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Abstract

Graphic layout is essential in poster generation. Professionals often need to design different layouts for a product image,
to ensure they meet specific user requirements. This paper focuses on utilizing a deep-learning model to automatically
generate image-aware layouts with user-defined constraints, including layout attributes and partial layouts. Layout attribute
constraints require generated layouts to include and exclude elements of specified classes, such as text, logos, underlays, and
embellishments. Our model represents different attributes by sampling multidimensional Gaussian noise with different means,
and we propose an attribute-consistent loss and an attribute-disentangled loss to ensure that the generated layout satisfies the
specified attribute. Partial layout constraints provide our model with incomplete layout information to guide the generation
of the remaining elements. We design a partial-constraint loss to incorporate the provided partial layout. Furthermore, we
introduce a random mask to diversify the partial layout constraints, which can encourage the model to learn more general latent
representations of the provided partial layouts. Both quantitative and qualitative evaluations demonstrate that our model can
generate different image-aware layouts according to various user constraints while achieving state-of-the-art performance.

Keywords Graphic layout - Poster - Image-aware - User constraints - Layout attributes - Partial layouts

1 Introduction

Graphic layout design, which involves arranging texts, logos,
underlays, and other 2D elements [1, 2], is an essential com-
ponent for various media, such as magazines [3-7], posters
[8-11], web pages [12—15], and comics [16—19]. The well-
crafted graphic layouts are heavily reliant on the designers’
experience and proficiency.

In the past decade, deep-learning-based methods for
graphic layout generation have emerged [20-23]. Recently,
some image-aware methods have been proposed to model
the relationship between image content and graphic lay-
out elements [2, 24-28]. However, these models are not
well designed to handle user constraints that express diverse
design demands. In this paper, we focus on four classes of
elements, text, underlay, logo, and embellishment, and divide
user constraints into two main categories: layout attribute
and partial layout constraints. Layout attribute constraints
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are used to control that the generated layout includes the ele-
ments of required classes (attribute elements) and excludes
the elements of undesired classes (undesired elements). For
example, when the attribute is “layout with logos but with-
out embellishments,” generated layouts need to display the
product logo without any embellishments. Partial layout con-
straints require the model to supplement the given incomplete
layout and generate a complete layout. Although CGL-GAN
[2] and PDA-GAN [25] allowed to guide the layout gener-
ation with user-specified coordinates and classes of partial
elements, they do not always conform to such constraints
and fail to handle the constraints with incomplete element
information, for instance, coordinate or class only. More
importantly, these models cannot handle layout attribute con-
straints.

This paper focuses on generating different high-quality
graphic layouts according to user constraints for one product
image. To this end, our proposed network integrates the lay-
out attribute and partial layout constraints into image-aware
layout generation methods, abbreviated as the IUC-Layout
network. As a result, it is controllable, enabling the designer
to express the diverse presentation requirements of adver-
tising posters in the layout generation. Our model samples
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Fig. 1 Examples of generated layouts and posters with image contents and user constraints. Our model generates image-aware layouts that adhere
to layout attribute constraints (left) and partial layout constraints (right), which can be used to generate advertising posters

multidimensional Gaussian noise with different means to rep-
resent different types of layout attribute constraints. Since
this representation assigns each layout attribute constraint
with a region, it can fill the empty region between different
means with more training examples and force the network to
learn the intrinsic representation of different attributes robust
to the noise perturbation. We found that it is beneficial to
improve the robustness of our model during training. Specif-
ically, we sample 4 dimensional Gaussian noises to represent
4 types of layout attribute constraints. In addition, we design
attribute-consistent loss and attribute-disentangled loss to
ensure the layout generated by the [UC-Layout network sat-
isfies the corresponding layout attribute constraint. They are
achieved by approximately counting the number of attribute
or undesired elements using softmax operation to facili-
tate the gradient backpropagation. As shown in Fig. 1, the
graphic layout design by the model can arrange four classes
of elements, including texts, underlays, logos, and embellish-
ments, at the appropriate positions based on product images
and user-specified layout attributes or partial layouts. When
the layout attribute constraint is “layout with text but without
any other class elements,” as shown in the top-left of Fig. 1,
the generated layout consists of text elements only.
Additionally, we introduce a random mask operation to
obtain incomplete element information constraints for the
partial layout, which can encourage our model to learn more
general latent representations of provided partial layouts.
We also propose a partial-constraint loss to guide models to
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generate layouts that are precisely consistent with the given
information. In our experiments, we also integrate the partial-
constraint loss and the random mask into other image-aware
layout networks to further verify the benefits of these two
operations when handling partial layout constraints. We sum-
marize the contributions of this paper as follows:

