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 A B S T R A C T

3D human body parametric models are high-level semantic information that can provide effective prior 
knowledge for 3D human body reconstruction. The existing parametric models all use manual rigid part 
segmentation, which is difficult to ensure rationality. Meanwhile, without considering the local similarity of 
parameters, it is difficult to ensure the generation of a smooth model. We propose parametric 3D human 
modeling with biharmonic SMPL to address the above issues. Firstly, based on the SMPL model, biharmonic 
constraints are introduced into the vertex skinning deformation and non-rigid deformation processes to ensure 
that the parameters satisfy local similarity. Then rigid parts are segmented automatically based on the 
optimized skinning weights. Finally, in order to increase the solution space and obtain more reasonable model 
parameters, we propose a coregistration framework from the original point cloud to accomplish parametric 
model training and mesh registration. During the coregistration process, biharmonic constraints are introduced, 
and the process is transformed into several optimization problems. Experiments conducted on the large dataset 
consisting of SCAPE, CAESAR and FAUST demonstrate the superiority of our model. Compared with manual 
segmentation methods, the skinning weight distribution and rigid part segmentation of our model are more 
reasonable. Compared with the SMPL model, the area with fitting errors exceeding 5 mm in our model 
decreases by 17.6% after skinning weight optimization. And the area with smoothing errors exceeding 5 mm 
decreases by 83.2% after optimization of non-rigid deformation parameters.
1. Introduction

3D human body parametric models [1] represent the deformation 
of the human body shape as a subspace spanned by attributes such 
as body shape and pose, offering a simpler and more efficient mod-
eling approach. They are widely used in areas such as virtual fitting, 
virtual training, and film production. The pioneering work, SCAPE 
(Shape Completion and Animation of People) [2], applies human body 
deformation to triangular faces. Each face undergoes non-rigid defor-
mation, shape deformation, and rigid deformation successively, ulti-
mately obtaining consistent vertex positions by solving the least squares 
equation. Subsequent work focus on optimizing the performance of 
parametric models, such as BlendSCAPE [3], SMPL (Skinned Multi-
Person Linear Model) [4], SymmetricSCAPE [5], and using parametric 
models as high-level prior knowledge for reconstruction and recogni-
tion problems, such as dynamic reconstruction [6,7] and image-based 
reconstruction [8,9].

The most commonly used parametric model is SMPL whose work-
flow is similar to the Linear Blending Skinning(LBS). In the SMPL 
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model, the human body is divided into several rigid bones, and the 
displacement of each vertex includes the local offset caused by the 
relative transformation of adjacent rigid bones and the skinning de-
formation caused by the absolute transformation of rigid bones. The 
pros and cons of SMPL depend on the rigid part segmentation of human 
bones. Reasonable segmentation helps to generate more realistic results 
in joint areas. However, the current human body parametric models use 
manual segmentation, which cannot guarantee optimality. The pros and 
cons of SMPL also depend on the choice of skinning weights. Bounded 
biharmonic weights minimize the Laplacian energy of the weight dis-
tribution under bounded constraints to generate smooth and intuitive 
deformations with handles or bones. Jacobson et al. [10] firstly pro-
posed bounded biharmonic skinning deformation weights, which they 
used for real-time deformation, achieving smooth transformations of 
the model. The general principle of 3D human parametric models is 
to categorize the factors that induce human body shape deformation, 
such as SCAPE [2] and BlendSCAPE [3], which divide deformation 
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into rigid and non-rigid deformation induced by pose and non-rigid 
deformation induced by shape. Deformations are obtained through the 
linear blending of pose and shape variables. The blending weights 
are trained in a data-driven manner, and their distribution affects 
the quality of model deformation. To achieve smooth deformation, it 
is necessary to ensure that neighboring areas have similar weights, 
meaning the weights conform to biharmonic constraints. However, in 
the early definition and training process of parametric models, this 
constraint was not considered, making it difficult to ensure the smooth 
deformation of the parametric models. Meanwhile, the commonly used 
vertex offset model SMPL is based on the registered mesh model 
obtained by the SCAPE or BlendSCAPE method during training, which 
results in the mesh being fixed and unable to adaptively adjust during 
the model training process, actually limiting the solution space of the 
model parameters.

To address the above issues, we incorporate biharmonic constraints 
into the 3D human body parametric models and propose parametric 
modeling with biharmonic SMPL. The biharmonic constraint is appli-
cable to all 3D human body parametric models. Based on the SMPL [4] 
model, we consider this constraint in the vertex skinning deformation 
and non-rigid deformation processes induced by pose. Therefore, local 
similarity of the parameters can be ensured. We also segment the 
human body automatically based on optimized skinning weights to get 
more reasonable rigid parts. Meanwhile, in order to increase the solu-
tion space and obtain more reasonable model parameters, we propose a 
coregistration framework from the original point cloud to accomplish 
parametric model training and mesh registration. During the coregis-
tration process, biharmonic constraints are introduced, and the training 
process is transformed into solving problems of several minimum en-
ergy functions. Experiments on the large dataset consisting of SCAPE, 
CAESAR and FAUST show that compared to manual segmentation 
methods, the skinning weight distribution and rigid part segmentation 
in this paper are more reasonable. Compared with the SMPL model, our 
model improves the fitting and smoothness characteristics significantly 
after parameter optimization.

The main contributions of this paper include:
1. We propose parametric 3D human body modeling with bihar-

monic SMPL, which achieves smooth deformation of the human body 
mesh;

2. We propose an automatic segmentation method for human rigid 
parts, achieving more reasonable segmentation;

3. We propose a new coregistration framework for our biharmonic 
SMPL parametric model, which accomplishes parametric model train-
ing and mesh registration simultaneously.

2. Related work

This section provides a brief overview of works in the domain of 
3D human body parametric models, applications of these models, and 
works related to biharmonic constraints.

2.1. 3D human parametric models

The groundbreaking SCAPE [2] mathematical model has limited 
representational capabilities and slow solving speeds, requiring pre-
established landmarks to process individual instances. These limitations 
were gradually overcome in subsequent works. For instance, statisti-
cal SCAPE [11] utilizes the invariance mechanism of local rotational 
transformations to jointly encode 3D human body shape and pose 
deformations, speeding up the solving process. More importantly, it 
proves that the reconstruction of 3D human parametric models could 
be achieved with a limited number of landmarks. The BlendSCAPE [3] 
model simplifies the rigid pose deformations of the 3D human body into 
linear blend skinning deformations, reducing distortion at joints and 
combining the establishment of a 3D human database with the training 
2 
of the mathematical model into one process. The SCAPE model sepa-
rately models pose and shape deformations, assuming the same pose 
deformations for different individuals in the same pose. However, hu-
man pose deformations vary from person to person. Chen et al. [12] ad-
dressed this problem by jointly modeling pose and shape deformations 
using tensor representation, enhancing the model’s representational 
power, especially in joint deformations. Realtime SCAPE [13] achieves 
real-time reproduction of human motion through pre-computation of 
skinning weights. The symmetricSCAPE [5] model extracts the in-
herent symmetry of body shape and pose from human spatial data, 
significantly enhancing the descriptive power of the parametric mod-
els. Bogo et al. [14] released the textured European FAUST human 
body database. Based on FAUST, Tsoli et al. [15] proposed an im-
proved SCAPE model that accounted for detailed variations induced 
by breathing and other factors. The Delta model [6] achieves dynamic 
reconstruction under monocular depth cameras, preserving geometric 
details and texture features. Bogo et al. [16] extends the popular FAUST 
dataset to dynamic 4D data and releases Dynamic FAUST dataset. 
The SMPL mathematical model [4] adopts a vertex-based linear blend 
skinning mechanism, linearly expressing 3D human body shape and 
pose deformations, and ensuring compatibility with industrial modeling 
software like Maya. Li et al. [17] parameterized facial deformations, 
distinguishing between deformations induced by facial shape and ex-
pressions, thus expanding the scope of human parametric models. 
Romero et al. [18] built upon the human limb foundation to parameter-
ize hand gesture deformations, further enhancing the expressiveness of 
human parametric models. Joo et al. [19] proposed a unified paramet-
ric model representing human limbs, gestures, and facial expressions. 
Pavlakos et al. [8] introduced the more powerful unified parametric 
model SMPL-X, which significantly improved visual presentation re-
sults. The STAR model [20] extends the body space of SMPL with 
more data and associates non-rigid vertex displacements caused by pose 
with body mass index (BMI) by concatenating pose and body variable 
parameters, while introducing sparsity to improve generalization. Os-
man et al. train an expressive human body model called SUPR [21], 
where each joint strictly influences a sparse set of model vertices. Keller 
et al. develop SKEL [22], which re-rigs the SMPL body model with 
a biomechanics skeleton and has more accurate joint locations than 
SMPL.

BlendSCAPE [3] optimizes both the data-to-model correspondences 
and the human model parameters (pose and shape), but needs a reliable 
initial solution. Bhatnagar et al. [23] proposed LoopReg: an end-to-
end learning framework to register a corpus of scans to a common 
3D human model. LoopReg includes a backward map and a backward 
map. The former predicts the correspondence from every scan point 
to the surface of the human model while the latter transforms the 
corresponding points back to the scan based on the model parameters.

