The Visual Computer
https://doi.org/10.1007/s00371-025-04096-0

RESEARCH l‘)

Check for
updates

Interpretable procedural material graph generation via diffusion
models from reference images

Xiaoyu Lv' . Zizhao Wu'@® - Jiamin Xu? . Xiaoling Gu? - Ming Zeng3 - Weiwei Xu*

Accepted: 25 June 2025
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract

Procedural materials, generated through algorithmic processes, offer advantages such as resolution independence, editability,
and real-time rendering capabilities. Despite these merits, constructing procedural material graphs remains a labor-intensive
task. Recent advancements in generative neural networks, particularly diffusion models, have shown promise in automating this
process. However, existing methods often struggle with issues related to generation quality, generalization, and interpretability.
In this work, we introduce a novel approach for the interpretable generation of procedural material graphs from reference
images using diffusion model. Our approach predicts individual nodes in reverse order, leveraging the generative capabilities
of diffusion models to achieve significant improvements in generation quality, generalization, and interpretability. Specifically,
we employ a two-stage framework: an adapter-based diffusion model predicts procedural nodes, forming an auxiliary graph,
which is then refined using a DiffMat-based node parameter optimization method. To validate the effectiveness of our approach,
we construct a fine-grained procedural material graph dataset containing extensive data and information defined at the node
level. Our code and datasets are available at: https://github.com/InterS23/IPMGG.

Keywords Procedural material - Diffusion models - Texture generation - Procedural models

1 Introduction

Procedural materials are a type of material generated through
algorithmic processes rather than traditional hand-drawn or

X1 Zizhao Wu scanned image textures. Compared to traditional pixel-based
wuzizhao@hdu.edu.cn textures, procedural materials offer several key advantages,
Xiaoyu Lv including resolution independence, which allows them to
lvxiaoyu@hdu.edu.cn scale arbitrarily without loss of quality, as well as editability,
Jiamin Xu enabling real-time adjustments to various material proper-
superxjm@yeah.net ties. As a result, they are widely used in the industry, such
Xiaoling Gu as gaming, film production, and product visualization [9].
gux]@hdu.edu.cn Currently, procedural materials are usually represented as
Ming Zeng directed acyclic graphs (DAGs) with tools such as Blender
zengming @xmu.edu.cn or Adobe Substance 3D Designer (S3D) [2], where each
Weiwei Xu node in the graph represents a specific operation, and the
xww@cad.zju.edu.cn edges define the data flow between these operations. How-

ever, building a material graph from scratch has proven to
be a time-consuming and labor-intensive task, requiring sig-
nificant time and effort to define nodes and their parameters,
even for professional users (Fig. 1).

To address this issue, researchers have begun exploring
the problem of inverse procedural material modeling, where
a procedural material graph—including procedural node and

School of Digital Media Technology, Hangzhou Dianzi
University, Hangzhou, China

School of Computer Science, Hangzhou Dianzi University,
Hangzhou, China

School of Informatics, Xiamen University, Xiamen, China

School of Computer Science, Zhejiang University, Hangzhou,
China

Published online: 17 July 2025 &)\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-025-04096-0&domain=pdf
http://orcid.org/0000-0003-2103-5037
https://github.com/InterS23/IPMGG

X.Lvetal.

Decomposed SVBRDF maps

Decomposed SVBRDF maps

Decomposed SVBRDF maps

Input image

Input image Albedo map Normal map Roughness map

- B

Albedo map Normal map Roughness map

Input image

-

Albedo map Normal map Roughness map|

Procedural material graph

Reconstructed image

Fig.1 The synthetic input texture and output of our method. The input
to our model consists of SVBRDF maps decomposed from the input
image. We then predict a procedural material graph for each map, where
each node contains its operation type and parameter definitions, and
each edge defines the computation flow between two nodes. Based on

Reconstructed image

their connections—is generated from a given texture image.
These methods are currently divided into two main cate-
gories: static graphs [10, 11, 16, 25] and dynamic graphs
[6, 12, 13]. The former [10, 11, 16, 25] focuses on select-
ing appropriate graph structures from an existing dataset
of graphs and determining node parameters through learn-
ing and optimization. The main drawback of this kind of
approach lies in its lack of generalization, as it cannot gen-
erate new material graphs. Dynamic methods [6, 12, 13], on
the other hand, effectively overcome this limitation. Among
these methods, a notable approach [12] utilizes Transformer-
based [26] techniques for procedural graph construction,
enabling diverse graph generation and automatic graph com-
pletion based on multimodal conditional signals. However,
we note that this approach relies solely on a single reference
image to generate all nodes and, during the generation phase,
nodes are generated based only on the node arrangement
probability distribution, without considering the correspond-
ing output images of intermediate nodes. While this method
produces results that closely align with the input image, its
generation process is a black-box procedure based on prob-
abilistic predictions. As a result, this approach suffers from
poor interpretability and generalization in node generation.
To overcome these problems, we propose an interpretable
method to predict the parameters of each procedural material
node. Each node can be viewed as a function with two types
of input parameters: image types and primitive data types
such as integers and floats. We divide the prediction process
into two stages because image parameters and non-image
parameters belong to distinct domains, and current genera-
tive models struggle to manage these multi-type parameters
effectively. Moreover, image-type parameters offer greater

@ Springer

Procedural material graph % % %@

-HEE B-T

Procedural material grap!

