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 A B S T R A C T

Pose-guided person image generation involves converting an image of a person from a source pose to a target 
pose. This task presents significant challenges due to the extensive variability and occlusion. Existing methods 
heavily rely on CNN-based architectures, which are constrained by their local receptive fields and often struggle 
to preserve the details of style and shape. To address this problem, we propose a novel framework for human 
pose transfer with transformers, which can employ global dependencies and keep local features as well. The 
proposed framework consists of transformer encoder, feature alignment network and transformer synthetic 
network, enabling the generation of realistic person images with desired poses. The core idea of our framework 
is to obtain a novel prior image aligned with the target image through the feature alignment network in the 
embedded and disentangled feature space, and then synthesize the final fine image through the transformer 
synthetic network by recurrently warping the result of previous stage with the correlation matrix between 
aligned features and source images. In contrast to previous convolution and non-local methods, ours can 
employ the global receptive field and preserve detail features as well. The results of qualitative and quantitative 
experiments demonstrate the superiority of our model in human pose transfer.
1. Introduction

Pose-guided person image generation aims to generate photo-
realistic person images using a person image and several desired poses, 
which has a wide range of applications in person re-identification [1], 
image processing [2], and video generation [3]. It is a very challenging 
problem due to huge spatial deformation and occlusion of characters.

Recently, Generative Adversarial Network (GAN) [4] has been suc-
cessfully applied in human pose transfer. State-of-the-art human pose 
transfer [5–7] methods are dominated by convolutional architectures. 
They can be divided into two categories: direct deformation-based 
methods and flow/transformation-based methods. Direct deformation 
methods [8–12] often adopt an encoder–decoder CNN architecture, and 
introduce an attention module to achieve deformation task. On the 
other hand, flow/transformation-based methods [13,14] predict an ap-
pearance flow or transformation matrix to guide the image generation. 
They often warp the source image and its feature to the target pose to 
obtain an appearance flow or learn feature-level mapping by utilizing 
segmentation maps for guidance.

Despite the performance improvement achieved by previous meth-
ods, state-of-the-art methods suffer from two problems because of 
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their convolutional architectures. First, Convolutional Neural Networks 
(CNNs) extract features in local sliding windows. They are unable to 
process long range dependencies, unless using very deep convolutional 
layers, which leads to the loss of feature resolution and intricate 
details. If the CNN-based encoder cannot retain more details, the in-
complete features will also affect the decoding, especially in spatial 
transformation tasks. Thus, vanilla CNN-based models are inadequate 
for effectively capturing the crucial global contexts. Some arts [10,11] 
can obtain global context to some extent by introducing the non-
local modules into CNN-based architecture. However, their query, key 
and value focus on different domains, resulting in low efficiency of 
space conversion and fuzzy results. As shown in third (PoNA) and 
fourth (XingGAN) columns of Fig.  1. By contrast, our transformer based 
method can achieve high quality results, as shown in the second column 
of Fig.  1.

Second, most methods encode the style image and the pose im-
age into a latent vector, and then the network synthesizes images 
according to the latent vector. However, the latent code characterizes 
the semantic information of the image, and ignores the style feature. 
Consequently, some local style features are lost in the final image.
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Fig. 1. Comparing of our method with the non-local based PoNA [11] and Xing-
GAN [10] methods. While all methods establish long-range dependencies, our proposed 
method achieves superior results in terms of quality.

Fig. 2. The results of feature alignment network, demonstrating alignment of the 
source image with the target image.