Neural network approaches aim to enhance the expressive power 
by replacing or augmenting parts of the original model with neural 
networks. NASA [24] represents the 3D human model as a combination 
of independent parts, each represented by an occupancy network. Rigid 
transformations of these parts, based on input skeletal transformations, 
resulted in deformed shapes. While this formulation preserves the 
global structure post-joint connection, it disrupts the continuity of sur-
face deformations, leading to artifacts at the intersections of body parts. 
Moreover, NASA requires real surface skinning weights to learn correct 
part allocations. SNARF [25] learns forward skinning weights without 
such supervision and captured pose-related deformations, addressing 
the aforementioned issues. Learned implicit function cannot retain the 
detail in the input data. To solve this problem, Chibane et al. [26] pro-
posed Implicit Feature Networks (IF-Nets). IF-Nets extracts a learnable 
3-dimensional multi-scale tensor of deep feature and classifies deep 
features extracted from the tensor at a continuous query point, thus 
forces the model to make decisions based on global and local shape 
structure. The fundamental principle of neural network methods is sim-
ilar to vertex displacement, hence they also do not resolve the smooth 
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Fig. 1.  Reconstruction results of different parametric models: (a) Original BlendSCAPE 
model [3]; (b) BlendSCAPE [3]; (c) SMPL [4].

deformation problem. X-Avatar [27] further expands upon these by 
incorporating innovative sampling techniques and part-aware skinning 
modules within the SMPL-X framework for more detailed animations 
and textures. Despite these strides, challenges remain, particularly in 
ensuring smooth deformations and addressing deformation similarity 
discrepancies, as depicted in Fig.  1.

2.2. Applications of 3D human parametric models

3D human body parametric models have driven innovations across 
several applications [28]. Guan et al. [9] utilized the SCAPE human 
body parametric model, employing constraints from 2D image contours 
and human parameters such as height and weight, to instantiate and 
solve for the corresponding 3D human mesh within a 2D image. Weiss 
et al. [29] enhanced the accuracy of the SCAPE model’s solutions 
by using multiple depth images captured by a single camera as con-
straints, reducing the ambiguity of 2D image-constrained solutions. 
Zheng et al. [30] deployed four cameras around the user to simul-
taneously capture their movements, decreasing the incompleteness of 
the point cloud established from depth images and improving the 
quality of the reconstructed 3D mesh. Leveraging the human body 
parametric models, Bălan et al. [31] attempted to reconstruct the naked 
model of a body under normal clothing conditions. The algorithm took 
photos of the same person in multiple poses as input and output the 
naked model of the body. Zhang et al. [32] reconstructed the naked 
model of a body from a sequence of 3D scans taken under normal 
clothing conditions, with experiments showing high accuracy of the 
reconstructed naked models. Other researchers [7,13,33,34] attempted 
to simultaneously reconstruct the shape (both shape and pose) from 
dynamic sequences captured by a single depth camera. In [35], the 
authors employ the Pseudo-Linear Inverse Kinematic Solver (PLIKS) 
for 3D human body reconstruction from 2D images, leveraging a lin-
earized SMPL model to enable precise analytical reconstruction and the 
flexible integration of camera calibration data. 3DPMesh [36] presents 
a training-free methodology for 3D human mesh reconstruction from 
2D images, which amalgamates 3D Pose estimation, enhancement, and 
Mesh articulation, thereby economizing computational resources and 
abbreviating inference time.

2.3. Biharmonic constraints

Jacobson et al. [10] revolutionized linear blend skinning (LBS) 
with the introduction of bounded biharmonic weights, a method that 
automates weight computation for smoother deformations. Building on 
this, Yuan et al. [37] proposed a data-driven approach that incorporates 
biharmonic, rigidity, and regularization constraints into a coherent 
least squares problem. Their findings underscore the potential of these 
constraints to significantly enhance deformation realism, especially 
in localized model regions, paving the way for more natural and 
believable animations.
3 
3. Biharmonic 3D human parametric model

Analytical forms of 3D body parametric models can be classified 
into two main types: triangular deformation and vertex displacement. 
Vertex displacement models utilize a linear blend skinning deforma-
tion mechanism to describe body shape and pose deformations quasi-
linearly. It enhances compatibility with industrial modeling software 
such as Maya, leading to widespread academic application. This paper 
elaborates on a biharmonic 3D body parametric model using vertex 
displacement as an example.

3D body parametric models represent the human body 𝑇 (𝜃, 𝛽) as 
subspaces influenced by shape variables 𝛽 and pose variables 𝜃. Specif-
ically, for vertex displacement-based models like SMPL and SMPL-X, 
each vertex undergoes shape-guided non-rigid displacement 𝐷𝑉 (𝛽), 
pose-guided non-rigid displacement 𝐵𝑉 (𝜃), and skinning deformation 
𝑊𝑉 (𝜃) sequentially to obtain the final vertex coordinates. To compute 
joint translations in skinning deformations, the position of each joint 
in a standard pose must be calculated. It is correlated with the body 
shape and is represented by a function 𝐽 (𝛽).

The proposed model follows similar principles but incorporates 
biharmonic constraints on deformation parameters during the training 
process. When in a standard pose, a 3D human template 𝑇̄  consists 
of vertices 𝑉 ={𝑣0,… , 𝑣𝑖 ⋯}, edges 𝐸 = {𝑒0,… , 𝑒𝑖,…}, and faces 𝐹 =
{𝑓0,… , 𝑓𝑖,…} (|𝑉 | = 15 132, |𝐸| = 45 390, |𝐹 | = 30 260). The deformed 
3D body can be described by an articulated model with 𝐾(𝐾 = 19) rigid 
parts forming a tree structure. The 0th rigid part is the root node, and 
the rotation of the root node relative to the template 𝑇̄  is represented 
by the Rodrigues rotation vector 𝜃0. Each other rigid part has a unique 
parent node, and its rotation relative to the parent node is represented 
by Rodrigues rotation vector 𝜃𝑖, forming the pose 𝜃 = {𝜃𝑖, 0 ≤ 𝑖 < 𝐾}.

Vertex skinning deformation 𝑊𝑉 (𝜃;𝑉 ) is achieved through
weighted contributions from rigid transformations of all rigid parts. 
Common methods include linear blend skinning (LBS) and dual quater-
nion skinning (DQS). The set of weights contributed by rigid part to 
vertex 𝑣 is denoted as 𝑤𝑣 = {𝑤𝑣,𝑖, 0 ≤ 𝑖 < 𝐾}, while the collection of all 
vertex weights is 𝑉 = {𝑤𝑣, 𝑣 ∈ 𝑉 }.

Since using identical skinning deformation for all human bodies 
can result in substantial local distortions for certain poses, pose-guided 
vertex non-rigid displacements 𝐵𝑉 (𝜃) are introduced to compensate 
local deformations caused by different poses. This is represented by a 
linear regression equation 𝐵𝑉 (𝜃;𝑉 ) for pose variables, where the non-
rigid displacement for vertex 𝑣 is given by 𝐵𝑣(𝜃; 𝑏𝑣). Here, 𝑏𝑣 = {𝑏𝑣,𝑖, 0 <
𝑖 < 𝐾} represents the regression coefficients for the rotation vector on 
vertex displacement and 𝑉 = {𝑏𝑣, 𝑣 ∈ 𝑉 } embodies the set of all such 
coefficients. The parameters for pose deformation need pre-training and 
include both 𝑉  and 𝑉 .

Shape-guided non-rigid displacement 𝐷𝑉 (𝛽; 𝑑𝑣) is defined as the 
regression of shape variables on vertex displacement. For vertex 𝑣, 
the displacement is represented by 𝐷𝑣(𝛽; 𝑑𝑣), where 𝑑𝑣 = {𝑑𝑣,𝑖, 0 <
𝑖 < |𝛽|} denotes the regression coefficients for shape variables and 
𝑉 = {𝑑𝑣, 𝑣 ∈ 𝑉 } includes the set of all such coefficients.

The analytical expression for vertex displacement-based human 
parametric models can be described as: 𝑊𝑉 (𝑇̄ +𝐷𝑉 (𝛽;𝑉 )+𝐵𝑉 (𝜃;𝑉 ),
𝐽 (𝛽; ), 𝜃;𝑉 ). The complete model parameters to be trained are 
{𝑉 ,𝑉 ,𝑉 , }. During pose deformation, adjacent vertices should 
exhibit similar deformations. To achieve this, biharmonic constraints 
are introduced into the training of parameters 𝑉  and 𝑉 .

3.1. Biharmonic constraints on vertex skinning deformation parameters

In previous work on parametric modeling, rigid body parts were 
manually segmented, and skinning weights for vertices were specified 
manually rather than learned from data. It has two limitations. Firstly, 
unreasonable segmentation of rigid parts makes it difficult to effectively 
represent the rigid segmentation of the human body. Secondly, the 
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significant difference in skinning weights between neighboring vertices 
leads to obvious local deformation distortion during pose deformation.

To address above issues, this paper employs data-driven training 
to derive biharmonic skinning weights 𝑉  and automatically seg-
ment rigid parts based on these weights. Skinning deformation ex-
presses vertex transformations as a weighted sum of rigid deformations, 
formulated to satisfy the following equations: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝑣 =
∑

𝑖∈𝑁(𝐼(𝑣))
𝑤𝑣,𝑖(𝑅𝑖𝑝̃𝑣 + 𝑡𝑖)

𝑤𝑣,𝑖 ≥ 0
∑

𝑖∈𝑁(𝐼(𝑣))
𝑤𝑣,𝑖 = 1

(1)

where 𝑝𝑣 represents the transformed vertex position, 𝑤𝑣,𝑖 denotes the 
skinning weight of vertex 𝑣 with respect to the 𝑖th rigid part. Let 𝐼(𝑣)
represent the rigid part to which a vertex 𝑣 belongs. 𝑁(𝐼(𝑣)) denotes 
the set of neighboring parts (including 𝐼(𝑣) itself). The rotation of the 
𝑖th rigid part is denoted as 𝑅𝑖, and the translation is 𝑡𝑖.