Reconstructed image

i e [

the predicted procedural material graph, our goal is to reconstruct the
original input. In contrast to existing methods, where the entire graph is
predicted at once, our approach predicts each node individually, which
provides stronger interpretability

semantic information than other parameter types, making
them our primary focus during prediction by leveraging the
robust prior knowledge of stable diffusion (SD) models. For
non-image parameters, we transform the prediction process
into an optimization process to simplify the model.

Our approach sequentially predicts each node of pro-
cedural graph in reverse order, inspired by one of the
existing manual workflows for constructing material graphs
based on reference materials. Normally, when creating pro-
cedural materials from a reference image, people usually
approach this process by dividing and conquering, that is,
first extracting the spatially varying bi-directional reflectance
distribution functions (SVBRDFs) of materials, such as nor-
mal maps, roughness maps, and albedo maps. Then, for each
map, the individual material properties are separately pre-
dicted, where each property corresponds to a sequence of
node operations. We design the node prediction process in
reverse order, that is, predicting from the output nodes to
the generator nodes. Compared to predicting from the gen-
erator nodes to the output nodes, this strategy significantly
improves prediction tolerance and enhances the quality of
generated images. Specifically, if we predict in a root-to-leaf
order, an error in any intermediate node would propagate
to its child nodes, causing the generated result to deviate
completely from the given material, more details are in the
supplemental materials.

In specific implementation, we propose a divide-and-
conquer strategy consisting of two processes: a preprocessing
process and a sampling process. In the preprocessing phase,
we train a classifier on our constructed dataset to recognize
node types and develop an SD-based adapter that can be used
for input image prediction. In the sampling phase, given a ref-

Interpretable procedural material graph generation via diffusion models from reference images

erence image, we devise a two-stage method that operates by
first predicting the type and input image of each generated
node and then predicting the detailed parameters for each
node. We illustrate several examples of the proposed method
in Fig. 1.

To validate the effectiveness of our approach, we create a
procedural material graph dataset containing 618,872 images
across 78 categories. Extensive experiments demonstrate
that our method achieves superior generation quality and
generalization capability compared to previous approaches.
Additionally, with semantic information available for each
generated node, our method features a more interpretable
generation process that enables a closer match to the syn-
thetic input image.

In summary, our contributions are as follows:

e We propose a novel multi-stage framework that inter-
pretably generates procedural material graphs, where
each node’s type and attributes are predicted in reverse
order, with the corresponding reference image guiding
the process at each step.

e We introduce an adapter-based diffusion model capable
of predicting node attributes within a lightweight frame-
work.

e We present a fine-grained procedural material graph
dataset consisting of extensive data on individual nodes
with various types and parameters.

2 Related work

In this section, we briefly review related work on inverse
material modeling and diffusion models.

2.1 Inverse procedural material modeling

Inverse Procedural Material Capture aims to identify the
most suitable graph from an existing dataset and then applies
parameter prediction and optimization techniques to find
the optimal parameters. Early approaches [5, 10] relied on
hand-crafted graph templates and rules to capture procedural
material details from examples. The success of these meth-
ods largely depends on template quality, and their application
is often limited to specific material categories.

Later, Shi et al. [25] introduced the DiffMat library, which
enabled differentiable procedural material nodes generation,
facilitating gradient-based optimization of a wider range of
continuous filter node parameters. Subsequently, Hu et al.
[11] expanded the scope to include discrete parameters by
training differentiable neural network approximations for
generator nodes. More recently, Li et al. [16] introduced Diff-
Mat v2, which supports a broader range of node types and
allows for optimizing both continuous and discrete parame-

ters. They also developed a three-stage optimization process
to further refine the parameter optimization. However, these
approaches are not generative methods and the effectiveness
of the model largely depends on whether similar materials
exist in the database.

Inverse Procedural Material Generation targets at gen-
erating complete procedural graphs from scratch based on
reference material images. Hu et al. [13] proposed a method
that hierarchically segments the input SVBRDF maps into
sub-materials and their corresponding masks, constructing a
binary tree of procedural materials. However, this approach
is limited to specific material types and requires manual
segmentation by the user. Guerrero et al. [6] introduced a
transformer-based generative method, enabling the uncon-
ditional generation of procedural graphs. In a subsequent
work, Hu et al. [12] incorporated a CLIP encoder into
the transformer architecture and introduced a novel sam-
pling strategy to expand the dataset, allowing procedural
material generation to be performed unconditionally or con-
ditioned on images, text prompts, or partial graphs. However,
Transformer-based methods [6, 12] predict tokens based on
the graph’s arrangement order, without considering individ-
ual nodes’ semantic information. As a result, while it can
generate materials resembling the style of the input image
prompts, the generated graph lacks a clear semantic asso-
ciation between each node and its parameters, leading to
limited interpretability and generalization. Furthermore, Li et
al. [15] proposed a reinforcement learning-based approach,
while Li et al. [17] introduced a pretrained vision-language
model (VLM), which outperforms previous methods on both
synthetic and real-world examples.

In contrast, our method explicitly models each node,
allowing it to generate material graphs with high inter-
pretability and generalization.