e We design an efficient representation of layout attribute
constraints, which can force the network to learn the
intrinsic representation of different attributes robust to the
noise perturbation. Two losses, attribute-consistent loss
and attribute-disentangled loss, are designed to ensure that
the generated layouts by IUC-Layout network satisfy user-
specified attributes.

e We design a partial layout loss that guides the model to
complete layouts based on the given information. Further-
more, we introduce a random mask operation to obtain
incomplete element information constraints for the partial
layout, to enhance the model’s general latent representa-
tions.

e Both quantitative and qualitative evaluations demonstrate
that our model can generate different high-quality layouts
according to one product image with various user con-
straints while achieving SOTA performances.
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2 Related works

Continuous research efforts [2, 25, 26, 29-32] have been
devoted to the graphic layout generation, which can be
divided into two categories based on their consideration of
image content: image-agnostic and image-aware layout gen-
eration.

2.1 Image-agnostic layout generation

Early works [29, 33-36] mainly utilize templates or heuris-
tic rules to design graphic layouts and often fail to produce
flexible and various layouts. Recently, an increasing num-
ber of deep-learning-based models have been developed
for generating graphic layouts [1, 22, 37-43]. LayoutGAN
[1], LayoutVAE [20], and LayoutVTN [21] generate lay-
outs from noise without any conditions. To meet the diverse
user demands in real-world applications, several condi-
tional methods [44-49] have been proposed to guide the
layout generation process. The condition includes graphic
layout element types, numbers, sizes, and locations. For
example, AttributeGAN [41] incorporates elements’ aspect
ratio and location as conditions to generate graphic lay-
outs. LayoutFormer + + [46] utilizes sequence-based control
mechanisms to facilitate flexible and varied layout gen-
eration. However, the aforementioned methods primarily
concentrate on modeling the internal relationships among
graphic layout elements, while neglecting the connection
between the graphic layout and the image content.

2.2 Image-aware layout generation

ContentGAN [50] combines visual information to gener-
ate layouts for magazine pages, but it cannot fully capture
the image content as global pooling is applied to feature
maps. To comprehend the visual-texture content of the image,
CGL-GAN [2] and PDA-GAN [25] combine CNN and trans-
former [51] to synthesize image-aware graphic layouts for
posters, which are the most relevant works in this discipline.
Recently, more image-aware layout generation methods have
been proposed for modeling the relationship between graphic
layouts and image contents [24, 26, 52, 53]. However, none
of these methods devote to study image-aware layout gen-
eration with layout attributes and partial layout constraints.
Although CGL-GAN and PDA-GAN mentioned that they
could generate layouts according to partial layout constraints
to some extent, conducting numerous qualitative evaluations
and observations demonstrate that generated layouts may not
always conform to user constraints. Additionally, this partial
layout is limited to requiring complete element information,
including both class and coordinate. More importantly, these
models are unable to express layout attributes.

In real-world applications, it is typically necessary to
design multiple layouts based on one product image to
meet various user demands for the effective presentation of
advertising posters. This paper focuses on leveraging layout
attributes and partial layout constraints to generate image-
aware graphic layouts.

3 Method

As illustrated in Fig. 2, the structure of [UC-Layout back-
bone network follows the design of DETR [54], which
includes a multi-scale convolutional neural network (CNN)
[55, 56], a transformer encoder-decoder [51], and two fully
connected layers. Firstly, the multi-scale CNN extracts image
feature maps. Next, the sampled four-channel Gaussian noise
according to the input layout attribute is connected with the
feature maps at the final layer of the CNN, and sent to the
transformer encoder for the embedding. For partial layout
constraints, we encode the information of each element, i.e.,
its position and class, into a feature vector with the same
dimension as the learned queries in DETR. Afterward, these
vectors are added to the queries of the transformer decoder
to guide the layout generation. In this manner, the partial
layout constraint can be disabled by setting the element fea-
ture vectors to 0. Our system allows the user to specify no
more than 10 elements in a partial layout. Finally, two fully
connected layers respectively predict classes and bounding
boxes of elements.

