal angle constraint of 45
degrees to ensure the target plane was accurately filtered. To further
refine the edge extraction from the planar point clouds, we then em-
ployed the ConcaveHull algorithm from the Point Cloud Library (PCL).
This algorithm excels at identifying the boundary edges of a plane
within a point cloud, offering a dependable method for edge detection
on a two-dimensional plane.

To evaluate the robustness of our calibration approach, we con-
ducted experiments using both simulated and real data, allowing us to
analyze the impact of different levels of noise on the calibration results.

4.1. Simulated data

Using the Maya software, a simulated dataset comprising LiDAR
point cloud and image data with predetermined extrinsic parameters
6 
between the LiDAR and the camera was generated. Following the intro-
duction of Gaussian noise at various intensities to the point cloud, the
edge registration processes outlined in sections 3.1, 3.2, Zhou et al. [23]
and Singandhupe et al. [24] were executed to calculate the extrinsic
parameters. Subsequently, the obtained results were compared with the
ground truth extrinsic parameters, and the error outcomes were visually
presented in Tables 1 and 2. The evaluation encompassed the separate
computation of the rotation error (in radians) and translation error (in
meters).

Our analysis indicates that as noise levels increase, the calibra-
tion error for both our method (with unknown dimensions) and Zhou
et al. [23] exhibits a consistent upward trend, demonstrating a sig-
nificant sensitivity to variations in noise levels. Specifically, Zhou’s
rotational error increased from 0.02431 to 0.06563, and the transla-
tional error rose from 0.02892 to 0.14331. In contrast, the error for
our method (with known dimensions) and Singandhupe et al. [24] was
observed to remain relatively stable and minimal across different noise
intensities. Our method’s rotational error also showed an increasing
trend, yet it was the smallest among the compared methods, while the
translational error was largely maintained around 0.01. This compara-
tive assessment highlights the robustness and resilience of our method
(with known dimensions) when faced with noise-induced perturba-
tions, confirming its effectiveness in delivering accurate and reliable
estimation of extrinsic parameters under challenging environmental
conditions.

4.2. Real data

To evaluate the precision of our proposed edge registration-based
estimation technique, a comparative analysis was performed against
the calibration outcomes reported by Yuan et al. [37], as illustrated in
Fig. 6. The results distinctly indicate that while Yuan’s method expe-
riences notable discrepancies at the periphery, our approach delivers
a more precise alignment. This observation effectively highlights the
effectiveness of our approach in accurately estimating extrinsic param-
eters, particularly in maintaining edge accuracy and overall consistency
within the calibration process. Additionally, we conducted extrinsic
parameter calibration using a comprehensive dataset that included 1
to 7 sets of data, encompassing a variety of calibration vantage points.
The calibrated parameters were then utilized to project the boundary
points of the planar point cloud onto the images for the assessment of
error metrics. Here, the error is defined as the average distance between
the closest image edge points and the projected three-dimensional
boundary points based on optimized extrinsic parameters. This measure
provides a quantifiable evaluation of the alignment accuracy between
the point cloud and image data after calibration.
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Table 2
Translation error with various noise intensity. Unit (m).

Gaussian noise (m) Zhou et al. [23] Singandhupe et al. [24] Ours(unknown size) Ours(known size)

0.005 0.02892 0.04552 0.02573 0.00869
0.01 0.05281 0.04965 0.04682 0.00894
0.015 0.07862 0.05287 0.06597 0.01024
0.02 0.13523 0.05332 0.09217 0.01173
0.025 0.14331 0.05458 0.11236 0.01201
Fig. 7. Point cloud coloring results.
Table 3
Back projection error variation with the number of calibration viewpoints. Unit (pixel).