2.2 Diffusion model

Diffusion models [7], as a novel generative paradigm, have
achieved remarkable success in image generation. Numerous
diffusion methods have been explored for text-to-image (T21)
generation tasks, such as Stable Diffusion [22], Imagen [23],
and DALL-E [21]. Due to the high parameter requirements of
diffusion models, full-parameter fine-tuning [20] for down-
stream tasks incurs significant training costs. Recently, some
researchers have attempted efficient parameter tuning based
on Adapters [8] or LoRAs [29], which adds an extra module
to the frozen pretrained model.

For example, Zhang et al. [28] proposed ControlNet,
which fine-tunes a pretrained diffusion model with a small
number of parameters and introduces various types of image
prompts, such as normal maps. Subsequently, works such
as T2I-Adapter [19] and IP-Adapter [27] further improved
the Adapter architecture, reducing the number of required

@ Springer

X.Lvetal.

parameters while maintaining the fine-tuning performance.
In this paper, we also trained an adapter on a pretrained dif-
fusion model to achieve a lightweight procedural material
attribute predictor for node-specific properties.

Diffusion models have also been utilized [3, 14] to solve
the inverse problems, such as denoising, super-resolution
[30], image restoration, etc. For example, Chung et al. [3]
proposed the diffusion posterior sampling (DPS) algorithm,
which leverages the prior knowledge learned by a pretrained
diffusion model. By specifying the form of the operator in
advance, the posterior distribution can be estimated with-
out additional network training. In our work, the procedural
material graph generation task can also be viewed as an
inverse problem, where each node in the graph can be
considered as a known operator, such as a linear or nonlin-
ear noise operator, coordinate transformation, etc. However,
because node functions involve not only a varying number
of image-type inputs but also other types of parameters with
unpredictable values, the operator parameters cannot be pre-
defined in the DPS. Therefore, we opted to train the diffusion
model to directly learn the inverse functions corresponding
to the node functions from the dataset.

3 Method

Given a pixel-based reference material, our objective is to
generate the corresponding procedural material graph. We
adopt the directed acyclic graphs (DAGs) structure from
Adobe S3D [2] as our procedural material graph representa-
tion, which is composed of nodes, edges, and parameters. In
the graph, each node is parameterized, enabling fine-grained
control over the material properties. The parameters defined
on the node are divided into two categories: image types and
primitive data types, e.g., integers and floats. At runtime,
each node performs operations on the input image based on
the operations and parameters defined for that node, produc-
ing an output image. This output is then used as the input
for the subsequent node, continuing the process. Nodes are
connected by edges, which define the flow of data throughout
the DAG. In a typical procedural material graph, the direction
of these edges flows from the generator node to the output
nodes.

Figure 2 illustrates the pipeline of our framework, which
is divided into two phases: the preprocessing phase and the
sampling phase. In the preprocessing phase, we constructed
a dataset for each node type and trained both a node category
classifier and the corresponding adapters for each node type
within the diffusion model. In the sampling phase, the pre-
diction is conducted in two stages: in the first stage, we use
an inverse rendering model [18, 24] to derive an SVBRDF
texture map from the reference image. This is followed by a
ViT-based encoder that predicts the node type. Using the pre-

@ Springer

dicted node type, the reference image, and adapter weights
from the preprocessing phase, we generate the input image
for the current node. In the next iteration, this predicted image
serves as the reference image for the parent node, and the
process continues iteratively in reverse order, starting from
the output nodes and ending with the generator node. In the
second stage, we use DiffMat v2 [16] to optimize the node
parameters via end-to-end differentiable rendering. Starting
from the generator node of the graph predicted in the first
stage, each node is iteratively treated as the output node.
Using its predicted image as the reference, we optimize the
parameters of the current node and its ancestor nodes along
the branch, repeating this process until we reach the original
output nodes. In the end, we obtain a complete procedural
material graph, containing the type and property information
for all nodes.

In the following, we start with a systematic overview of
the objectives and processes involved in our generation task,
and then give a detailed explanation of the methods used for
predicting node image-type parameters and optimizing other
node parameters in Sect. 3.1. In Sect. 3.2, we provide an in-
depth discussion of the approach and methodology used for
constructing our dataset.

3.1 Node generation and parameter prediction

This subsection aims to predict the parameters from the cor-
responding node of a reference image, we frame the task as
an inverse function problem, defined as (x, R) = H(y),
where H represents the node function, x is the image type
parameters, R denotes the other primitive type parameters,
and y is the output image. We solve the problem in the follow-
ing order: First, we identify the node type H that was used to
generate the input image y. Next, we predict the parameters
x and R separately. Specifically, we observe that the output
image, after applying the node operation, exhibits distinct
classification features, allowing us to use a ViT classification
model [4] to infer the node type. Since image parameters
and other types of parameters belong to different domains,
we enhance the accuracy of the inverse function prediction by
separately estimating x and R. For x, we utilize the diffusion
model’s strength in function approximation and probabilis-
tic modeling. For R, we reformulate its prediction as an
optimization task, using DiffMat v2’s differentiable node
functions to achieve more precise parameter estimation.