3.1 Layout attribute

According to the factors involved in the graphical design,
such as layout styles, relationships between elements and
user requirements, and the corresponding statistics of CGL-
Dataset, we define four types of layout attribute constraints as
follows: (1) layout with texts but without any other class ele-
ments, (2) layout with underlays but without embellishments
and logos, (3) layout with logos but without embellishments,
and (4) layout with embellishments. Each layout attribute
includes the attribute element and non-desirable elements,
as illustrated in Table 1.

The distinctions in layout attributes arise from elements’
classes, but the number and arrangement of elements can
vary. Similarly to [57], itis necessary to use multidimensional
noise to represent the layout attribute since this representation
assigns layout attribute with a region. Moreover, sampling
noise in the spatial domain can improve the model’s gen-
eralization capability and fault tolerance, enhancing the
robustness of the model during training.

As indicated in Table 2, our model preassigns four sets
of four-channel Gaussian noise corresponding to aforemen-
tioned layout attributes, along with one set for the unspecified
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Fig.2 The architecture of our network. The three-dimensional views
along with the color map visualize the sampled 4 dimensional Gaussian
noises. During each training step, our model samples noise according

Table 1 a and S* respectively represent the attribute element and the
sets of undesired elements for the specified attribute *

to the specified attribute and combines it with image contents and the
partial layout to generate an image-aware layout that satisfies user con-
straints

Table 2 Five sets of four-channel Gaussian noise with varying means
based on different layout attributes

Layout attribute () Attribute element (a) Set of undesired

Layout attribute Means of four-channel

classes (S*) noise
Layout with texts Text {underlay, logo, Layout with texts but without any other a,-1L-1,1
but without any embellishment } class elements
other class Layout with underlays but without a1,—-1,1,-1)
elements embellishments and logos
Layout with Underlay {logo, Layout with logos but without (I, 1,—1,-1)
underlays but embellishment } embellishments
without ) )
embellishments Layout with embellishments (1,1,1,1)
and logos Unspecified layout attribute 0,0,0,0)
Layout with logos Logo {embellishment }
but without
embellishments
Layout with Embellishment {}

embellishments

attribute. The mean values of these five sets of four-channel
Gaussian noise are (1, — 1 —1,1), (1, — 1,1, — 1), (1, 1,
—1,—1),(1, 1,1, 1), and (0, 0, 0, 0) with a variance of
1 for each channel. These points in four-dimensional space
are equidistant from each other and from the origin (0, O,
0, 0). This design effectively balances the model’s learning
of different layout attribute constraints. When a user speci-
fies a certain attribute constraint, the model samples Gaussian
noise in four-dimensional space according to the correspond-
ing noise mean and variance. The length and width of each

@ Springer

dimension of the noise vector are equal to the input feature
map size of the transformer module.

To better align with the attribute element and disentan-
gle different attributes, we design attribute-consistent loss
and attribute-disentangled loss to ensure the generated layout
from the corresponding Gaussian noise satisfies the specified
layout attribute constraint.

3.2 Layout attribute-consistent loss

We propose an attribute-consistent loss such that the gen-
erated layout contains the attribute element. Specifically, to
make the attribute-consistent loss differential, we design a
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modified softmax function to approximately count the ele-
ment number of each class c:

¢
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where Q is the total number of output elements, and zg
represents the output class ¢ of g, element. The hyperparam-
eter ¢ is used to increase the distinction between predicted
probabilities of different classes. We set the value of ¢ as
100 during the training process. K is {text, logo, underlay,
embellishment, none}. Therefore, we can calculate the layout
attribute-consistent loss as:

L e = max(1 — Ng4, 0) 2)
where N, is the number of attribute element a, computed by
the Eq. (1). If the number of attribute elements exceeds 1,
Ly s 0. Otherwise, L. equals (1 — Ny).