We propose to define the weights 𝑤∗,𝑖 as minimizers of a higher-
order shape-aware smoothness functional, namely, the Laplacian en-
ergy, subject to constraints that enforce interpolation of the rigid parts: 

argmin
𝑤∗,𝑖 ,𝑖=0,…,𝐾−1

1
2∫𝛺

‖

‖

𝛥𝑤∗,𝑖
‖

‖

2𝑑𝑉 (2)

where 𝑤∗,𝑖 stands for the weight distribution of 𝑖th rigid part. The above 
Laplacian energy is discretized using the standard linear FEM Laplacian 
𝑀−1𝐿 where 𝑀 is the lumped mass matrix (with Voronoi area 𝑀𝑖 of 
vertex 𝑣𝑖 on each diagonal entry 𝑖) and 𝐿 is the symmetric stiffness 
matrix. After discretizing the continuous integral term, we have 
𝐾−1
∑

𝑖=0

1
2∫𝛺

‖

‖

𝛥𝑤∗,𝑖
‖

‖

2𝑑𝑉 = 1
2

𝐾−1
∑

𝑖=0
𝑤∗,𝑖

𝑇 (𝐿𝑀−1𝐿)𝑤∗,𝑖 (3)

which is equivalent to 

1
2

𝐾−1
∑

𝑖=0
𝑀−1

‖

‖

𝐿𝑤∗,𝑖
‖

‖

2 (4)

For more details of derivation, please refer to Jacobson et al. [10].
Accordingly, the Laplacian energy caused by biharmonic constraint 

on vertex skinning weights is defined as follows: 

1
𝑎𝑣

𝐾−1
∑

𝑖=0

‖

‖

‖

‖

‖

‖

∑

𝑢∈𝑁(𝑣)
𝜑𝑢,𝑣(𝑤𝑣,𝑖 −𝑤𝑢,𝑖)

‖

‖

‖

‖

‖

‖

2

(5)

Here, 𝑁(𝑣) represents the one-ring neighborhood of vertex 𝑣. 𝑎𝑣 is 
the Voronoi area of vertex 𝑣. The Laplacian operator 𝜑𝑢,𝑣 = 𝛿∕‖𝑢 − 𝑣‖
follows the definition method proposed by Taubin [38] and is nor-
malized accordingly. 𝛿 denotes the average edge length in 𝑇̄ , and 𝜑𝑢,𝑣
represents the harmonic weight between neighboring vertices 𝑢 and 𝑣
which are determined by the structure of the mesh and remain fixed 
during training.

By imposing these biharmonic constraints, the model ensures
smooth transitions of skinning weights across neighboring vertices, 
thereby reducing potential deformation artifacts and enhancing the 
realism of the pose deformation.

3.2. Biharmonic constraints on vertex non-rigid deformation parameters

Non-rigid vertex displacements are defined by a linear regression 
on pose variables 𝜃 = {𝜃𝑖, 0 < 𝑖 < 𝐾} as follows: 𝐵𝑣(𝜃; 𝑏𝑣) =

∑𝐾−1
𝑖=1 𝑏𝑣,𝑖𝜃𝑖. 

Here, 𝑏𝑣,𝑖 denotes the linear coefficient matrix (of size 3 × 3) for the 
𝑖th Rodrigues rotation vector 𝜃𝑖 applied to vertex 𝑣. The collection of 
regression coefficients for all vertices is denoted by 𝑉 = {𝑏𝑣, 𝑣 ∈ 𝑉 }.

Methods such as SMPL and SMPL-X impose regularization con-
straints on the parameters to prevent overfitting during training. A 
weaker constraint allows the model to fit the training data more 
closely but may result in less smooth transitions in neighboring regions. 
4 
Conversely, a stronger constraint ensures smoother transitions between 
neighboring regions but reduces the fitting of the model to the training 
data. To address the conflict between model fitting and smoothness, we 
introduce biharmonic constraints and define the Laplacian energy as: 

1
𝑎𝑣

𝐾−1
∑

𝑖=1

‖

‖

‖

‖

‖

‖

∑

𝑢∈𝑁(𝑣)
𝜇𝑢,𝑣(𝑏𝑣,𝑖 − 𝑏𝑢,𝑖)

‖

‖

‖

‖

‖

‖

2

(6)

where 𝜇𝑢,𝑣 denotes the weights between neighboring vertices 𝑢 and 𝑣, 
utilizing Cotangent Laplacian weights. These weights are determined 
by the mesh structure 𝑇̄  and remain fixed during training.

Considering the coupling among non-rigid deformation parameters 
𝑉  of all vertices, the number of unknowns is large and challenging 
to optimize. Therefore, symmetry constraints [5] are applied to reduce 
the number of unknowns by half. Furthermore, to ensure the sparsity of 
𝑏𝑣,𝑖, only the rotation vectors adjacent to vertex 𝑣 are considered. For 
the 𝑖th rigid part, with its parent part denoted as 𝑝(𝑖) and Rodrigues 
rotation vector denoted as 𝜃𝑖(0 < 𝑖 < 𝐾), 𝜃𝑖 contributes to vertex offset 
𝐵𝑣 only when the weight 𝑤𝑣,𝑖 or 𝑤𝑣,𝑝(𝑖) are non-negative.

After the above simplifications, the total number of parameters 
in the optimization process is approximately 120,000, which can be 
solved directly using matrix decomposition methods.

3.3. Deformation constraints on body shape

The parameters to be optimized for shape deformation 𝐷𝑉 (𝛽;𝑉 )
are denoted as 𝑉 . To train 𝑉 , it is necessary to obtain the shape 
of the human body in a standard A-pose, denoted as 𝑇̄ + 𝐷𝑉 (𝛽;𝑉 ), 
and subsequently derive 𝑉  through principal component analysis 
(PCA). Following the approach of SCAPE, different human bodies in 
a standard A-pose can be considered as local non-rigid deformations 𝑆
of a template human body, where each element of 𝑆 is represented by 
a 3 × 3 matrix. For adjacent triangular faces 𝑓 and 𝑔, their non-rigid 
deformations 𝑆𝑓  and 𝑆𝑔 should be similar.

Non-rigid deformation 𝑆 is a crucial component in the parametric 
models of triangular deformation. For a specific human body with 
shape variables 𝛽, the non-rigid deformation of a triangular face 𝑓
is represented as 𝑆𝑓 (𝛽). For the human body in pose 𝜃, the relative 
positions of adjacent vertices 𝑢 and 𝑣 in 𝑓 satisfy the following equation: 

𝑝𝑢 − 𝑝𝑣 = 𝑅𝑓 (𝜃) ⋅ 𝑆𝑓 (𝛽) ⋅𝑄𝑓 (𝜃) ⋅ (𝑝̃𝑢 − 𝑝̃𝑣) (7)

The rigid transformation 𝑅𝑓 (𝜃) of a triangular face 𝑓 is defined as 
the weighted sum of the rotation transformations of neighboring rigid 
parts [3], which is 𝑅𝑓 (𝜃) =

∑𝐾−1
𝑖=0 𝑤𝑓,𝑖𝑅𝑖(𝜃). The skinning weight of the 

𝑖th rigid part for a triangular face 𝑓 is defined as the arithmetic mean 
of the skinning weights of the three vertices of 𝑓 .

Non-rigid transformation 𝑄𝑓 (𝜃; 𝑞𝑓 ) is defined by a linear regression 
on pose variables 𝜃 = {𝜃𝑖, 0 < 𝑖 < 𝐾} as follows: 

𝑄𝑓 (𝜃) = 𝑞𝑓,0 +
𝐾−1
∑

𝑖=1
𝑞𝑓,𝑖𝜃𝑖 (8)

Here, 𝑞𝑓,0 represents the deformation matrix when there is no relative 
deformation among rigid parts, given in the form of a vector derived 
from a 3 × 3 identity matrix. 𝑞𝑓,𝑖 is the linear coefficient matrix (of size 
9 × 3) for the 𝑖th Rodrigues rotation vector 𝜃𝑖 applied to the triangular 
face 𝑓 . The collection of parameters to be trained for all triangular faces 
is denoted as 𝐹 = {𝑞𝑓 , 𝑓 ∈ 𝐹 }.

4. Model training

The original SMPL model was trained using pre-registered mesh 
models. These pre-registered models were obtained using methods like 
SCAPE or BlendSCAPE which limits the flexibility of the SMPL model 
parameters. In this paper, we propose a coregistration framework to 
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Fig. 2. Comparison of training process between SMPL method and our method: (a) 
SMPL training process; (b) Our coregistration framework.

accomplish biharmonic SMPL model training and mesh registration 
from raw point cloud data.

The coregistration process is shown in Fig.  2(b), and the SMPL 
model training process is shown in Fig.  2(a). For comparison, the 
training dataset in this paper is point cloud data, and the training 
results are the model parameters and the registered meshes.

4.1. Data preparation for training

The input training dataset comprises three parts: 1. The public 
SCAPE database, which includes 3D point cloud of Anguelov in 71 
poses. 2. The CAESAR database, which includes point cloud data of 
997 males and 996 females in 3 poses. 3. The FAUST database, which 
includes point cloud data of 5 males and 5 females in 30 poses. The 
training dataset is represented as {𝑃 𝑘}. Each point cloud data contains 
73 markers.

The output is the reconstructed 3D body mesh {𝑇 𝑘}, the 3D body 
mesh in an A-pose {𝑇𝐴}, and the corresponding non-rigid shape defor-
mation {𝑆} and model parameter set 𝛷 = {𝑉 ,𝑉 ,𝑉 ,𝐹 , }. The 
𝑘th point cloud is denoted as 𝑃 𝑘, and the reconstructed 3D mesh is 
denoted as 𝑇 𝑘.