3.1.1 Parameter prediction of image types

We employ an adapter-based approach for SD models to pre-
dict the image-type parameters for each node. Training an
SD model to predict input images for all nodes simultane-
ously results in a significant drop in prediction quality. This
is mainly due to the wide variation in the function spaces rep-

Interpretable procedural material graph generation via diffusion models from reference images

T 1}
!'[JNormal || Albedo | | Roughness — Training process | / \
| |
| Nede with amtii” 4 2 Uncertain mim . ! auxiliary
} (1] Node with optimized {5 Uncertainnum (™ Different node | araph
1= parameters U berofnodes - dataset ! - - ,_ — -
4 1 1 1
7 - ! i S — == l—- j— = ,_.l |
/ \ ¢ ! ! L A A "

r WY

<

pu

< 0

Node
e . O Image_input
C TR 0
i Default imizati
. M 0 prametes | Optimization

(o) ViT Classifier T t i3

“d Predicted N ViT Classifier Adapters Predicted N+1 l—-J
Adapters Dataset

Stage I . Stage 11
_ Preprocess J \ Sampling /

Fig. 2 The overall framework of our method, which consists of two
phases. On the left, the preprocessing phase is depicted, where a classi-
fier and adapter for individual nodes are trained based on the constructed

4{ CLIP Encoder }4{ Linear }4’{ Transformer Decoder }
I

Frozen Stable lefuslon

—| Decoder |

T2I-Adapter

Fig.3 The details of our adapter architecture built upon the pretrained
SD model. A separate adapter is trained for each node type

resented by different nodes, making it difficult for the model
to capture an overall probability distribution. Moreover, such
a unified approach complicates training and reduces scala-
bility. To address this issue, we train an adapter for each node
type individually. This method preserves the original model’s
generative capabilities, mitigates interference between dif-
ferent functions, and allows for flexible node expansion.
Previously, adapters for SD models were primarily used
to guide content in text-to-image models [19, 27, 28]. For
instance, a normal map might be provided to control the sur-
face normals of the generated image, with a text prompt
guiding the image content. In our work, we repurpose
adapters as inverse function solvers for node functions and
eliminate the use of text guidance. Specifically, our goal is to
enable the adapters to predict feature embeddings for each
node’s input image based on both the node type and its refer-
ence image. However, the pretrained SD model’s weights are
heavily tied to the text feature space. Therefore, it is essential
to align the predicted image embeddings with the corre-
sponding text embeddings. So, we designed a new adapter
architecture to address these issues, as shown in Fig. 3. The
reference image is first encoded by a CLIP Image Encoder
to obtain an embedding aligned with the corresponding text
prompt. This embedding is then mapped to the text-aligned

dataset. On the right, the core algorithm of our approach is presented,
which is divided into two stages: one for predicting the node types and
the other for predicting the node parameters

feature space using a linear layer followed by a three-layer
Transformer Decoder. Additionally, we incorporated the T2I-
Adapter to enhance the model’s sensitivity to high-frequency
details in the reference image.

For certain special nodes, we adopted specific strate-
gies. For generator nodes that do not take image inputs,
such as shape node, perlin_noise node, etc., which are the
generator nodes in procedural graphs, we directly optimize
the node parameters starting from their initial values with-
out going through adapter prediction. Some node functions,
such as invert, Cartesian to polar, polar to Cartesian, etc.,
come with built-in inverse functions, so there is no need
for a neural network to predict the input image. To further
enhance the model’s prediction accuracy, we applied special-
ized treatments to certain nodes. For example, for nodes with
segmentation attributes, such as blend_copy_with_mask, we
only predict the mask image, and then use the mask map
to segment the foreground image and background image.
Afterward, we apply the SD model’s image completion capa-
bilities to restore both images, as illustrated in Fig. 4. For
RGB-type albedo maps, we set the node type as the dynamic
gradient node implemented in [16]. During the initial sam-
pling step, we first transform the RGB image into a grayscale
map. Then, using the predefined grayscale-color mapping
method, we extract the color gradient. The resulting grayscale
map is then used for subsequent predictions.

3.1.2 Parameter prediction of primitive data types

We adopted the three-stage primitive type parameters opti-
mization method proposed by [16]. The parameters can be
classified into differentiable continuous parameters Rg, non-
differentiable continuous parameters R,, and non-differentiable
discrete parameters Ry. In the first stage, we use a gradient
descent method to roughly optimize the differentiable con-

@ Springer

X.Lvetal.

input predict:0

inpaint:0 inpaint:1 output

Fig. 4 Mask prediction and image inpainting results of our approach.
The first column shows the input image, while the second column
presents the mask predicted by our model. Using these inputs, our model
generates the completed images, as seen in the third and fourth columns,
attributed to the SD model’s inpainting capability. Finally, the fifth col-
umn displays the reconstructed image produced by our model

tinuous parameters,

Ry < arnginllT(H(x, R) =T, ey

0

where 7 is a texture descriptor operator that computes the
Gram matrix of extracted VGGI19 features. In the second
stage, linear grid search is used to optimize the non-
differentiable continuous parameters and non-differentiable
discrete parameters. Linear grid search is an exhaustive
search method that tries all possible combinations in the
parameter space, with candidate values of each parameter are
evenly distributed at certain intervals, aiming to maximize a
predefined evaluation criterion.