To address both problems, in this paper, we propose Feature-
alignment Transformer Network (FaTNET), a transformer based person 
image generation framework, which consists of transformer encoder, 
feature alignment network and transformer synthetic network. In con-
trast to previous convolution and non-local methods, ours can employ 
the global receptive field and preserve detail features as well. We 
further propose feature alignment to obtain a prior image (aligned 
image) to prevent style features from being washed away, as shown 
in Fig.  2. Specifically, we first compute the pose guided matrix, then 
obtain the prior image by multiplying the source image with it. Since 
the prior image is directly warped from the source image through 
the pose-guided matrix, it retains the blurred style features. And our 
network is able to generate further image details based on it. Last 
but not least, we introduce convolutional layers into our transformer 
based framework, considering that these layers can bring strong prior of 
inductive bias, and make our network generalize with faster converging 
speed.
2 
Specifically, our method has three steps, as shown in Fig.  3. First, 
we propose an encoder by introducing Swin Transformer [15] followed 
by depthwise convolution to extract features from source images and 
target pose images. Second, we propose feature alignment network with 
multiple cascading blocks to align source style images with target style 
images. Specifically, in each alignment block, we use transformer net 
to maintain the global relationship between tokenized features from 
the target pose and the source image, and guide the source features 
to match the target features. We also use convolutional networks to 
focus on local information and preserve detailed features. Benefiting 
from the feature alignment network, the shape and style of the image 
are disentangled, and a preliminary alignment feature map is obtained. 
Third, we propose transformer synthetic network to pay attention to 
correlated features from exemplar, in order to recover the fine details 
and predict the invisible area during decoding. Experimental results 
show that our method outperforms state-of-the-art methods.

The main contributions of this work are summarized as follows:

• We propose a feature-alignment pose transfer framework with 
multiple cascading blocks, which can align the source image with 
the target image in the embedded and disentangled feature space.

• We propose transformer synthetic network to maintain the fea-
tures from corresponding regions of the exemplar, and generate 
high-quality images recurrently by warping previous stage’s result 
with the correlation matrix between aligned features and source 
images.

• We incorporate transformer and convolution into our framework 
in an exquisite way, which can employ the global dependencies 
and preserve detail features as well. Experimental results on hu-
man pose transfer show the flexibility and superior performance 
of our person image generation method.

2. Related works

2.1. Generative Adversarial Networks

The Generative Adversarial Network (GAN) [4] consists of a gen-
erator and a discriminator, which produce realistic images through 
adversarial training. Since their inception, GANs have rapidly adopted 
a fully convolutional architecture and have been effectively utilized in 
image-to-image translation [16,17], image enhancement [18,19], and 
image editing [20]. Recent studies have integrated the transformer 
module into image generation models by substituting certain com-
ponents of CNNs. [21] introduced the self-attention mechanism into 
the GAN architecture, where the self-attention module complements 
convolutions and aids in modeling long-range, multi-level dependencies 
across image regions. Recent work [22] employed a convolutional GAN 
to develop a codebook of image constituents and efficiently modeled 
their composition with transformers within high-resolution images. 
There is also one work [23] that completely removed convolutions from 
their generative framework and only used two transformers to make 
one strong GAN.

2.2. Human pose transfer

An early method [24] on human pose transfer proposed a two-
stage network to generate the image with the target pose. This method 
combined the source image, source pose, and target pose as inputs 
to progressively generate the target image from coarse to fine. Zhu 
et al. [8] proposed a progressive attention model to transfer the source 
image. However, it lost useful information during multiple transfers 
by using local attention mechanism. Some methods adopted non-local 
attention mechanism and used keypoints as their guidance for pose 
representation. Tang et al. [10] employed two generation branches to 
separately model the person’s appearance and shape information. Li 
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Fig. 3. Overview of our model. Our model contains two encoders that extract features from the source images 𝐼𝑠 and target poses 𝐼𝑝 to obtain feature maps 𝐹𝑠 and 𝐹𝑝, respectively. 
The feature alignment network aligns 𝐹𝑠 with 𝐹𝑝 using 𝑛 cascaded blocks, and obtains the aligned feature map 𝐹 𝑛

𝑝 . Next, a correlation matrix 𝑀 containing the target style and 
semantic information is then computed. Finally, the transformer synthetic network generates the final output 𝐹𝑔 by warping the result of the previous stage with the correlation 
matrix based on the aligned image.
et al. [11] proposed the pose-guided non-local attention to build long-
range feature dependency. They then introduced a cross-model block 
to better exploit both pose and image features.