4.2. Training of skinning weight 𝑉  and automatic segmentation of rigid 
parts

In the previous vertex displacement based human body paramet-
ric model, the training of skinning weight 𝑉  does not consider 
spatial continuity, which could not ensure smooth skinning deforma-
tion. Meanwhile, rigid parts are manually segmented, which could not 
guarantee optimality. We introduce biharmonic constraints during the 
training of 𝑉  and automatically segment rigid parts based on the 
optimized 𝑉 .

With known 3D mesh 𝑇 𝑘 and 𝑇𝐴, consider the biharmonic con-
straints, classical LBS (Linear Blend Skinning) deformation constraints, 
5 
and symmetry constraints [5], the formula for training 𝑉  is: 

𝑉
*=argmin

𝑉

𝜆𝑎 ⋅
∑

𝑘

∑

𝑣∈𝑉
𝑎𝑣
‖

‖

‖

‖

‖

‖

∑

𝑖∈𝑁(𝐼(𝑣))
𝑤𝑣,𝑖(𝑅𝑘

𝑖 𝑝
𝐴,ℎ(𝑘)
𝑣 + 𝑡𝑘𝑖 ) − 𝑝𝑘𝑣

‖

‖

‖

‖

‖

‖

2

 +𝜆𝑏 ⋅ ||
|

{𝑇𝐴}||
|

⋅
∑

𝑣∈𝑉

1
𝑎𝑣

𝐾−1
∑

𝑖=0

‖

‖

‖

‖

‖

‖

∑

𝑢∈𝑁(𝑣)
𝜑𝑢,𝑣(𝑤𝑣,𝑖 −𝑤𝑢,𝑖)

‖

‖

‖

‖

‖

‖

2 (9)

s.t. 
⎧

⎪

⎨

⎪

⎩

∑

𝑖∈𝑁(𝐼(𝑣))
𝑤𝑣,𝑖 = 1

𝑤𝑣,𝑖 ≥ 0
𝑤𝑣,𝑖 = 𝑤𝑠(𝑣),𝑠(𝑖)

(10)

Among them, 𝑎𝑣 represents the area of the vertex 𝑣 in 𝑇̄ , ℎ(𝑘) rep-
resents the human body index of the 𝑘th model, and 𝑝𝐴,ℎ(𝑘)𝑣  represents 
the position of the vertices of the 𝑘th mesh model under the A-pose. 𝑝𝑘𝑣
represents the position of vertex 𝑣 in the 𝑘th data 𝑇 𝑘. 𝑠(𝑣) represents 
the symmetric vertex of vertex 𝑣, and 𝑠(𝑖) represents the symmetric part 
of rigid part 𝑖.

The number of training parameters is: 

|𝑉 | ×𝐾 = 15132 × 19 = 287508 (11)

Without considering inequality constraint, this formulation can be 
directly solved. We propose a particular strategy to solve the inequality 
constraint problem. Firstly, solve for skinning weights that satisfy the 
equality constraint. Then check if the skinning weights satisfy the 
inequality constraint. For vertex 𝑣, if it contains skinning weights that 
do not satisfy inequality constraints, selects the smallest 𝑤𝑣,𝑖 and sets 
its value to zero in the subsequent optimization process. Repeat above 
process until skinning weights of all vertices satisfy the inequality 
constraints.

Subsequently, the rigid parts are automatically segmented based on 
the skinning weight. For vertex 𝑣, if the rigid part that contributes the 
most to its skin weight is 𝑗, it is classified as the 𝑗th rigid part.

4.3. Training of the non-rigid deformation parameter 𝑉

With known skinning weights 𝑉  and the 3D mesh model 𝑇 𝑘, 
the reconstructed mesh should satisfy the parametric SMPL model, 
expressed as: 

𝐸1 =
∑

𝑘

∑

𝑣∈𝑉
𝑎𝑣
‖

‖

‖

‖

‖

‖

∑

𝑖∈𝑁(𝐼(𝑣))
𝑤𝑣,𝑖(𝑅𝑘

𝑖 (𝑝
𝐴,ℎ(𝑘)
𝑣 + 𝐵𝑣(𝜃𝑘; 𝑏𝑣)) + 𝑡𝑘𝑖 ) − 𝑝𝑘𝑣

‖

‖

‖

‖

‖

‖

2

(12)

where 𝜃𝑘 represents the pose variables of the 𝑘th point cloud. Bihar-
monic constraints are applied to 𝑉 : 

𝐸2 =
|

|

|

{𝑇𝐴}||
|

⋅
∑

𝑣∈𝑉

1
𝑎𝑣

𝐾−1
∑

𝑖=1

‖

‖

‖

‖

‖

‖

∑

𝑢∈𝑁(𝑣)
𝜇𝑢,𝑣(𝑏𝑣,𝑖 − 𝑏𝑢,𝑖)

‖

‖

‖

‖

‖

‖

2

(13)

and symmetry constraints [5] are also used: 

𝐸3=
∑

𝑣∈𝑉

𝐾−1
∑

𝑖=1

‖

‖

‖

𝑏𝑣,𝑖 − 𝑃3×3 ⊗ 𝑏s(𝑣),s(𝑖)
‖

‖

‖

2
(14)

Among them, 𝑃3×3 =
⎡

⎢

⎢

⎣

−1 1 1
1 −1 −1
1 −1 −1

⎤

⎥

⎥

⎦

. ⊗ represents the multipli-

cation of elements at the corresponding positions of 𝑃3×3 and 𝑏𝑠(𝑣),𝑠(𝑖). 
The final training of 𝑉  is equivalent to solving the minimum energy 
function: 
𝑉

*=argmin
𝑉

𝜆1𝐸1 + 𝜆2𝐸2 + 𝜆3𝐸3 (15)

The parameters of all vertices are coupled and require simultaneous 
solving, with approximately 120,000 unknowns, which can be solved 
globally.
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4.4. Training of the non-rigid deformation parameter 𝐹  for triangular face

The SMPL-alike parametric models use the pipeline of skin defor-
mation. During the training process, the translation {𝑡} of rigid parts 
depends on the mesh model 𝑇𝐴 of a specific human body in the 
standard pose. However, the point cloud data 𝑃𝐴 of the human body in 
the standard pose is often difficult to obtain accurately. Only the point 
cloud data of the specific human body in other poses can be obtained. 
The calculation of 𝑇𝐴 also depends on {𝑡}, and the two are coupled. In 
order to solve this problem, we introduce the BlendSCAPE parametric 
model in the training process. BlendSCAPE parametric models do not 
introduce {𝑡} and the calculation of 𝑇𝐴 can be finished independently. 
So we also need to train the non-rigid deformation parameter 𝐹  of 
BlendSCAPE model.

With known skinning parameters 𝑉 , shape deformation parame-
ters 𝑆, and the mesh model 𝑇 𝑘, the triangular faces in the reconstructed 
mesh should satisfy the parametric BlendSCAPE model, expressed as: 

𝐸4 =
∑

𝑘

∑

𝑓∈𝐹
𝑎𝑓

2
∑

𝑖=0

‖

‖

‖

𝑅𝑓 (𝜃𝑘)𝑆
ℎ(𝑘)
𝑓 (𝛽)𝑄𝑓 (𝜃𝑘; 𝑞𝑓 )𝑒𝑓,𝑖 − 𝑒𝑘𝑓 ,𝑖

‖

‖

‖

2
(16)

Among them, 𝑎𝑓  represents the area of triangular face 𝑓 in 𝑇̄ . 𝜃𝑘
represents the pose variable of the 𝑘th point cloud in the training set. 
𝑒𝑓,𝑖 represents the 𝑖th edge of the 𝑇̄ ’s triangle 𝑓 . 𝑒𝑘𝑓 ,𝑖 represents the 𝑖th 
edge of the triangle 𝑓 of the 𝑘th human body in the training set.

Meanwhile, apply L2 regularization constraint to 𝐹 : 

𝐸5 =
∑

𝑓∈𝐹
𝑎𝑓

𝐾−1
∑

𝑖=1

‖

‖

‖

𝑞𝑓,𝑖
‖

‖

‖

2
(17)

and apply symmetry constraints [5] to 𝐹 : 

𝐸6=
∑

𝑓∈𝐹

𝐾−1
∑

𝑖=1

‖

‖

‖

𝑞𝑓,𝑖 − 𝑃9×3 ⊗ 𝑞s(𝑓 ),s(𝑖)
‖

‖

‖

2
(18)

Among them 𝑃9×3 = [1,−1,−1,−1, 1, 1,−1, 1, 1]T ⋅ [1,−1,−1]. ⊗ rep-
resents the multiplication of elements at the corresponding positions of 
𝑃9×3 and 𝑞𝑠(𝑓 ),𝑠(𝑖). The training of 𝐹  equates to minimizing the energy 
function: 
𝐹

*=argmin
𝐹

𝜆4𝐸4 + 𝜆5𝐸5 + 𝜆6𝐸6 (19)

which can be independently solved for each face.