3.3 Layout attribute-disentangled loss

If only introducing L., generated layouts may contain unde-
sired elements. To satisfy different attribute constraints, we
design attribute-disentangled losses to separate the rela-
tionships between various classes. They can be formulated
uniformly as:

ha= > Nu 3)

ueS*

where u represents the undesired element. S$*, as indicated
in Table 1 represents the set of classes that are absent in
generated layouts based on the specified attribute * .

3.4 Partial layout

The partial layout constraints can be divided into two cate-
gories: one consists of elements with complete information,
and the other contains elements with incomplete information.
The reason to integrate elements of incomplete information
is to enable the flexibility and diversity of partial layout con-
straints. For example, users may provide the elements with
complete information or position only, or the mix of elements
with complete information and elements of position informa-
tion, etc. In this section, we introduce the partial-constraint
loss Lp and a random mask PL,,, operation to obtain training
examples of elements with incomplete information.

The Lp is used to train the network to produce layouts
consistent with the input partial layout constraints. It is for-
mulated as:

Lp =|Pred- PLpy — PL | (4)

where Pred denotes the output of the layout generation
model, and PLy,, is the binary matrix derived from the input
partial layout PL. When a value in PL is nonzero, the corre-
sponding entry in PLy,, is set to 1; otherwise, it is set to 0.
The L1 distance is employed to calculate the value of Lp. The
element correspondence between pred and PL is defined by
the query index. Specifically, since we add the feature vector
of the first element in a partial layout to the first query, that
element should then correspond to the element produced by
the first query. The rest element correspondences are done in
the same way.

To augment the training with incomplete element infor-
mation, we generate a random mask PL,,, with the same size
as the partial layout, consisting of 0 and 1. The percentage of
value 0 amounts to 25%. PL,,, randomly masked the infor-
mation of the element class and coordinates in the partial
layout. Similar to Eq. (5), we can calculate the loss of partial
layout constraints with the random mask as follows:

Lpr,, =|Pred- PLyy - PLyy — PL - PLyy, | 5)

The proposed partial-constraint loss and random mask are
simple and can be easily applied to other models. In the exper-
imental section, we will demonstrate their effectiveness by
incorporating them into CGL-GAN and PDA-GAN.

4 Experiments

This section primarily compares our model with SOTA layout
generation methods and presents its ablation studies. Given
space limitations, more experimental comparisons, including
a user study and analyses of computational complexity for
different models, can be found in the supplementary material.

4.1 Implementation details

We implement our model in PyTorch 1.7.1 and utilize the
Adam optimizer [58] for training. Initial learning rates are
set to 107> for CNN, and 10~ for the transformer and fully
connected layers. We take CGL-Dataset as both training and
test datasets. To ensure fair comparisons, following CGL-
GAN and PDA-GAN, we resize the input image to 240 x
350. Our model is trained for 300 epochs with a batch size
of 128. Learning rates are reduced by a factor of 10 after
200 epochs. The total training time is approximately 37.8 h,
utilizing 16 NVIDIA V100 GPUs.

During training, we combine four loss functions: L., L,
L% g and Lpp, . to guide the model optimization. Ry is
the reconstruction loss that penalizes the deviation between
the ground truth and the generated layout. We calculate L.
following [54]. The overall training loss for the model can
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Table 3 Quantitative evaluation for content-aware methods

Model Attribute Rige 1 Reom | Rspm 4 Raup | Roved Runa Rui | Roce 1
ContentGAN [50] None X 45.59 17.08 1.143 0.0397 0.8626 0.0071 934
CGL-GAN [2] None X 35.77 15.47 0.805 0.0233 0.9359 0.0098 99.6
PDA-GAN [25] None X 33.55 12.77 0.688 0.0290 0.9481 0.0105 99.7
TUC-Layout (Ours) Text 0.973 34.23 10.43 0.664 0.0129 - 0.0084 97.2
TUC-Layout (Ours) Underlay 0.980 32.69 16.64 0.816 0.0172 0.9312 0.0030 99.8
TUC-Layout (Ours) Logo 1.000 35.93 16.27 0.936 0.0255 0.9226 0.0144 100.0
TUC-Layout (Ours) Embellishment 0.996 33.79 15.66 0.899 0.0291 0.9163 0.0081 100.0
IUC-Layout (Ours) Unspecified - 33.06 15.93 0.826 0.0174 0.9221 0.0055 99.9

Bold numbers denote the best result. |, (or 1) means the smaller (or bigger) value, the better. None means the model lacks attribute control ability.
Text as a sample refers to the attribute “layout with texts but without any other class elements.” Unspecified means unspecified layout attributes. x
represents that the model cannot complete the corresponding task, while — indicates that the model does not need to be tested for the metric

Ours-Text

i
)
|

]
al}
m
:

Ours-Unde

ot
g3

Ours-Logo

Ha
1]

[

Ours-Embe

i
2
:

l'!