These methods can model a long-range dependency scheme. But 
they only achieved sparse correspondence between the source and 
target images, making it challenging to transform the image. Han 
et al. [25] first generated human parsing map as semantic guidance. 
They estimated a dense flow to warp sources at the pixel level, which 
cannot perform well with large occlusion. Li et al. [13] warped the 
inputs at the feature level. They proposed estimating a dense and 
intrinsic 3D appearance flow to more effectively guide pixel transfer 
between poses. But their flow fields between sources and targets need 
additional 3D human models, which incur high computational cost. 
Yu et al. [14] introduced a different global-flow local-attention frame-
work to reassemble the inputs. They did not rely on any additional 
information and obtained the flow fields in an unsupervised manner. 
However, their work is divided into two stages and is not end-to-end. 
Ma et al. [26] enhance texture-preserving pose transfer by exploring 
the complementary nature of attention and flow from a frequency 
perspective, transforming features from both into the wavelet domain. 
Li et al. [27] propose PT2, a self-driven human pose transfer method 
that disentangles pose from texture at the patch level. This method 
removes the pose from an input image by permuting image patches 
and reconstructs the image by sampling from these permuted textures, 
achieving patch-level disentanglement.

Recently, 3D pose transfer has been attracting increasing attention, 
enabling the pose transformation of 3D meshes. Liu et al. [28] achieve 
the synthesis of arbitrary human poses based on neural scene represen-
tation and rendering. Chen et al. [29] propose an unsupervised 3D pose 
transfer method that employs a co-occurrence discriminator to identify 
the mesh’s structural and pose invariance, resulting in better outcomes 
and improved efficiency. Wang et al. [30] introduce a zero-shot method 
that achieves strong generalization, enabling pose transfer for stylized 
3D characters.

2.3. Transformers in computer vision

Transformers were first proposed by [31] and widely adopted for 
neural language processing due to multi-head self-attention and feed-
forward MLP layers. Recently, more and more works used transformers 
to replace some or all spatial convolution layers in various computer 
vision tasks, yielding excellent results. Some approaches used pure 
transformer models for image processing. For instance, ViT [32] re-
shaped images into sequences of flattened 2D patches and applied a 
transformer architecture for image classification. However, it required 
large-scale training datasets. DeiT [33] introduced several training 
strategies to improve the data-efficiency of ViT. PVT [34] applied ViT 
models to the dense prediction tasks of semantic segmentation and 
object detection. Different from ViT, which typically has low-resolution 
outputs and high computational and memory cost, PVT proposed a 
3 
pyramid architecture which can achieve high output resolution and 
low computational cost for large feature maps. T2T-Vit [35] used T2T 
module to assist each token in modeling local important structure 
information, so as to enhance the network capability. There are other 
works that used transformers to complement CNNs by incorporating 
self-attention layers to enhance backbones, enabling the encoding of 
distant dependencies. They then combined CNNs and transformers 
into an encoder–decoder architecture for object detection [36–38] and 
segmentation tasks [39].

3. The proposed method

We aim to generate realistic images with the target pose while 
preserving the original style. This requires the network to have the 
ability to establish long-distance dependencies, and keep the local 
details as well. To address this challenge, we tame transformers for hu-
man image generation. We propose a novel framework which consists 
of transformer encoder, feature alignment network and transformer 
synthetic network, as shown in Fig.  3. With these modules, we can 
model the long-range interaction between pixels from both the source 
and the target. At the same time, we combine convolution into our 
modules to effectively employ the inductive bias and keep the local 
details.

To facilitate arbitrary pose transfer, we utilize standard pose rep-
resentations for guidance. Specifically, we employ 18 human key-
points extracted by the Human Pose Estimator [40] and represent the 
pose using a heatmap. This heatmap consists of 18 channels, each 
corresponding to the position of a joint in the human body.