4.5. Training of body shape deformation 𝑆 and 𝑇𝐴

When the skin deformation parameters 𝑉 , vertex non-rigid defor-
mation parameters 𝑉 , triangular face non-rigid deformation parame-
ters 𝐹 , and 3D mesh models 𝑇 𝑘 are known, the shape deformation 𝑆
must satisfy similarity constraints, expressed as: 

𝐸7 =
∑

𝑘

∑

(𝑓,𝑔)∈𝛩
𝑎𝑓,𝑔

‖

‖

‖

𝑆𝑘
𝑓 − 𝑆𝑘

𝑔
‖

‖

‖

2
(20)

where 𝑎𝑓,𝑔 is the weight of adjacent triangular faces determined by 𝑇̄ : 

𝑎𝑓,𝑔 = (𝑎𝑓 + 𝑎𝑔)∕3 ⋅
(

𝑑2𝛩∕𝑑(𝑓, 𝑔)
2 ) (21)

Among them, 𝑎𝑓  and 𝑎𝑔 denotes the area of triangular face 𝑓
and 𝑔 respectively. 𝛩 represents the set of all adjacent face pairs. 𝑑𝛩
represents the average geodesic distance between adjacent triangular 
faces, and 𝑑 (𝑓, 𝑔) represents the geodesic distance between the center 
points of adjacent triangular face 𝑓 and 𝑔.

The shape deformation 𝑆 and the mesh model 𝑇𝐴 must satisfy the 
following constraint: 

𝐸8 =
∑

𝑘

∑

𝑓∈𝐹
𝑎𝑓

2
∑

𝑖,𝑗=0

‖

‖

‖

𝑆𝑘
𝑓 ⋅ (𝑝̃𝑓,𝑗 − 𝑝̃𝑓,𝑖) − (𝑝𝐴,ℎ(𝑘)𝑓,𝑗 − 𝑝𝐴,ℎ(𝑘)𝑓,𝑖 )‖‖

‖

2
(22)
𝑖≠𝑗

6 
Selecting one vertex 𝑝𝐴arc as an anchor, the training of 𝑆 and 𝑇𝐴 is 
equivalent to solving the following minimal energy function: 

𝑆∗, 𝑇𝐴∗ = argmin
𝑆,𝑇𝐴

𝜆1𝐸1 + 𝜆4𝐸4 + 𝜆7𝐸7 + 𝜆8𝐸8 + 𝜆9
‖

‖

‖

𝑝𝑎𝑟𝑐 − 𝑝𝐴arc
‖

‖

‖

2

(23)

For each individual, the dimension of shape deformation 𝑆 is |𝐹 |×9, 
the dimension of 𝑇𝐴 is |𝑉 |×3, and the total number of unknowns is |𝐹 |×
9+ |𝑉 |×3. Considering coordinate independence, it can be transformed 
into three sub problems, each with an unknown variable size of |𝐹 |×3+
|𝑉 |. Considering the similarity constraint, the above unknown variables 
need to be solved simultaneously, which is time-consuming.

4.6. Parametric model reconstruction

The parametric reconstructed 3D mesh model should fit the corre-
sponding 3D point cloud. Considering that the template 𝑇̄  is adaptively 
subdivided, with finer meshes in areas like the face, hands, and armpits, 
and coarser meshes in the torso and thighs, Poisson disk sampling is 
applied to the template 𝑇̄ . Each sampling point is represented as the 
weighted barycentric coordinates of the three vertices of its associated 
triangular face, forming the set: 

𝐹
(

𝑇̄
)

=

{ 2
∑

𝑗=0
𝑤𝑖,𝑣𝑖𝑗

𝑝̃𝑣𝑖𝑗

}

(24)

where ||
|

𝐹
(

𝑇̄
)

|

|

|

= 50091, 𝑣𝑖𝑗 (0 ≤ 𝑗 ≤ 2) represents the index of the 
𝑗th weighted vertex of the 𝑖th sampling point, 𝑝𝑣𝑖𝑗  represents the 𝑣

𝑖
𝑗 th 

vertex in 𝑇 . A correspondence is established between sampling points 
𝑠 from 𝐹 (

𝑇 𝑘) and 3D points 𝑐 from 𝑃 𝑘 if and only if 𝑠 and 𝑐 are 
mutually nearest points, forming the set 𝛺𝑘 of all correspondences. 
Mathematically, the constraint for the correspondences set is defined 
as: 
𝐸9 =

∑

𝑘

∑

(𝑠,𝑐)∈𝛺𝑘

𝑎̄𝐹 (𝑇̄ ) ‖𝑠 − 𝑐‖
2 (25)

where 𝑎̄𝐹 (𝑇̄ ) =
∑

𝑓∈𝐹 𝑎𝑓∕||𝐹 (𝑇̄ )|
|

 denotes the area of each sampled point 
in 𝐹 (

𝑇̄
)

. The set of markers is 𝑀 , with the constraint defined as: 

𝐸10 =
∑

𝑘

∑

𝑖∈𝑀
𝑎̄𝐹 (𝑇̄ )

‖

‖

‖

𝑝𝑘𝑣(𝑖) − 𝑚𝑘
𝑖
‖

‖

‖

2
(26)

where 𝑣(𝑖) is the vertex index on template for the 𝑖th marker, and 𝑚𝑘
𝑖

is the 𝑖th marker position of the 𝑘th data. Simultaneously, the recon-
structed 3D human mesh model should comply with the parametric 
deformation equation. Consequently, the final reconstruction problem 
is equivalent to solving the following minimal energy function: 

argmin
𝑇 𝑘

𝐸(𝑇 𝑘) = 𝜆1𝐸1+𝜆4𝐸4 + 𝜆9𝐸9 + 𝜆10𝐸10 (27)

We can registrate each point cloud data separately. Taking into 
account coordinate independence, we need to solve three sub optimiza-
tion problems for each point cloud data, and the number of unknowns 
for each sub problem is |𝑉 |.

4.7. Training of body shape deformation parameters 𝑉  and joint defor-
mation parameters 

After obtaining the mesh model 𝑇𝐴 for each individual in the A-
pose, the parameters 𝑉  and the shape variables 𝛽 of each individual 
are determined through principal component analysis on vertex coordi-
nates. Furthermore, for the mesh model of each individual in different 
poses, joint positions are calculated. The joint deformation parameters 
  are then trained using the joint positions and the shape variables 𝛽
of each individual.
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4.8. The implementation of the proposed algorithm

During the entire training process, the steps in Section 4.2 to 
Section 4.6 are interleaved iteratively, completing the optimization of 
each variable until convergence. The steps of the algorithm are listed 
in Algorithm 1 (see [39–41]).

Algorithm 1 Coregistration framework of parametric 3D human 
modeling with biharmonic SMPL
1: Initialization:
1.1 Initialize the vertex skinning weights 𝑉  using the method by 
Baran et al.[39], and divide the template 𝑇̄  into 19 rigid parts based 
on the skinning weights.
1.2 Initialize the matrix 𝑆𝑘

𝑓  as a 3×3 identity matrix, and set 𝑏𝑣,𝑖(0 <
𝑖 < 𝐾) to zero for all elements.
1.3 For 𝐹 , 𝑞𝑓,0 is initialized as a vector form of a third-order 
identity matrix, and 𝑞𝑓,𝑖(0 < 𝑖 < 𝐾) is initialized as zero vector.
1.4 𝑇 𝑘 was registered through 𝑇̄  using Li et al.[40] method. 
Initialize 𝑇𝐴 to 𝑇̄ . 

2: for iteration: 0 to 50 do 
3: Fix other variables and optimize 𝑉 :

3.1 Calculate the rotation transformation {𝑅𝑘
𝑖 , 0 ≤ 𝑖 < 𝐾} relative 

to 𝑇̄  for each rigid part using the method by Horn et al. [41] .
3.2 Replace the rigid parts’ original vertices with Poisson-
sampled points.
3.3 Calculate the translation variables {𝑡𝑘𝑖 , 0 ≤ 𝑖 < 𝐾} of 𝑇 𝑘

relative to 𝑇𝐴,ℎ(𝑘) in the database, and then optimize 𝑉 .
3.4 Update the rigid parts’ segmentation, assigning each vertex 
and face to the rigid part with the largest skinning weight. 

4: Fix the remaining variables, calculate the pose variable {𝜃𝑘}
based on {𝑅𝑘} in Step 2, and optimize 𝑉 . 

5: Optimize 𝐹  while fixing other variables, based on pose 
variables {𝜃𝑘}. 

6: Optimize {𝑆} and {𝑇𝐴} while fixing other variables. 
7: Optimize {𝑇 𝑘} while fixing other variables.
8: end for
9: Optimize 𝑉  using PCA based on the mesh model {𝑇𝐴}. 
10: Calculate joint positions for each individual and optimize  .

Due to the large number of data in the training set, directly applying 
the above steps to all data is time-consuming. Therefore, to reduce 
training time, the training steps are optimized. Initially, sample the 
training set data, selecting 3D point cloud of Anguelov in 71 poses, 
point cloud data of 40 males and 40 females in 3 poses for CAESAR 
database and point cloud data of 2 males and 2 females in 30 poses 
for FAUST database. Then train to obtain pose parameters 𝑉 , 𝑉  and 
𝐹 . Subsequently, fix 𝑉 , 𝑉 , 𝐹  and optimize {𝑇 𝑘}, {𝑇𝐴} and {𝑆}. 
Finally, train the remaining parameter 𝑉  and  .

During training, the number of iterations is set to 50, with weight 
settings as follows:

• The weight 𝜆𝑎 is 0.25
• The weight 𝜆𝑏 is 0.5
• The weight 𝜆1 of 𝐸1 item is 0.25
• The weight 𝜆2 of 𝐸2 item is 1.5
• The weight 𝜆3 of 𝐸3 item is 100
• The weight 𝜆4 of item 𝐸4 is 1.0, which is similar to the meaning 
of 𝜆𝐷 in BlendSCAPE

• The weight 𝜆5 of item 𝐸5 is 2.0𝑒−5, which has a similar meaning 
to 𝜆𝑄 in BlendSCAPE

• The weight 𝜆6 of 𝐸6 item is 100
• The weight 𝜆7 of 𝐸7 item is 1.0𝑒 − 4 ⋅ |

|

{𝑇 𝑘}|
|

• The weight 𝜆8 of 𝐸8 item is 100
• The weight 𝜆  of 𝐸  item is 1
9 9

7 
Fig. 3. Segmentation results for rigid parts: (a) Pose template and skeleton; (b) Initial 
segmentation; (c) Automatic segmentation after training.