Ours-Unsp

i

g2
m
!

Fig.3 Qualitative evaluation for image-aware models. The layouts in each row are conditioned on the same product image, while the ones in a
column are generated by the same model. Ours-Unsp represents unspecified attributes in our model
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Table 4 Quantitative evaluation for image-agnostic methods

Model Attribute Rige 1 Reom l Ropm »L Roup »L Rove J/ Runa Ry »L
LayoutTransformer[22] None X 40.92 21.08 1.310 0.0156 0.9516 0.0049
LayoutVTN [21] None X 41.77 2221 1.323 0.0130 0.9698 0.0047
TUC-Layout (Ours) Text 0.973 34.23 10.43 0.664 0.0129 - 0.0084
TUC-Layout (Ours) Underlay 0.980 32.69 16.64 0.816 0.0172 0.9312 0.0030
TUC-Layout (Ours) Logo 1.000 35.93 16.27 0.936 0.0255 0.9226 0.0144
TUC-Layout (Ours) Embellishment 0.996 33.79 15.66 0.899 0.0291 0.9163 0.0081
IUC-Layout (Ours) Unspecified — 33.06 15.93 0.826 0.0174 0.9221 0.0055

Bold numbers denote the best result

Image

Atten-Map

Ours-Text

Ours-Unde Ours-Logo Ours-Embe Ours-Unsp

Fig.4 Qualitative evaluation for image-agnostic models. Layouts in each row are conditioned on the same image with product attention map
Atten-Map [59, 60]. LT and VTN represent LayoutTransformer and LayoutVTN, respectively

be summed as follows:
L=Lrec+ﬁ'LAc+y'Ltld'i'r/'LPer (6)
where B, y, and n are three weight coefficients. By obser-
vation, we found that L ; is approximately ten times larger
than Ly, thus we set y to 0.1, both 8 and 5 to 1.0.

4.2 Metrics

For quantitative evaluations, we follow [2, 25] to adopt

composition-relevant and graphic metrics to evaluate the
performance of our model. Composition-relevant metrics

include measuring text background complexity R, occlu-
sion subject degree Ry, and occlusion product degree Ryyp.
Graphic metrics consist.

of layout overlap R,,., underlay overlap R,,s, layout
alignment Ry, and the ratio of nonempty layouts R,... In
addition, we introduce two metrics, Rj,c and Ry, to evaluate
the model’s performance on layout attribute and partial layout
constraints, respectively. Ry, indicates the ratio of generated
layouts that comply with the given attribute constraints. R
is used to quantify the average difference between given par-
tial layout constraints and generated layouts. Combining the
above metrics can reflect the model’s performances regarding
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graphic quality, product content relevance, layout attribute
constraint, and partial layout consistency.

4.3 Layout attribute constraints
4.3.1 Comparison with image-aware methods

We first compare our method with image-aware methods:
ContentGAN [50], CGL-GAN [2], and PDA-GAN [25].
Note that when the attribute is “layout with text but with-
out any other class elements,” IUC-Layout network does
not generate underlays, rendering Ry, irrelevant. Quan-
titative evaluations presented in Table 3 demonstrate that
IUC-Layout network achieves the best performance in all
other metrics except for R,,4. A key strength of [TUC-Layout
network lies in its ability to generate image-aware layouts
adhering to various attribute constraints.

Correspondingly, qualitative comparisons are presented in
Fig. 3. Note that embellishments can overlap with any ele-
ments as their purpose is to enhance the layouts’ aesthetics.
Underlays are commonly used alongside texts to empha-
size them. Columns 5 to 8 of Fig. 3 demonstrate that our
model effectively aligns with and disentangles distinct lay-
out attributes. For instance, in the 7th column, all generated
layouts by IUC-Layout network include the logo (consistent),
while excluding the embellishment (disentangled).