3.1. Transformer encoder

Previous works [8–11,13,14] usually employ convolution-based en-
coder, which often bring the dilemma of choosing between keeping 
the style detail and building the global receptive field. To obtain a 
global receptive field, we need to perform multiple downsampling steps 
by employing a sufficiently deep network, which allows us to gather 
enough semantic information, albeit at the expense of style details. 
Conversely, to retain more detailed style information, we typically 
avoid the downsampling process. However, this results in the network 
not acquiring a sufficient receptive field and failing to capture enough 
semantic information.

However, for the human transfer task, the output image is a re-
arranged group of input image pixels, which requires the network to 
have the ability to not only retain the source style information, but 
also establish long-distance dependencies on images. In light of this, 
we propose a transformer encoder which combines Swin Transformer 
with depthwise convolution. First, we introduce Swin Transformer [15] 
as a backbone network to extract features from the source image 𝐼𝑠 and 
pose image 𝐼𝑝. We then adopt depthwise convolution in MBConv [41] 
to follow the Swin Transformer layer and leverage the shortcut to retain 
the source image features. They together form a downsampling module. 
The encoded result 𝐹𝑠 contains the style information of the source 
image, and 𝐹  contains the semantic information of the target pose.
𝑝
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Fig. 4. The last block of our feature alignment network.

3.2. Feature alignment network

Pose transfer involves moving patches from the conditional pose to 
the target pose and establishing dependencies among these patches. 
In this context, the pose guides the transfer by determining where 
to extract the conditional patch and where to place the target patch, 
while maintaining the relationships among patches. In light of this, 
we propose a feature alignment network, which combines transformer 
layers with convolution to model both global dependencies among 
patches and the local features within each patch.

In Fig.  4, we present the last block of our feature alignment network. 
Image features can be gradually transferred from source poses to target 
poses through multiple alignment blocks. Among them, each block uses 
style features to render pose features to complete the task of pose-
guided transfer. The input of the first block is the style feature map 
𝐹𝑠 and the pose feature map 𝐹𝑝. When outputting, 𝐹𝑝 is updated to 
𝐹 𝑖
𝑝(𝑖 = 1), and in the 𝑡th block, 𝐹 𝑡−1

𝑝  is updated to 𝐹 𝑡
𝑝. Through the 

update of 𝐹𝑝 by 𝑛 blocks, we get the final output 𝐹 𝑛
𝑝  and send it to the 

decoder to generate the final result.
Since our alignment blocks share the same structure, we only take 

the last block as an example to illustrate how they work, as shown 
in Fig.  4. Our alignment block mainly consists of global module and 
local module. The global module focuses on establishing global depen-
dencies, while local module focuses on local features and generates an 
attention mask, where the value of the attention mask is between 0 and 
1, indicating the importance of each position. Then, the results of the 
two nets are multiplied element by element to obtain attention map, 
𝐹𝑎𝑡𝑡𝑛 as shown in Eq.  (1): 
𝐹𝑎𝑡𝑡𝑛 = 𝐺𝑙𝑜𝑏(𝐶𝑎𝑡(𝐹 𝑛−1

𝑝 , 𝐹𝑠))⊙ 𝑆(𝐿𝑜𝑐(𝐶𝑎𝑡(𝐹 𝑛−1
𝑝 , 𝐹𝑠))), (1)

where, 𝐺𝑙𝑜𝑏 means the global module, 𝐿𝑜𝑐 means the local module, 
𝐶𝑎𝑡 means concatenation, 𝑆 means Sigmoid and ⊙ means element-wise 
multiplication. Global module and local module share a common input, 
which is obtained by concatenating 𝐹𝑠 and 𝐹 𝑛−1

𝑝 .
The local module is a residual convolutional layer, which contains 

both a BN layer [42] and a ReLU. The global module consists of two 
transformer layers, and a BN layer [42]. It splits the feature map 
into patches, and then uses multi-head self-attention to establish re-
lationships among patches. Taking inspiration from [43], we modulate 
normalized features 𝐹 𝑛−1