• The weight 𝜆10 of 𝐸10 item is 100

After 25 iterations, 𝜆10 is set to zero to eliminate local distortions 
caused by markers.

5. Experimental results and analysis

5.1. Optimization of parameter 𝑉

As shown in Fig.  3, rigid parts automatically segmented through 
optimized skinning weights appear more natural, especially at joints 
such as the neck and armpits.

Fig.  4 shows that the automatic segmentation method proposed 
in this article has good consistency in the optimized segmentation 
results for different initial values. In the experiment, we calculate five 
different skin weights based on five different skeletons, and obtain five 
different initial segmentation results. For vertex 𝑣 on the template, 
the segmentation difference value of 𝑣 is defined as the proportion of 
pairs with different segmentation values to all pairs, belonging to the 
range of 0 to 1. (a) and (b) demonstrates that the automatic segmen-
tation method proposed in this paper can achieve almost consistent 
segmentation results after optimization for the five different initial 
segmentation methods mentioned above. For any two segmentations, 
the segmentation difference ratio is defined as the proportion of vertices 
with different partition values to all vertices, belonging to the range 
of 0 to 1. The segmentation difference ratios between two different 
segmentation tasks before and after optimization are displayed in (c), 
indicating that after optimization, certain different initial values are 
able to obtain consistent segmentation results. The above experimental 
results indicate that the automatic segmentation method proposed in 
this paper avoids the influence of different initial values generated by 
manual segmentation on the final optimization results.

Fig.  5 compares the results with and without biharmonic constraints 
to skinning weights. The former achieves a more uniform distribution of 
skinning weights. Fig.  6 compares the area of regions with fitting errors 
exceeding 9 mm with and without the optimization of skinning weights. 
As seen in Fig.  6, the area with errors exceeding 5 mm decreased by 
17.6% with optimization.

Furthermore, Table  1 compares the area of regions within the 
0–1 cm error range with and without the optimization of skinning 
weights. It is observed that, the area of regions with errors exceeding 
4 mm was consistently larger without optimization. Conversely, the 
area of regions with errors less than 4 mm is consistently smaller with-
out optimization, indicating that the optimization of skinning weights 
significantly reduces larger fitting errors.

5.2. Optimization of non-rigid deformation parameter 𝑉

In this subsection, we compare the reconstruction results of parame-
ter 𝑉  when subjected to regularization constraints [3] and biharmonic 
constraints. When considering only regularization constraints, larger 
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Fig. 4. Consistence of automatic segmentation for different initialization. (a) The 
average segmentation difference between five different initial segmentations; (b) The 
average segmentation difference between above five optimized segmentations; (c) The 
segmentation difference ratio of different segmentations between each other before and 
after optimization.

Fig. 5. Results of skinning weights: (a) Initial distribution of skinning weights; 
(b) Weight distribution without biharmonic constrains; (c) Weight distribution with 
biharmonic constraints.

Fig. 6. Area of regions with fitting errors exceeding 9 mm with and without skinning 
weight optimization.
8 
Table 1
Comparison of area within different error ranges without and with skinning weight 
optimization (m2).
 Unoptimized Optimized Unoptimized-optimized 
 0–1 mm 8.88e−2 9.13e−2 −2.57e−3  
 1–2 mm 5.02e−1 5.15e−1 −1.31e−2  
 2–3 mm 5.24e−1 5.36e−1 −1.19e−2  
 3–4 mm 2.44e−1 2.45e−1 −7.01e−4  
 4–5 mm 1.07e−1 1.03e−1 4.75e−3  
 5–6 mm 5.55e−2 5.00e−2 5.58e−3  
 6–7 mm 3.04e−2 2.58e−2 4.56e−3  
 7–8 mm 1.71e−2 1.35e−2 3.66e−3  
 8–9 mm 9.83e−3 6.96e−3 2.87e−3  
 9–10 mm 1.44e−2 8.74e−3 5.63e−3  

Table 2
Comparison of local smoothness of the registered mesh model in the training dataset 
before and after optimization of 𝑉 , under conditions without and with skinning weight 
𝑉  optimization (m2).
 𝑉 Unoptimized Optimized Unoptimized Optimized 
 𝑉 Unoptimized Unoptimized Optimized Optimized 
 0–1 mm 1.99 1.97 2.02 2.02  
 1–2 mm 4.90e−2 8.16e−2 3.83e−2 4.36e−2  
 2–3 mm 1.60e−2 1.27e−2 7.06e−3 3.31e−3  
 3–4 mm 7.23e−3 3.38e−3 1.61e−3 4.68e−4  
 4–5 mm 3.68e−3 1.25e−3 4.76e−4 7.57e−5  
 5–6 mm 1.88e−3 5.74e−4 1.34e−4 6.68e−6  
 6–7 mm 1.05e−3 3.00e−4 3.76e−5 3.51e−6  
 7–8 mm 6.06e−4 1.54e−4 1.88e−6 0  
 8–9 mm 3.56e−4 7.80e−5 4.58e−7 5.85e−7  
 9–10 mm 4.86e−4 9.60e−5 4.58e−7 0  

constraints result in better smoothness of the registered mesh model 
but also lead to increased fitting errors. Conversely, smaller constraints 
yield smaller fitting errors but at the cost of reduced smoothness. 
As illustrated in Fig.  7, the introduction of biharmonic constraints 
in addition to regularization constraints ensures small fitting errors 
while maintaining the smoothness of the registered mesh model. Fig. 
8 demonstrates that with lower regularization constraint weights and 
the introduction of biharmonic constraints, the fitting errors of the 
registered mesh model are significantly reduced.

With weak regularization constraints, where 𝜆𝑄 = 0.01, the in-
troduction of biharmonic constraints ensures both minimal average 
fitting errors and improved smoothness, as evidenced in Figs.  9 and
10. As indicated in Table  2, a quantitative comparison of the local 
smoothness of the registered mesh models is conducted, both before 
and after optimization of parameter 𝑉 , and under conditions with and 
without optimized skinning weights. The table suggests that there is a 
significant improvement in local smoothness with optimization under 
both scenarios. Local smoothness is defined by the absolute displace-
ment of vertices before and after applying Laplacian smoothing (using 
the Cotangent Laplacian operator in 𝑇̄ ), followed by the computation 
of the average area distribution within the 0–1 cm range. A larger 
area in the high-displacement interval indicates poorer smoothness. 
After optimization, the area with smoothness errors exceeding 5 mm 
decreases by 83.2%.

5.3. Optimization of triangular parametric deformation

In the training of the human body’s shape deformation 𝑆 and 𝑇𝐴, 
we introduce a triangular based parametric model such as BlendSCAPE. 
This effectively reduces the deformation space for the shape deforma-
tion. We compare the body shape reconstruction results of A-pose with 
and without the triangular parametric model. As illustrated in Fig.  11, 
it is clearly observable that the reconstruction results under A-pose are 
more plausible when the triangular parametric model is incorporated.
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Fig. 7. The first row shows the reconstruction results with a regularization weight of 
5.0, from which it is obvious that despite the larger weight setting, local distortions are 
still present. The second row, with a regularization weight of 0.05 and the introduction 
of biharmonic constraints, significantly enhances the local smoothness of the registered 
mesh and improves the fidelity of local deformations.

Fig. 8. Fitting error of the registered mesh model when only setting a larger regu-
larization weight, compared to setting a smaller regularization weight and considering 
biharmonic constraints.

5.4. Comparison of reconstruction results with other parametric models

The comparative analysis of reconstruction results between the 
proposed model and the BlendSCAPE [3] model is illustrated in Fig. 
12. It can be noted that the mesh’s smoothness generated by our model 
is comparable to that of the BlendSCAPE model. Furthermore, Fig.  13 
presents the comparison of reconstruction results between our model 
and the SMPL [4] model . It is discernible that the mesh reconstructed 
by the our model demonstrates superior smoothness. We also compare 
the fitting error of our model with SMPL and STAR models on a 
dataset consisting of SCAPE, CAESAR and FAUST. This dataset contains 
a total of 6350 scanned data. We calculate the average point-to-point 
distance between the generated parameterized mesh and the registrated 
9 
Fig. 9. Comparison of male model reconstruction results using different methods. The 
first row presents the original scan point cloud of a male in three poses. The second 
row shows the registration result without optimization. The third row illustrates the 
registration results after optimizing skinning weights. The fourth row shows the results 
achieved by optimizing both skinning weights and non-rigid deformation parameters.

mesh obtained during coregistration as the fitting error. In Fig.  14, we 
calculate the fitting errors of different shape coefficients on the dataset. 
It is evident that the model proposed in this paper has smaller fitting 
errors, demonstrating stronger representational ability.

We also evaluate our model against human body models SMPL-
X [8] and SUPR-Body [21]. We sample 100 male and 100 female 
subjects from the CAESAR dataset. Each subject contains three poses. 
We register the template to all the scans with SMPL-X, SUPR and our 
model respectively by minimizing the vertex-to-vertex loss between the 
model surface and the corresponding registration. We report the mean 
absolute error (mabs) exclude the face, the feet and the hands for up to 
20 shape components in Fig.  16 and show a qualitative sample of the 
model fits in Fig.  15. Our model shows a lower error than SMPL-X and 
SUPR.