Interestingly, as shown in the 2nd, 3rd, and 4th columns in
Fig. 3, previous works tend to create layouts with few or even
no embellishment due to the low frequency (3.23%) of the
embellishments in the CGL-Dataset. In contrast, our model
consistently generates embellishments when the designated
attribute is “layout with embellishment,” as demonstrated in
the 8th column. Moreover, the 4th and 5th rows in Fig. 3
highlight our model’s superiority over CGL-GAN and PDA-
GAN in terms of layout overlap and alignment.

4.3.2 Comparison with image-agnostic methods

We also compare IUC-Layout network with image-agnostic
methods, including LayoutTransformer [22] and Lay-
outVTN [21]. Quantitative results in Table 4 demonstrate that
our model outperforms LayoutTransformer and LayoutVTN
in composition-relevant metrics (Rom, Rshm, and Rg,p) across
all attribute conditions. As shown in Fig. 4, layouts generated
by our model are more effective in avoiding high-product-
attention regions and human faces, enabling a comprehensive
and visually pleasing presentation of product information.

4.3.3 Ablation studies for attribute losses

To validate the effectiveness of designed attribute losses,
we conducted paired ablation studies for each attribute con-
straint. As shown in Table 5, after incorporating attribute

Table 5 Ablation studies on

attribute losses. v/ ( x) denotes Attribute La Riae 1 Reom 1 Rstm Roup Rovel Rupa 1 Rai |
our model trained with (without)
attribute losses L4. Each pair of Text X 0.981 35.08 11.68 0.724 0.0162 - 0.0122
rows presents an experimental Text v/ 0973  34.23 10.43 0.664 0.0129 — 0.0084
comparison under the same
attribute constraint. Text as a Underlay X 0.958 34.31 17.15 0.916 0.0138 0.8969 0.0048
sample indicates “layout with Underlay v 0.980 32.69 16.64 0.816 0.0172 0.9312 0.0030
ex b“tt Wwithoutany other class 1 0 x 0998 3668 1709 0975 00529 09038  0.0157
elements
Logo v 1.000 35.93 16.27 0.936 0.0255 0.9226 0.0144
Embellishment X 0.989 35.25 15.01 0.916 0.0261 0.9035 0.0079
Embellishment v 0.996 33.79 15.66 0.899 0.0291 0.9163 0.0081
Unspecified X — 35.01 15.19 0.883 0.0321 0.8914 0.0092
Unspecified v — 33.06 15.93 0.826 0.0174 0.9221 0.0055
The bold values indicate the best performance under the same constraints
Table 6 Quantitative evaluation
on Lp and random mask PL,,,. Model Lp PLpy Rpie 4 IcEl
IcEI means whether the method
can handle partial layout CGL-GAN [2] 0.2895 X
constraints with in complete PDA-GAN [25] 0.2693 %
element information
CGL-GAN [2] v 0.0004 X
PDA-GAN [25] v 0.0004 X
CGL-GAN [2] v v 0.0006 v
PDA-GAN [25] v v 0.0008 v
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Partial Layout CGL-GAN PDA-GAN CGL-GAN’ PDA-GAN’

iy

Fig.5 Effects of Lp. The yellow dashed line is used to measure the alignment between the generated layouts and the given partial layout. CGL-GAN’

and PDA-GAN’ mean CGL-GAN and PDA-GAN with Lp, respectively

losses, the model exhibited a clear advantage in both
composition-relevant and graphic metrics.

Additionally, we explored multiple ablation experiments
on the attribute constraint module. One approach involved
utilizing a linear layer to process a single value and con-
nect it with feature maps, while another method replaced the

Gaussian noise with the fixed mean. Unfortunately, neither
of these methods yielded the anticipated results. Due to space
constraints, we provide more comparative sample presenta-
tions in the supplementary material.
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Partial Layout

CGL-GAN™ PDA-GAN™’

Fig. 6 Effects of Lpy,, . The yellow boxes in the first two rows indicate the element with box coordinates but without class information. CGL-GAN"

and PDA-GAN” mean CGL-GAN and PDA-GAN with L p;,

rm?