Ry, Ry < argmin||7 (H(x, R)) — T ()|l
Ro.Ry 2)

where F is the 2D fast Fourier transform (FFT) operator
to capture high-frequency structures or periodic textures in
the material. Since the discrete parameters optimized in the
second stage may substantially impact the node’s final output,
the third stage continues to refine the node parameters using
Eq. 1.

We adopt a node-by-node optimization strategy, in con-
trast to the approach by Li et al. [16], which optimizes all
nodes of a procedural graph based on a single reference
image. This often leads to cumulative errors that degrade the
final output. Specifically, starting from the generator node of
the predicted graph in the first stage of our sampling process,
we iteratively treat each node as the output node. Using its
predicted image as the reference, we apply the aforemen-
tioned three-phase method to optimize the parameters of the

@ Springer

node and its ancestor nodes along the branch, continuing this
process until the original output nodes are reached, as illus-
trated in Fig. 2 on the right side. This fine-grained approach
significantly reduces error propagation, and Table 1 high-
lights the advantages of this detailed optimization process.

3.2 Procedural material graph dataset

We collected limited data of complete procedural material
graphs from the material library [1] and analyzed the sta-
tistical characteristics of each node and parameters to build
our dataset. Specifically, we analyzed some commonly used
nodes implemented by DiffMat v2 in the library and obtained
the probability distributions of each node’s parameters, as
well as the sequence distribution between nodes.

By analyzing the node sequence statistical characteris-
tics, we can construct a dataset that reflects the probability
distribution of node arrangements. This allows the classifier
to learn the prioritization of different node functions, even
when an image contains features from multiple nodes. Con-
sequently, features that need to be constructed early in the
procedural graph will not be misplaced during the reverse
prediction process, which could otherwise result in the loss
of other features. By analyzing the node parameters’ statisti-
cal characteristics, we devised a sampling strategy to ensure
that the generated parameters match the real data distribu-
tion. Then, based on prior knowledge, we carefully selected
node parameters that produce output images with clear and
distinct node-level semantic information.

We exclude cases where node parameters, such as setting
the blur node’s intensity parameters to zero, result in identical
input and output images. These cases fail to reflect the node’s
characteristics. Additionally, we consider cases where differ-
ent nodes, such as the tile generator and blend nodes, produce
similar outputs under specific conditions, though their edit-
ing logic differs, e.g., random point distribution or structured
combination. Therefore, we carefully compared such func-
tionally similar nodes and excluded data that did not match
the logical editing processes based on prior knowledge.

Some nodes have multiple image inputs, but not all of
them need to be used. We set their usage frequency according
to the probability distribution of the image parameters. For
those with very low frequency, we decide not to generate
them in future. Additionally, some nodes implement multiple
function logics, controlled by certain parameters. However, if
these function logics produce significantly different effects,
treating them as a single node category would degrade the
quality of the generated results. Therefore, we separate such
parameters in the nodes, assigning each function logic to
a distinct node category, e.g., splitting the blend node into
blend_add, blend_multiply, etc.

Interpretable procedural material graph generation via diffusion models from reference images

Table 1 The quantitative

. w/o per-node optimization Our method
evaluation of our approach
SSIM1 PSNR4 LPIPS| SSIM 1 PSNR/ LPIPS|

Albedo 0.28 29.00 0.26 0.45 30.01 0.40
Roughness 0.44 30.41 0.28 0.56 31.40 0.35
Normal 0.20 29.29 0.26 0.42 30.73 0.17
PBR 0.17 28.20 0.36 0.22 28.82 0.26
Bold indicates the better performance between the two compared methods

input predict 0 result input predict:0 result input predict:0 result input predict:0 result

3‘r§‘ v? “r;

- ‘ei‘bﬂ 0‘11

bevel
blur_h

mirror histogram_scan

normal
quad_transform non_umform_blur edge_detect

(a)

swirl

g
-
5
2
5
o
2

slation

transformation

tran transform_tran

quantize

sform

el
M
jive

trapezoid.

levels

safe_transform

(d)

Fig.5 The prediction results of our method for a single node. “predict:0” is the result from stage 1, generated by the SD model, while “result” is

the output after parameter optimization in stage 2

Input Hu et al. [13] ours edit0 edit1

(44“‘.*‘* |l"' i (44“,.*"‘ [.40"‘! "44"‘{"
rt«bn",.. et abpat 'Mn" Foadpat

'Aa YR A PV DAL ZY LA L 2Y
’\ C‘:’h ...“.mb L] 'AA“ BA'.,‘A“
atlv Aa g m! e, Avn" v AleMle A

Fig. 6 The qualitative comparison between our method and Hu et al.
13]

—_

The dataset includes images and their corresponding
JSON files, with each JSON file containing the node type
and input parameters for the image.

4 Experiments

4.1 Implementation details

For the node classification task, we selected 45 node cate-
gories from the differentiable nodes implemented by [16].
Using the method described in Sect. 3.2, where node cate-
gories are divided into multiple subcategories based on their
parameters, we expanded the 45 categories to 78, encompass-
ing a total of 618,862 images. For the training of the adapters,
we excluded categories from the previous dataset that do not
require image inputs or have built-in inverse functions. Addi-
tionally, since some categories have multiple image inputs,
we trained a separate adapter for each input index, result-
ing in 42 categories with 552,706 images. The performance
metrics for all adapters are provided in the supplementary
materials.