𝑝  with the scale and bias, which are predicted 
with two fully connected layers from 𝐹𝑎𝑡𝑡𝑛. 𝐹 𝑛−1

𝑝  will be updated as 𝐹 𝑛
𝑝 , 

value at site (𝑐 ∈ 𝐶 𝑖, ℎ ∈ 𝐻 𝑖, 𝑤 ∈ 𝑊 𝑖) as Eq. (2): 

𝐹 𝑛
𝑝 = 𝛾 𝑖𝑐,ℎ,𝑤

(

𝐹𝑎𝑡𝑡𝑛
)

×
𝐹 𝑖
𝑐,ℎ,𝑤 − 𝜇𝑖

𝑐

𝜎𝑖𝑐
+ 𝛽𝑖𝑐,ℎ,𝑤

(

𝐹𝑎𝑡𝑡𝑛
)

(2)

where, 𝐶, 𝐻 and 𝑊  denote the channel, height and width of the tensor. 
𝛾 𝑖

(

𝐹
) and 𝛽𝑖 (

𝐹
) are the learned modulation parameters. 
𝑐,ℎ,𝑤 𝑎𝑡𝑡𝑛 𝑐,ℎ,𝑤 𝑎𝑡𝑡𝑛

4 
𝐹 𝑖
𝑐,ℎ,𝑤 is the activation preceding the 𝑖th normalization layer 𝐹 𝑛−1

𝑝 . 𝜎𝑖𝑐
and 𝛽𝑖𝑐,ℎ,𝑤 are the mean and standard deviation of the activations in 
channel 𝑐.

To further demonstrate the motivation and effectiveness of our 
feature alignment network, Fig.  5 visualizes the updated pose feature 
map 𝐹 𝑛

𝑝  generated by the feature alignment network when provided 
with the style feature map 𝐹𝑠 and the pose feature map 𝐹𝑝. The resulting 
feature map 𝐹 𝑛

𝑝  demonstrates that the pose feature map can align the 
style features with the target pose.

3.3. Transformer synthetic network

For image synthesizing, it is crucial to keep the network focusing on 
the correct regions, as in this way the generated image will have fewer 
visible artifacts and fewer errors in the prediction [44]. Our transformer 
synthesis network aims to produce high-quality images by referencing 
the correct corresponding regions in the exemplar and aligning with 
concentrated semantics from target poses. Fig.  6 gives an example of 
one block of our transformer synthetic network.

In order to constrain the network to retain the correct corresponding 
regions, we match the aligned exemplar generated by the feature 
alignment network and the semantic map with the correspondence 
layer proposed in [45] to obtain the correlation matrix 𝑀 ∈ R𝑁×𝑁 . 𝑁
is the size of the matrix, 𝑁 = 4096. Each element is a pairwise feature 
correlation, as shown in Eq.  (3): 

𝑀(𝑢, 𝑣) =
𝐹 𝑛
𝑝 (𝑢)

𝑇𝐹𝑠(𝑣)

‖𝐹 𝑛
𝑝 (𝑢)‖‖𝐹𝑠(𝑣)‖

. (3)

where, 𝐹 𝑛
𝑝 (𝑢) and 𝐹𝑠(𝑣) denote the channel-wise centralized features of 

𝐹 𝑛
𝑝  and 𝐹𝑠 in positions 𝑢 and 𝑣, i.e., 𝐹 𝑛

𝑝 (𝑢) = 𝐹 𝑛
𝑝 (𝑢) - mean(𝐹 𝑛

𝑝 (𝑢)) and 
𝐹𝑠(𝑣) = 𝐹𝑠(𝑣) - mean(𝐹𝑠(𝑣)).