Finaly, we compare our model with SKEL [22] model on the 
DFAUST [16] dataset and their SMPL fits with 10 shape parameters. 
Similar to SKEL, we fit template to each of the SMPL meshes by 
optimizing pose and shape parameters. We compute the mean and the 
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Fig. 10. Comparison of female model reconstruction results using different methods. 
The first row presents the original scan point cloud of a female in three poses. The 
second row shows the registration result without optimization. The third row illustrates 
the registration results after optimizing skinning weights. The fourth row shows 
the results achieved by optimizing both skinning weights and non-rigid deformation 
parameters.

Table 3
Comparison of fitting errors with SKEL [22] on DFAUST dataset [16] (cm).
 Metric Ave-mean Ave-mean Ave-max Ave-max 
 Sex Male Female Male Female  
 SKEL 1.1 2.5 0.9 1.9  
 Our model 0.60 2.61 0.51 2.23  

max absolute error between the vertices of fitted template and the 
target SMPL vertices over all the frames. Then calculate the weighted 
average of all the above values, with the weight being the area of the 
vertices. The quantitative comparison results are shown in Table  3. A 
visualization of these errors on the fitted template is shown in Fig.  17. 
It can be seen that the model proposed in this article is comparable or 
superior to the SKEL model in terms of both average mean(ave-mean) 
and max(ave-max) absolute error metrics.
10 
Fig. 11. Body shape reconstruction results of A-pose with and without introducing 
the triangular parametric model for four different individuals. Each row represents a 
single individual. (a) Approximated A-pose from original scan data; (b) Standard A-pose 
model reconstructed by coregistration with triangular parametric model; (c) Standard 
A-pose model reconstructed by coregistration without triangular parametric model.

5.5. Experimental setup and performance analysis

The experiments were conducted on a Lenovo Kaitian M420 desktop 
with a 12-core CPU, 3.2 GHz. Table  4 shows the average execution 
times for the each training sub-steps of our model, including the 
training of skinning weights  , non-rigid deformation parameters 
𝑉
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Fig. 12. The reconstruction results with (a) BlendSCAPE [3] model and (b) ours. It 
can be noted that the mesh’s smoothness generated by our model is comparable to that 
of the BlendSCAPE model.

Fig. 13. The reconstruction results with (a) SMPL [4] model and (b) ours. It is 
discernible that the mesh reconstructed by our model demonstrates superior smoothness 
in the articular area.
11 
Fig. 14. Comparison of the fitting errors between SMPL [4], STAR [20], and the 
method proposed in this paper on datasets consisting of SCAPE, CAESAR and FAUST.

Table 4
Each sub-step time consuming in training process.
 Sub-step 𝑉 𝐹 𝑉 {𝑆} {𝑇 𝐴} {𝑇 𝑘}  
 Time (s) 23.22 42.14 13.57 129.54 130.74 

for triangles 𝐹 , non-rigid deformation parameters for vertices 𝑉 , 
body shape deformation parameters {𝑆} and shape in A-pose {𝑇𝐴}, 
and the registration of model {𝑇 𝑘}. None of the sub-steps employed 
GPU acceleration. It is observed that the training of the body shape 
deformation parameters and the registration of model {𝑇 𝑘} are the 
most time-consuming steps.

The former is time-consuming because of two reasons. One is that 
for each individual, it is necessary to optimize both the shape defor-
mation 𝑆 and the shape under A-pose 𝑇𝐴 simultaneously, with an 
unknown number of |𝐹 |×3+ |𝑉 |, as detailed at the end of Section 4.5. 
The other is that the training dataset has multiple individuals, and each 
individual needs to be optimized separately. The reason for the latter 
being time-consuming is similar. One reason is that for each point cloud 
data, it is necessary to optimize all vertex positions simultaneously, 
with an unknown number of |𝑉 |, as detailed in Section 4.6. The other 
reason is that each point cloud data in the training dataset needs to 
be optimized separately. Performance of our implementation, and a 
comparison against BlendSCAPE, is shown in Fig.  18.

5.6. More results

Fig.  19 displays the mesh models created with new body shapes 
and poses using our parametric model. It is obvious that the mesh 
models, generated with the optimized skinning weights and non-rigid 
deformation parameters, are more realistic and smooth. Fig.  20 shows 
the generation results of more different individuals in different poses 
using our model.

6. Conclusion and future work

Existing 3D human parametric models possess robust expressive 
capabilities, capable of generating realistic 3D human models with 
simple pose and shape parameters. However, they do not consider 
the local similarity of parameters within the model. This paper ad-
dresses this problem by proposing a biharmonic 3D human parametric 
model. Experimental results indicate that by introducing biharmonic 
constraints to the training process, the area with fitting errors exceeding 
5 mm decreases by 17.6% after skinning weight optimization. And 
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Fig. 15. We evaluate our method against baselines. We sample 100 males and 100 females from the CAESAR dataset to evaluate SMPL-X [8], SUPR [21] and our BiharmonicSMPL 
using 20 shape components. Blue: 0 cm, Red 1 cm.
Fig. 16. Evaluating the generalization of our method against SMPL-X [8] and 
SUPR [21]. We report the mean absolute vertex-to-vertex error (m) as a function of 
the number of the shape coefficients.

Fig. 17. Mean absolute vertex distance between our model and SMPL fit to the males 
and females of the DFAUST [16] dataset. Blue: 0 cm, Red 1 cm.

the area with smoothing errors exceeding 5 mm decreases by 83.2% 
after optimization of non-rigid deformation parameters. Additionally, 
12 
Fig. 18. Performance of SMPL and BlendSCAPE vary with the number of body shape 
coefficients used. Performance shown here is from a Lenovo Kaitian M420 desktop with 
a 12-core CPU, 3.2 GHz.

this paper presents a coregistration framework that transforms the 
process of model training and mesh registration into solving a series 
of optimization problems.

Our method also has some limitations. Firstly, while the biharmonic 
constraints enhance the model’s performance, they also increase the 
training time. This is because the vertex displacement-based human 
parametric model simultaneously considers the triangular-based para-
metric model during the training process, necessitating the solution 
of complex multivariable optimization problems. Future work could 
consider training only the vertex displacement-based human parametric 
model. Secondly, the non-rigid vertex displacement deformations in 
this paper essentially apply the same deformation model to all hu-
man bodies, without accounting for individual differences that lead to 
person-specific non-rigid displacements. In fact, different individuals 
may have different non-rigid displacements even under the same pose. 
To solve this problem, it is necessary to consider establishing separate 
non-rigid displacement models for different individuals. One feasible 
approach is to characterize each individual’s pose guided non-rigid 
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Fig. 19. The first row shows the mesh generated by the SMPL parametric model without any optimization. The second row shows the mesh generated by the parametric model 
with skinning weight optimization. The third row shows the mesh generated by the parametric model with optimization of both skinning weights and non-rigid deformation 
parameters. It is evident that the mesh quality in the third line is the best.
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Fig. 20. More results of different individuals in different poses using our Biharmonic SMPL model.
displacement model as a function that varies with body shape. Another 
potential research direction is to use the proposed model as prior 
knowledge for human reconstruction based on depth or color images, 
aiming to achieve more accurate 3D human models.

CRediT authorship contribution statement

Yin Chen: Project administration, Methodology. Yuping Ye: Writ-
ing – original draft. Weiwei Xu: Writing – review & editing. Qiliang 
Yang: Supervision, Conceptualization. Qizhen Zhou: Visualization.

Declaration of competing interest

We declare that we have no financial and personal relationships 
with other people or organizations that can inappropriately influence 
our work, there is no professional or other interest of any nature or 
14 
kind in any product, service and/or company that could be construed as 
influencing the position presented in, or the review of, the manuscript 
entitled.

Acknowledgments

This work is supported by National Key Research and Development 
Program of China (2023YFC3107100) and Natural Science Foundation 
of Jiangsu Province, China (BK20211226).

Data availability

The authors do not have permission to share data.



Y. Chen et al. Computers & Graphics 129 (2025) 104229 
References

[1] Cheng Z-Q, Chen Y, Martin RR, Wu T, Song Z. Parametric modeling of 3D human 
body shape—A survey. Comput Graph 2018.

[2] Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Davis J. Scape: shape 
completion and animation of people. In: ACM SIGGRAPH 2005 papers. 2005, p. 
408–16.

[3] Hirshberg DA, Loper M, Rachlin E, Black MJ. Coregistration: Simultaneous 
alignment and modeling of articulated 3D shape. In: Computer vision–ECCV 
2012: 12th European conference on computer vision, florence, Italy, October 
7-13, 2012, proceedings, part VI 12. Springer; 2012, p. 242–55.

[4] Loper M, Mahmood N, Romero J, Pons-Moll G, Black MJ. SMPL: A skinned 
multi-person linear model. In: Seminal graphics papers: pushing the boundaries. 
vol. 2, 2023, p. 851–66.

[5] Chen Y, Song Z, Xu W, Martin RR, Cheng Z-Q. Parametric 3D modeling of a 
symmetric human body. Comput Graph 2019.

[6] Bogo F, Black MJ, Loper M, Romero J. Detailed full-body reconstructions of 
moving people from monocular RGB-d sequences. In: Proceedings of the IEEE 
international conference on computer vision. 2015, p. 2300–8.

[7] Yu T, Zheng Z, Guo K, Zhao J, Dai Q, Li H, Pons-Moll G, Liu Y. Doublefusion: 
Real-time capture of human performances with inner body shapes from a single 
depth sensor. In: Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2018, p. 7287–96.

[8] Pavlakos G, Choutas V, Ghorbani N, Bolkart T, Osman AA, Tzionas D, Black MJ. 
Expressive body capture: 3d hands, face, and body from a single image. 
In: Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2019, p. 10975–85.