For the classifier, we use the pretrained SwinV2-base-
window12t024-192to384 model and modified the final fully
connected layer to output 78 classes with 618,862 images.
The classifier was fine-tuned on 2 NVIDIA GeForce RTX
4090 GPUs with a batch size of 8, using AdamW optimizer
with cosine warmup schedule and the learning rate is le—4.
We trained for 10 epochs and employed Focal Loss with a
gamma value of 2.0 as the loss function.

For the adapter, we use the pretrained SDXL-base—1.0 as
the base model, which was trained on 552,706 images across
42 classes using 3 NVIDIA GeForce RTX 4090 GPUs with a

@ Springer

X.Lvetal.

batch size of 8. The AdamW optimizer was utilized, incorpo-
rating a cosine annealing warmup strategy with the learning
rate le-4. As the convergence speed varied among adapters,
we set the number of training epochs to 100, corresponding to
the slowest converging node. During training, we truncated
the process based on each node’s learning performance.

For the second stage of our method, we use a hybrid opti-
mization approach. Differentiable parameters are optimized
with Adam (learning rate: Se—4), while non-differentiable
parameters (e.g., integers) are tuned using linear grid search.
This hybrid process iterates 8 times.

4.2 Qualitative results

We present the image prediction capabilities of adapters for
each node category qualitatively in Fig. 5. The differences
in metrics across various nodes reflect the varying levels of
difficulty in predicting different nodes. It is noteworthy that
the deviation between nodes of regular shape data types and
noise data types affects the metrics differently. For example,
in the case of noise-type images, the predicted values may
differ significantly from the ground truth at the pixel level,
but the overall structure and content of the image remain
similar. Figure 5 illustrates the model’s ability on individual
nodes: by providing a reference image, followed by param-
eter prediction and optimization within our network, we can
achieve good reconstruction results.

4.3 Comparison

Previous studies struggled to handle procedural materials
with masks [6, 12]. Hu et al.[10] can handle this, but it
requires additional segmentation models and manual anno-
tation of the masked regions. Our method treats the original
segmentation task as a node function, naturally incorporat-
ing it into our pipeline. It allows leveraging the SD model’s
inherent prior image knowledge to complete the missing
areas, significantly improving generalization and robustness
to noise. Figure 4 showcases our model’s capability to pre-
dict mask regions and perform image completion for missing
areas.

Our model has better generalization and editing capabili-
ties. In contrast to [13], which struggles with patterns absent
from their dataset and has its generation capabilities con-
strained by a Gaussian noise model, our approach effectively
manages such cases, as shown in Fig. 6.

Compared to [6, 12], which generates procedural graphs
from a single input in an autoregressive manner, limiting
the ability to capture fine-grained node characteristics and
restricting the diversity of generated images, our method pre-
dicts each node individually during the generation process.
This allows us to generate a wider range of material images,
not just starting from the final PBR-composed image, but

@ Springer

from any node image in the procedural graph. More details
are in the supplemental materials.

4.4 Procedural material editing

In practical applications, we frequently encounter scenarios
requiring the modification of a specific attribute of a given
reference material while keeping other attributes unchanged.
Procedural materials are composed of a graph made up of
various nodes, each with adjustable parameters, highlighting
their inherent editability and flexibility. Once our model gen-
erates the procedural graph corresponding to the reference
image, the material can be edited in a decoupled manner.
As shown in Fig. 7, by simply modifying the parameters of
certain nodes, corresponding editing operations can be com-
pleted.

4.5 Trade-off between fidelity and editability

In certain cases, while the nodes and images predicted in
Stage I in Fig. 2 may be correct, nodes that depend on
random number generation algorithms make it challenging
for our optimization method to achieve pixel-level accuracy,
preserving only stylistic similarity instead. This leads to a
trade-off between fidelity and editability for such types of
graphs. More details are in the supplemental materials.

5 Limitations and future work

Our model’s generation capabilities are constrained by the
number of nodes implemented in DiffMat v2, and unseen
node features by our model may lead to generation errors, as
shown in Fig. 8. Additionally, since each node is assigned a
dedicated adapter, the space complexity increases linearly
with the number of nodes, and the time complexity also
rises due to the optimization required for each node and its
parameters. Furthermore, our model does not handle exposed
parameters in the method [2], restricting usability for general
users and also the method is unable to connect edges to previ-
ously generated nodes in other branches. Consequently, the
generated graph always has a tree-like topology.

To address these limitations, future work will focus on
implementing more differentiable nodes and expanding the
amount of real-world data available for each node. We will
also refine the adapter architecture to improve the model’s
sensitivity to high-frequency details and its ability to handle
noise. Further, we plan to design new loss functions for more
accurate optimization. Beyond image-to-procedural graph
conversion, future research will explore integrating language
prompts, allowing the model to generate and edit procedural
graphs from textual descriptions.