The correlation matrix contains the target style and semantic infor-
mation, and we use the matrix in each part of the synthesis phase to 
obtain a correlated exemplar field to constrain the network to generate 
the correct images. According to CoCosNet [44], we use correlation 
matrix M to warp the source image 𝐼𝑠 and obtain the aligned image 
𝑟𝐼𝑠→𝐼𝑝 , as shown in Eq.  (4): 

𝑟𝐼𝑠→𝐼𝑝 (𝑢) =
∑

𝑣
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼𝑀(𝑢, 𝑣)) ⋅ 𝐼𝑠(𝑣). (4)

where 𝛼 is the coefficient that regulates the sharpness of the softmax 
function, with a default value set to 100, following the practice es-
tablished by CoCosNet [44]. CoCosNet aims to translate images from 
a source domain to a target domain using an input image and an 
exemplar image, which closely aligns with our objective. However, 
different sizes of correlation matrices are required in each synthesis 
phase, and in order for the matrix to function at each stage of the syn-
thesis, we need to use a pooling layer to adjust its size. Unfortunately, 
the correlation matrix will lose the spatial context due to the pooling 
layer. To address this problem, we extract the spatial context relation 
of features. We define the output of each stage of the transformer 
synthetic network as 𝑆𝑖. Specifically, we convert the feature 𝑆𝑖−1 to 
the feature vector, which is obtained by the Swin-Transformer module 
and the 1 × 1 conv module. We use the Swin Transformer module, 
which consists of two Swin-Transformer layers, to focus on regional 
features in a global way to model the context of feature 𝑆𝑖−1. Then 
we extract the spatial information of the feature 𝑆𝑖−1 through the 
1 × 1 conv, which is subsequently flattened into a feature vector. 
Meanwhile, the feature guidance matrix matches the corresponding 
feature size through average pooling, allowing for matrix multiplication 
with the feature vector. By multiplying the vector with the correlation 
matrix, we can obtain a correlated exemplar field 𝐸. The correlated 
exemplar field 𝐸 preserves both the spatial context of the image and 
the correlated pixel matrix, as shown in Eq.  (5): 

(5)
𝐸 = 𝐴𝑣𝑔(𝑀) × 𝐶𝑜𝑛𝑣(𝑇 𝑟𝑎𝑛(𝑆𝑖−1)).
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Fig. 5. Visualization of the updated pose feature map, which is sent to the decoder to produce the final result.
Fig. 6. One block of our transformer synthetic network.
where 𝐴𝑣𝑔 means average pooling, 𝑇 𝑟𝑎𝑛 means Swin Transformer 
module. Finally, we apply the correlated exemplar field to each stage 
of the synthetic network, enabling the network to focus on the cor-
related pixels and synthesize high-quality images. Please note that 
the input source and pose images are processed in our transformer 
encoder module, resulting in style and pose feature maps with smaller 
spatial dimensions. Consequently, here the features are progressively 
upsampled to align with the sizes of both the input image and the 
ground-truth image, ensuring there are no resolution issues. The output 
of each stage can be expressed by Eq.  (6): 
𝑆𝑖 = 𝑈𝑝(𝑆𝑖−1 ⊗𝐸). (6)

where ⊗ means element-wise multiplication, and 𝑈𝑝 means upsam-
pling.

Visformer [46] has proved the importance of embedding layer for 
transformer to preserve the features of patches. We go further by 
introducing consecutive small convolution layers to replace original 
single large convolution layer in Swin Transformer Block. In contrast 
to the original design, ours can better preserve the information of each 
patch and significantly improve the ability of transformer in terms 
of modeling and establishing long-range dependencies among patches. 
Among them, we set the size of the convolution kernel in Embedding 
to 4, 2, and 1, respectively, and the stride to 4, 2, and 1, respectively.

3.4. Objective function

Our total loss includes a conditional adversarial term, an 1 term, 
a perceptual term and a contextual term, as: 
𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑎𝑎𝑑𝑣 + 𝜆𝐿1𝐿1 + 𝜆𝑝𝑝𝑒𝑟 + 𝜆𝐶𝑋𝐶𝑋 , (7)

where 𝜆𝑎, 𝜆𝐿1, 𝜆𝑝, 𝜆𝐶𝑋 are hyperparameters to balance the objec-
tives and further details are presented in subsection of Implementation 
Details.