4.4 Partial layout constraints
4.4.1 Effectsof Lp
As shown in the first four rows of Table 6, introducing Lp to

CGL-GAN (PDA-GAN) reduces the dissimilarity between
generated layouts and provided information from 0.2895

@ Springer

respectively

(0.2693) to 0.0004 (0.0004). Layouts generated by CGL-
GAN and PDA-GAN in the 1st and 3rd rows of Fig. 5 roughly
match the given element’s information but with distinct posi-
tional deviations. In contrast, models with Lp produce layouts
that closely adhere to provided constraints. In the 2nd row,
models without Lp generate layouts that even missing some
elements from the partial layout. Notably, from the 4th and
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Table 7 Cost comparison Table 8 User study

Model Parameters FLOPs Model P Py 1 Pyt Pyt
CGL-GAN [2] 5.745 x 107 2.274 x 10 CGL-GAN [2] 26.96 20.83 26.39 22.74
PDA-GAN [25] 3.806 x 107 1.929 x 10! PDA-GAN [25] 26.55 23.13 26.03 21.07
IUC-Layout (Ours) 3.773 x 107 1.528 x 1011 IUC-Layout (Ours) 46.49 56.04 47.58 56.19

Bold numbers denote the best result

5th columns, models with Lp generate layouts that not only
maintain high consistency with the given partial layout but
also precisely align newly generated element boxes with the
provided element positions, effectively enhancing the layout
aesthetics. Furthermore, in the 3rd and 4th rows, when the
partial layout includes underlay (or text) element, the model
can correspondingly generate text (or underlay), resulting in
a harmonized layout.

4.4.2 Effects of PLym

As shown in Table 6, previous models without PL,,, cannot
handle partial layout constraints with incomplete element
information. The introduction of PL,,, slightly reduces per-
formance compared to using Lp only, possibly due to the
increased complexity of the task by PL,,,. In Fig. 6, the first
partial layout includes a logo element and coordinates of
another element without class information. The second sam-
ple provides the positions of two boxes without classes. The
first two samples in Fig. 6 demonstrate that layouts generated
by models with L p;,,,, are consistent with complete elements
and reasonably supplement incomplete elements. The last
two rows show that models with L py, . also perform well in
partial layout constraints with complete element information.

4.5 Computational complexity and user study
4.5.1 Computational complexity

As shown in Table 7, compared to other image-aware lay-
out generation models, our model has the lowest number
of parameters (3.773 x 107) and computational complexity
(1.528 x 10'). In testing, it only needs 4.1 ms to yield a lay-
out on one NVIDIA V100 GPU. This signifies the suitability
of our model for practical implementation.

4.5.2 User study

In addition to the general quantitative metrics, we also con-
ducted a user study, as shown in Table 8, to accurately
evaluate the model’s performance. We randomly selected 60
test samples (20 with no user constraints, 20 with attribute
constraints, and 20 with partial layout constraints). Each

*denotes the professional group
Bold numbers denote the best result

sample includes one product image and three correspond-
ing predicted layouts (by CGL-GAN, PDA-GAN, and our
model). We split participants into two groups (5 professional
designers and 24 novice designers) and asked them to select
eligible and best layouts from the three predicted layouts. The
eligible-selected (best-selected) layout percentage P, (Pp),
which is the ratio of this model’s vote count to the total vote
count of all models, are shown in Table 8, revealing that our
model’s performance significantly outperformed other meth-
ods.

In addition to the aforementioned evaluations, further
experimental details can be found in the supplementary.

5 Conclusions

Our proposed IUC-Layout network is designed for gen-
erating image-aware layouts with diverse user constraints.
To generate layouts with specified attributes, we propose
attribute-consistent and attribute-disentangled losses. We
alsointroduce a random mask and partial layout loss to satisfy
partial layout constraints, which can be easily applied to other
methods. Quantitative and qualitative evaluations demon-
strate that [UC-Layout network can generate high-quality
image-aware layouts that adhere to various user constraints.
In the future, we will further explore image-aware layout
generation with intuitive user constraints, including but not
limited to sequence constraints.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-024-03657-z.
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