Interpretable procedural material graph generation via diffusion models from reference images

SN
SR
SR
SRS

\“w""‘e"\
N e N

reconstructed edit —m8

(a)

Fig.7 Editing capability of our approach for procedural materials. For
each image, the first column displays the synthetic image, and the second
column shows the reconstructed image generated from the procedural

result result

Fig. 8 Failure cases. The first row shows an erroneous intermediate
node results generated during Stage 1. The second row presents the
results after both Stage 1 and Stage 2

6 Conclusion

We introduce a novel framework for interpretable generation
of procedural graphs from reference images using diffusion
models. This framework models each procedural node, learn-
ing fine-grained semantic information at the node level. Our
approach effectively generates procedural materials that are
consistent with the semantic structure of the input image. By
incorporating the image-level semantic information of each
node, it offers enhanced interpretability during the generation
process, thereby improving the generalization and generation
capabilities of the results.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-025-04096-
0.

Author Contributions Xiaoyu Lv contributed to conceptualization,
methodology, software, writing—original draft, and visualization.
Zizhao Wu contributed to supervision, conceptualization, and writing—

%

input

-

3

reconstructed ¢——
(b)

material graph predicted by our model. The rest columns illustrate the
effects of modifying the parameters of a specific node in the generated
graph

edit

review and editing. Jiamin Xu, Xiaoling Gu, Ming Zeng, and Weiwei
Xu contributed to methodology, resources, and software.

Data availability No datasets were generated or analyzed during the
current study.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

1. Adobe, Adobe substance 3d community assets.
substance3d.adobe.com/community-assets (2024a)

2. Adobe, Substance designer. (2024b) https://www.substance3d.
com

3. Chung, H., Kim, J., Mccann, M.T., Klasky, M.L., Ye, J.C.: Diffu-
sion posterior sampling for general noisy inverse problems. (2022)
arXiv:2209.14687

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai,
X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly,
S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words:
Transformers for image recognition at scale. in: International con-
ference on learning representations, ICLR, OpenReview.net (2021)

5. Dumas, J., Lu, A., Lefebvre, S., Wu, J., Dick, C.: By-example
synthesis of structurally sound patterns. ACM Trans. Graph. 34,
1-12 (2015)

6. Guerrero, P., Hasan, M., Sunkavalli, K., Mech, R., Boubekeur, T.,
Mitra, N.J.: Matformer: a generative model for procedural materi-
als. ACM Trans. Graph. 41, 1-12 (2022)

7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic mod-
els. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin,
H. (eds.) Advances in Neural Information Processing Systems.
NeurIPS (2020)

8. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., de Larous-
silhe, Q., Gesmundo, A., Attariyan, M., Gelly, S.: Parameter-
efficient transfer learning for NLP. In: Chaudhuri K, Salakhutdinov
R (Eds.). In: Proceedings of the 36th international conference on
machine learning, ICML, PMLR. pp. 2790-2799 (2019)

https://

@ Springer

https://doi.org/10.1007/s00371-025-04096-0
https://doi.org/10.1007/s00371-025-04096-0
https://substance3d.adobe.com/community-assets
https://substance3d.adobe.com/community-assets
https://www.substance3d.com
https://www.substance3d.com
http://arxiv.org/abs/2209.14687

X.Lvetal.

10.

11.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Hu, X., Yang, C., Fang, F., Huang, J., Li, P, ShengB, B., Lee, T.Y.:
Msembgan: Multi-stitch embroidery synthesis via region-aware
texture generation. IEEE Trans. Vis. Comput, Graph (2024)

Hu, Y., Dorsey, J., Rushmeier, H.: A novel framework for inverse
procedural texture modeling. ACM Trans. Graph. 38, 1-14 (2019)
Hu, Y., Guerrero, P., Hasan, M., Rushmeier, H., Deschaintre, V.:
Node graph optimization using differentiable proxies. In: ACM
SIGGRAPH 2022 conference proceedings, pp. 1-9 (2022a)

Hu, Y., Guerrero, P., Hasan, M., Rushmeier, H., Deschaintre, V.:
Generating procedural materials from text or image prompts. In:
ACM SIGGRAPH 2023 conference proceedings, pp. 1-11 (2023)
Hu, Y., He, C., Deschaintre, V., Dorsey, J., Rushmeier, H.: An
inverse procedural modeling pipeline for svbrdf maps. ACM Trans.
Graph. 41, 1-17 (2022)

Kawar, B., Elad, M., Ermon, S., Song, J.: Denoising diffusion
restoration models. Adv. Neural. Inf. Process. Syst. 35, 23593—
23606 (2022)

Li, B., Hu, Y., Guerrero, P., Hasan, M., Shi, L., Deschaintre, V.,
Matusik, W.: Procedural material generation with reinforcement
learning. ACM Trans. Graph. 43, 1-14 (2024)

Li, B., Shi, L., Matusik, W.: End-to-end procedural material capture
with proxy-free mixed-integer optimization. ACM Trans. Graph.
42, 1-15 (2023)

Li, B., Wu, R,, Solar-Lezama, A., Zheng, C., Shi, L., Bickel, B.,
Matusik, W.: Vlmaterial: Procedural material generation with large
vision-language models. arXiv preprint (2025) arXiv:2501.18623
Li, Z., Sunkavalli, K., Chandraker, M.: Materials for masses: Svbrdf
acquisition with a single mobile phone image. In: Proceedings of
the European conference on computer vision (ECCV), pp. 72-87
(2018)