Conditional adversarial loss. We utilize two discriminators as de-
scribed in [8]: an appearance discriminator 𝐷  to assess the likelihood 
𝐴

5 
that 𝐹𝑔 contains the same individual as 𝐼𝑠 (appearance consistency), 
and shape discriminator 𝐷𝑃  to judge how well 𝐹𝑔 is aligned with the 
target pose 𝐼𝑝 (shape consistency). The conditional adversarial loss [4] 
is defined as: 
𝑎𝑑𝑣 =E𝐼𝑝∈𝐼,(𝐼𝑠 ,𝐼𝑡)∈{log[𝐷𝐴(𝐼𝑠, 𝐼𝑡) ⋅𝐷𝑃 (𝐼𝑝, 𝐼𝑡)]}+

E𝐼𝑝∈𝐼,𝐼𝑠∈ ,𝐹𝑔∈𝑔
{log[(1 −𝐷𝐴(𝐹𝑔 , 𝐼𝑠)) ⋅ (1 −𝐷𝑃 (𝐹𝑔 , 𝐼𝑝))]}.

(8)

Note that 𝐼 ,  and 𝑔 represent the distribution of person poses, real 
images and generated images, respectively.

L1 loss. We adopt 𝐿1 loss [47] to compute the pixel-wise differ-
ences between the generated image 𝐹𝑔 and the ground truth 𝐼𝑡, defined 
as: 

𝐿1 = ‖𝐹𝑔 − 𝐼𝑡‖1 (9)

Perceptual loss. We adopt perceptual loss [48] by obtaining the 1
distance between activation maps of the pretrained VGG-19 network, 
computed as: 

𝑝𝑒𝑟 = ‖𝜙𝑙(𝐹𝑔) − 𝜙𝑙(𝐼𝑡)‖1 (10)

where we select 𝜙𝑙 as the activation following the 𝑟𝑒𝑙𝑢4_2 layer in 
the VGG-19 network, as this layer predominantly captures high-level 
semantics.

Contextual loss. We adopt the contextual loss proposed by [49,50] 
to match the statistics between 𝐹𝑔 and 𝐼𝑡. The contextual loss can guide 
spatial deformations w.r.t. the target, and lead to less texture distortion 
and more reasonable output. We compute the contextual loss as: 

𝐶𝑋 = − log(𝐶𝑋(𝜙𝑙(𝐹𝑔), 𝜙𝑙(𝐼𝑡))) (11)

Following the practice of [49,50], we calculate the contextual loss by 
computing the similarity metric (𝐶𝑋) between the feature maps of the 
generated image 𝐹𝑔 , denoted as 𝜙𝑙(𝐹𝑔), and the feature maps of the 
target image 𝐼𝑡, denoted as 𝜙𝑙(𝐼𝑡). Here, 𝑙 refer to 𝑟𝑒𝑙𝑢{3_2, 4_2} of the 
pretrained VGG19 network.
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Fig. 7. Image generation results conditioned by various poses on the DeepFashion dataset and Market-1501 dataset.
 

4. Experiments

4.1. Experimental setup

4.1.1. Dataset
We conduct our experiments on person re-identification dataset 

Market-1501 [51] and DeepFashion In-shop Clothes Retrieval Bench-
mark [52]. Images in Market-1501 are low resolution (128 × 64) and 
the images differ in aspects such as viewpoints, backgrounds, and 
illumination. DeepFashion consists of high-quality model images in 
fashion clothes, which has clean backgrounds. We follow [37] to split 
the data and collect 263,632 training pairs and 12,000 testing pairs 
from Market-1501 and 101,966 training pairs and 8,570 testing pairs 
from DeepFashion. Note that the person identities in the test set are 
different from those in the training set.