Views num Wang et al. [16] Cui et al. [18] Zhou et al. [23] Ours(unknown size) Ours(known size)

3 3.22177 2.75152 3.12588 2.10215 1.81054
4 2.98652 2.10216 2.67095 1.93281 1.73348
5 2.55436 1.95445 2.23006 1.91225 1.60521
6 2.45158 1.95158 2.18753 1.89274 1.55367
7 2.40983 1.90983 2.10863 1.90322 1.54056
The calibration outcomes derived from a diverse dataset were uti-
lized for a quantitative analysis of the errors associated with our
method under conditions of both unknown and known sizes. As illus-
trated in Table 3, the error results demonstrate an enhancement in
calibration accuracy with an increasing quantity of calibration data
points, which substantiates the scalability and efficacy of our approach
when applied to a variety of extensive datasets. Furthermore, compar-
ative analyses were conducted with the findings from Wang et al. [16],
Cui et al. [18], and Zhou et al. [23]. These comparisons reveal a pattern
of consistent improvement in calibration as the range of perspectives
widens. Notably, our method’s calibration outcomes have surpassed
those of the aforementioned studies, indicating that our approach is
particularly effective in reducing error and enhancing the precision
of extrinsic parameter calibration. In the case of known dimensions,
our method’s error rates are already among the lowest, and even in
situations of unknown dimensions, the error levels are comparatively
low. When the number of viewpoints exceeds five, the average error
stabilizes at approximately 1.5 pixels. These results reinforce the ef-
fectiveness and superiority of our method in the realm of extrinsic
calibration and error minimization, highlighting its potential for robust
performance across a broad spectrum of applications.

Moreover, we investigated the impact of various point cloud col-
orization schemes, with the corresponding findings presented in Fig. 7.
We also carried out point cloud back-projection onto images, and the
results are illustrated in Fig. 8. These visual representations not only
serve to validate the accuracy and precision of our proposed approach
but also provide a tangible demonstration of its efficacy in facilitating
seamless integration between point cloud data and image data.
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Overall, our methodology demonstrates superior precision com-
pared to the previously discussed techniques. Specifically, the calibra-
tion outcomes of our approach (with known size) exhibit remarkable
consistency and are independent of the quantity of calibration view-
points. Conversely, the convergence of our method (with unknown
size) necessitates data acquisition across a diverse array of viewpoints
for robust calibration. This refinement ensures that our method is
adaptable and reliable across various calibration scenarios.

Additionally, we have tried utilize the intensity information of the
point cloud to extract the texture, material, and geometric edges of the
scene, and perform fitting calculations with the edges extracted from
the RGB image to compute the extrinsic parameters. The results are
displayed in the supplementary materials.

5. Conclusion

This paper presents a novel approach to LiDAR–camera extrinsic
calibration, utilizing edge registration based on established correspon-
dences to determine extrinsic parameters. This method effectively re-
duces calibration errors associated with inaccurate correspondences
and systemic noise, offering a systematic and rigorous framework to en-
hance the accuracy of extrinsic calibration between LiDAR and camera
systems.

Our method includes a comprehensive error analysis that demon-
strates the quantifiable improvements from integrating precise edge
points as ground truth. This integration helps overcome the negative
impacts of noise, leading to enhanced precision in calibration results.
The comparative analysis with existing methods further validates the
robustness and effectiveness of our approach, showcasing consistent
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Fig. 8. Point cloud projection results.
improvements with an increasing number of data points and a wide
range of perspectives.

In addition to the edge registration technique, we explored the
impact of various point cloud colorization schemes and the back-
projection of point clouds onto images. These visual validations not
only confirm the accuracy and precision of our method but also il-
lustrate its capability to seamlessly integrate point cloud and image
data.

The innovative calibration method introduced in this paper is robust
and systematic, providing a significant advancement in sensor cali-
bration accuracy, especially in the presence of noise in LiDAR point
cloud data. Looking ahead, our future work will explore the use of
intensity information within point clouds for edge extraction. Since
intensity is influenced by material properties, texture, and structure,
edges derived from intensity data are likely to align well with image
edges, potentially enabling more effective and automated calibration
processes. Furthermore, extending our calibration approach to different
types of LiDAR and camera systems will be a focus of our future
research.
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