Mou, C., Wang, X., Xie, L., Wu, Y., Zhang, J., Qi, Z., Shan, Y.:
T2i-adapter: Learning adapters to dig out more controllable ability
for text-to-image diffusion models. In: Proceedings of the AAAI
conference on artificial intelligence, pp. 4296-4304 (2024)
Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T.,
Miiller, J., Penna, J., Rombach, R.: SDXL: improving latent dif-
fusion models for high-resolution image synthesi. In: The Twelfth
International conference on learning representations, ICLR, Open-
Review.net (2024)

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A.,
Chen, M., Sutskever, I.: Zero-shot text-to-image generation. In:
Meila, M., Zhang, T. (Eds.), Proceedings of the 38th international
conference on machine learning, ICML, PMLR. pp. 8821-8831
(2021)

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.:
High-resolution image synthesis with latent diffusion models. In:
IEEE/CVF Conference on computer vision and pattern recognition,
pp. 10674-10685. IEEE, CVPR (2022)

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E.L., Ghasemipour, S.K.S., Lopes, R.G., Ayan, B.K., Salimans,
T., Ho, J., Fleet, D.J., Norouzi, M.: Photorealistic text-to-image
diffusion models with deep language understanding. In: Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A.
(eds.) Advances in neural information processing systems. NeurIPS
(2022)

Sartor, S., Peers, P.: Matfusion: a generative diffusion model for
svbrdf capture. In: SIGGRAPH Asia 2023 conference papers, pp.
1-10 (2023)

Shi, L., Li, B., Hasan, M., Sunkavalli, K., Boubekeur, T., Mech, R.,
Matusik, W.: Match: differentiable material graphs for procedural
material capture. ACM Trans. Graph. 39, 1-15 (2020)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need.
In: Advances in neural information processing systems. pp. 5998—
6008 (2017)

@ Springer

28.

29.

30.

. Ye, H., Zhang, J., Liu, S., Han, X., Yang, W., 2023. Ip-adapter:

text compatible image prompt adapter for text-to-image diffusion
models. arXiv preprint arXiv:2308.06721

Zhang, L., Rao, A., Agrawala, M.: Adding conditional con-
trol to text-to-image diffusion models. In: Proceedings of the
IEEE/CVF international conference on computer vision, pp. 3836—
3847 (2023)

Zhang, M., Yang, J., Xian, Y., Li, W, Gu, J., Meng, W., Zhang, J.,
Zhang, X.: Ag-sdm: Aquascape generation based on stable diffu-
sion model with low-rank adaptation. Comput. Anim. Virt. Worlds
35, €2252 (2024)

Zhang, S., Deng, X., Shao, H., Jiang, Y.: Impres: implicit residual
diffusion models for image super-resolution. Visual Computer ,
1-11 (2024b)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Xiaoyu Lv is currently a post-
graduate at the Faculty of Digi-
tal Media Technology, Hangzhou
Dianzi University. His research
interests include generative mod-
els and procedural materials.

Zizhao Wu is currently an Asso-
ciate Professor with the Faculty
of Digital Media Technology,
Hangzhou Dianzi University. He
received the PhD degree from the
Department of Computer Science
and Technology, Zhejiang Univer-
sity, in 2013. His main research
interests include computer vision
and computer graphics.

http://arxiv.org/abs/2501.18623
http://arxiv.org/abs/2308.06721

Interpretable procedural material graph generation via diffusion models from reference images

Jiamin Xu is currently a Lecturer
with the School of Computer Sci-
ence, Hangzhou Dianzi Univer-
sity. He received the PhD degree
from the Department of Computer
Science, Zhejiang University, in
2022. His main research interests
include 3D reconstruction, neural
rendering, and image-based ren-
dering.

Xiaoling Gu received the PhD
degree in computer science from
Zhejiang University, Zhejiang,
China, in 2017. She is currently
an Associate Professor with the
School of Computer Science and
Technology, Hangzhou Dianzi Uni-
versity, Hangzhou, China. Her
research interests include computer
vision, machine learning, and fash-
ion data analysis. She was also
an invited reviewer or a program
committee member for top con-
ferences and prestigious journals.

Ming Zeng received the PhD

degree from the State Key Lab-

oratory of CAD & CG, Zhejiang

University. He is currently an Asso-
ciate Professor with the School

of Informatics, Xiamen Univer-

sity. He was a visiting researcher

with Visual Computing Group,

Microsoft Research Asia, from

2009 to 2011 and also in 2017.

His research interests include com-
puter graphics and computer vision,
especially in human-centered anal-
ysis, reconstruction, synthesis, and

animation.

Weiwei Xu is currently a Full Pro-
fessor with the School of Com-
puter Science, Zhejiang Univer-
sity. His research interests include
differentiable physics-based sim-
ulation, high-level vision, 3D
reconstruction, and image-based
rendering.

@ Springer

	Interpretable procedural material graph generation via diffusion models from reference images
	Abstract
	1 Introduction
	2 Related work
	2.1 Inverse procedural material modeling
	2.2 Diffusion model

	3 Method
	3.1 Node generation and parameter prediction
	3.1.1 Parameter prediction of image types
	3.1.2 Parameter prediction of primitive data types

	3.2 Procedural material graph dataset

	4 Experiments
	4.1 Implementation details
	4.2 Qualitative results
	4.3 Comparison
	4.4 Procedural material editing
	4.5 Trade-off between fidelity and editability

	5 Limitations and future work
	6 Conclusion
	References