[9] Guan P, Weiss A, Balan AO, Black MJ. Estimating human shape and pose from 
a single image. In: 2009 IEEE 12th international conference on computer vision. 
IEEE; 2009, p. 1381–8.

[10] Jacobson A, Baran I, Popovic J, Sorkine O. Bounded biharmonic weights for 
real-time deformation. ACM Trans Graph 2011;30(4):78.

[11] Hasler N, Stoll C, Sunkel M, Rosenhahn B, Seidel H-P. A statistical model of 
human pose and body shape. In: Computer graphics forum. vol. 28, Wiley Online 
Library; 2009, p. 337–46.

[12] Chen Y, Liu Z, Zhang Z. Tensor-based human body modeling. In: Proceedings 
of the IEEE conference on computer vision and pattern recognition. 2013, p. 
105–12.

[13] Chen Y, Cheng Z-Q, Lai C, Martin RR, Dang G. Realtime reconstruction of an 
animating human body from a single depth camera. IEEE Trans Vis Comput 
Graphics 2015;22(8):2000–11.

[14] Bogo F, Romero J, Loper M, Black MJ. FAUST: Dataset and evaluation for 3D 
mesh registration. In: Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2014, p. 3794–801.

[15] Tsoli A, Mahmood N, Black MJ. Breathing life into shape: Capturing, modeling 
and animating 3D human breathing. ACM Trans Graph 2014;33(4):1–11.

[16] Bogo F, Romero J, Pons-Moll G, Black MJ. Dynamic FAUST: Registering human 
bodies in motion. In: Computer vision & pattern recognition. 2017.

[17] Li T, Bolkart T, Black MJ, Li H, Romero J. Learning a model of facial shape and 
expression from 4D scans. ACM Trans Graph 2017;36(6):1–17.

[18] Romero J, Tzionas D, Black MJ. Embodied hands: modeling and capturing hands 
and bodies together. ACM Trans Graph 2017;36(6). http://dx.doi.org/10.1145/
3130800.3130883.

[19] Joo H, Simon T, Sheikh Y. Total capture: A 3d deformation model for tracking 
faces, hands, and bodies. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition. 2018, p. 8320–9.

[20] Osman AAA, Bolkart T, Black MJ. STAR: Sparse trained articulated human body 
regressor. 2020.
15 
[21] Osman AAA, Bolkart T, Tzionas D, Black MJ. SUPR: A sparse unified part-based 
human representation. In: European conference on computer vision. 2022.

[22] Keller M, Werling K, Shin S, Delp S, Pujades S, Liu CK, Black MJ. From skin 
to skeleton: Towards biomechanically accurate 3D digital humans. ACM- Trans 
Graph 2023;42(6):12.

[23] Bhatnagar BL, Sminchisescu C, Theobalt C, Pons-Moll G. Loopreg: Self-supervised 
learning of implicit surface correspondences, pose and shape for 3d human mesh 
registration. Adv Neural Inf Process Syst 2020;33:12909–22.

[24] Deng B, Lewis JP, Jeruzalski T, Pons-Moll G, Hinton G, Norouzi M, Tagliasac-
chi A. Nasa neural articulated shape approximation. In: Computer vision–ECCV 
2020: 16th European conference, glasgow, UK, August 23–28, 2020, proceedings, 
part VII 16. Springer; 2020, p. 612–28.

[25] Chen X, Zheng Y, Black MJ, Hilliges O, Geiger A. Snarf: Differentiable forward 
skinning for animating non-rigid neural implicit shapes. In: Proceedings of the 
IEEE/CVF international conference on computer vision. 2021, p. 11594–604.

[26] Chibane J, Alldieck T, Pons-Moll G. Implicit functions in feature space for 3D 
shape reconstruction and completion. In: 2020 IEEE/CVF conference on computer 
vision and pattern recognition. CVPR, 2020.

[27] Shen K, Guo C, Kaufmann M, Zarate JJ, Valentin J, Song J, Hilliges O. X-
Avatar: Expressive human avatars. In: Proceedings of the IEEE/CVF conference 
on computer vision and pattern recognition. CVPR, 2023, p. 16911–21.

[28] Tian Y, Zhang H, Liu Y, Wang L. Recovering 3d human mesh from monocular 
images: A survey. IEEE Trans Pattern Anal Mach Intell 2023.

[29] Weiss A, Hirshberg D, Black MJ. Home 3D body scans from noisy image and 
range data. In: 2011 international conference on computer vision. IEEE; 2011, 
p. 1951–8.

[30] Zheng J, Zeng M, Cheng X, Liu X. SCAPE-based human performance 
reconstruction. Comput Graph 2014.

[31] Bălan AO, Black MJ. The naked truth: Estimating body shape under clothing. 
In: Computer vision–ECCV 2008: 10th European conference on computer vision, 
marseille, France, October 12-18, 2008, proceedings, part II 10. Springer; 2008, 
p. 15–29.

[32] Zhang C, Pujades S, Black MJ, Pons-Moll G. Detailed, accurate, human shape es-
timation from clothed 3D scan sequences. In: Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2017, p. 4191–200.

[33] Ye M, Yang R. Real-time simultaneous pose and shape estimation for articulated 
objects using a single depth camera. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2014, p. 2345–52.

[34] Zheng Z, Zhao X, Zhang H, Liu B, Liu Y. Avatarrex: Real-time expressive full-body 
avatars. ACM Trans Graph 2023;42(4):1–19.

[35] Shetty K, Birkhold A, Jaganathan S, Strobel N, Kowarschik M, Maier A, Egger B. 
Pliks: A pseudo-linear inverse kinematic solver for 3d human body estimation. 
In: Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2023, p. 574–84.

[36] Kushwaha M, Choudhary J, Singh DP. 3DPMesh: An enhanced and novel 
approach for the reconstruction of 3D human meshes from a single 2D image. 
Comput Graph 2024.

[37] Yuan Y-J, Lai Y-K, Wu T, Xia S, Gao L. Data-driven weight optimization for 
real-time mesh deformation. Graph Model 2019;104:101037.

[38] TaubinÝ G. Geometric signal processing on polygonal meshes. In: Proceedings of 
eUROGRAPHICS. 2000.

[39] Baran I, Popović J. Automatic rigging and animation of 3d characters. ACM 
Trans Graph 2007;26(3):72–es.

[40] Li H, Adams B, Guibas LJ, Pauly M. Robust single-view geometry and motion 
reconstruction. ACM Trans Graph ( ToG) 2009;28(5):1–10.

[41] Horn BK, Hilden HM, Negahdaripour S. Closed-form solution of absolute 
orientation using orthonormal matrices. Josa A 1988;5(7):1127–35.

http://refhub.elsevier.com/S0097-8493(25)00070-6/sb1
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb1
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb1
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb2
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb2
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb2
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb2
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb2
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb3
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb3
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb3
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb3
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb3
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb3
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb3
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb4
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb4
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb4
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb4
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb4
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb5
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb5
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb5
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb6
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb6
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb6
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb6
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb6
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb7
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb7
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb7
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb7
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb7
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb7
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb7
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb8
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb8
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb8
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb8
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb8
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb8
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb8
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb9
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb9
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb9
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb9
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb9
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb10
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb10
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb10
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb11
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb11
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb11
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb11
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb11
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb12
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb12
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb12
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb12
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb12
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb13
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb13
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb13
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb13
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb13
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb14
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb14
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb14
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb14
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb14
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb15
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb15
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb15
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb16
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb16
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb16
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb17
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb17
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb17
http://dx.doi.org/10.1145/3130800.3130883
http://dx.doi.org/10.1145/3130800.3130883
http://dx.doi.org/10.1145/3130800.3130883
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb19
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb19
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb19
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb19
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb19
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb20
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb20
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb20
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb21
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb21
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb21
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb22
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb22
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb22
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb22
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb22
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb23
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb23
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb23
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb23
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb23
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb24
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb24
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb24
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb24
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb24
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb24
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb24
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb25
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb25
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb25
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb25
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb25
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb26
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb26
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb26
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb26
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb26
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb27
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb27
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb27
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb27
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb27
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb28
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb28
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb28
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb29
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb29
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb29
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb29
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb29
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb30
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb30
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb30
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb31
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb31
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb31
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb31
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb31
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb31
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb31
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb32
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb32
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb32
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb32
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb32
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb33
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb33
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb33
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb33
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb33
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb34
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb34
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb34
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb35
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb35
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb35
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb35
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb35
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb35
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb35
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb36
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb36
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb36
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb36
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb36
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb37
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb37
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb37
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb38
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb38
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb38
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb39
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb39
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb39
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb40
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb40
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb40
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb41
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb41
http://refhub.elsevier.com/S0097-8493(25)00070-6/sb41

	Parametric 3D human modeling with biharmonic SMPL
	Introduction
	Related work
	3D human parametric models
	Applications of 3D human parametric models
	Biharmonic constraints 

	Biharmonic 3D human parametric model
	Biharmonic constraints on vertex skinning deformation parameters
	Biharmonic constraints on vertex non-rigid deformation parameters
	Deformation constraints on body shape

	Model training
	Data preparation for training
	Training of skinning weight WV and automatic segmentation of rigid parts
	Training of the non-rigid deformation parameter BV
	Training of the non-rigid deformation parameter QF for triangular face
	Training of body shape deformation S and TA
	Parametric model reconstruction
	Training of body shape deformation parameters DV and joint deformation parameters J 
	The implementation of the proposed algorithm

	Experimental results and analysis
	Optimization of parameter WV
	Optimization of non-rigid deformation parameter BV
	Optimization of triangular parametric deformation
	Comparison of reconstruction results with other parametric models
	Experimental setup and performance analysis
	More results

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