4.1.2. Metrics
We use Learned Perceptual Image Patch Similarity (LPIPS) proposed 

by [53] to calculate the reconstruction error between the generated 
image and the ground-truth image in the perceptual level. Meanwhile, 
we use the Fréchet Inception Distance [54] (FID) to measure the realism 
of the generated images. Additionally, we use the Peak Signal-to-Noise 
Ratio (PSNR) to measure the pixel-level error between the generated 
image and the ground-truth image.

4.1.3. Implementation details
We train our model using 256 × 256 images for the Fashion dataset 

and 128 × 64 for the Market-1501 dataset. We adopt the Adam [55] 
solver with 𝛽1 = 0.5, 𝛽2 = 0.999. For the learning rate, we set 0.0001 
and 0.0002 respectively, the generator and discriminator following the 
TTUR [54]. It is important to note that the L1 loss and adversarial 
loss provide the overall optimization direction for the model, while the 
perceptual loss and CX loss are used to refine detailed performance. 
If the values of the perceptual loss and CX loss are too large, it may 
lead to training instability or even crashes. Therefore, we set smaller 
hyperparameters for these losses. Based on these and our empirical 
exploration, the weights for the loss terms are set to 𝜆𝑎=10, 𝜆𝑝=0.0001, 
𝜆𝐿1=10 and 𝜆𝐶𝑋=0.001. Our method is implemented in PyTorch using 
an NVIDIA RTX3090 GPUs with 24 GB memory. Besides, in the feature 
alignment network, we use two alignment blocks.

4.2. Comparison with state-of-the-arts

We conduct qualitative comparisons on Market-1501 and Deep-
Fashion datasets with several stare-of-the-art methods including Pose-
Attn [8], BiGraph [9], XingGAN [10], PoNA [11], GFLA [14], PISE [56],
Pose2Pose [57] and PT2 [27]. Fig.  7 shows the image generation 
results of our method conditioned by various poses on the DeepFashion 
and Market-1501 datasets, and Figs.  8 and 9 show some qualitative 
comparisons. For the Fashion dataset, PATN and BiGrapth fail to 
generate sharp images and cannot predict complex textures due to the 
lack of global receptive fields in these models. XingGAN and PoNA 
use the attention module to obtain the global receptive field, which 
makes the non-local module focus on different domains, i.e., style maps 
and segmentation maps. However, it is difficult to generate reasonable 
6 
Table 1
Quantitative comparison with state-of-the-art methods.
 Model DeepFashion Market-1501

 FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ 
 Pose-Attn 23.70 0.2520 15.20 37.99 0.3187 14.25  
 PoNA 24.20 0.2594 13.41 26.42 0.2859 14.64  
 XingGAN 44.81 0.2920 16.38 37.61 0.3050 14.42  
 BiGraph 24.41 0.2493 17.05 37.32 0.3042 15.03  
 GFLA 14.82 0.2311 16.98 28.05 0.2809 14.33  
 PISE 13.63 0.2326 16.74 – – –  
 Pose2Pose 14.59 0.2654 15.75 – – –  
 PT2 28.94 0.2415 16.51 22.14 0.3140 14.08  
 Ours 13.11 0.2120 17.64 22.02 0.2819 14.99  

images. GFLA uses the flow-based method, and PISE synthesizes a 
target semantic segmentation map, respectively, to preserve detailed 
textures in the source image. PT2 proposes a permuting textures method 
to reconstruct the original image from the permuted input, showing 
outstanding performance. However, they fail to predict some fine 
textures and shapes for the invisible regions of the source image. 
Meanwhile, their methods require two-stage training or additional se-
mantic segmentation maps. Pose2Pose uses dense multi-scale attention 
to improve performance, but there are still many wrong textures. It can 
generate realistic images with correct poses and vivid details. Since our 
research aims to generate images that blend the style of the source 
image with the target pose, our model lacks a structural design to 
preserve facial detail features. This may lead to some deviations in eye 
direction for certain characters (e.g., the first row). Even so, most of 
our results (e.g., the second, third, and fifth rows) show no such issues, 
and the generated images have higher quality compared to previous 
methods. For the Market-1501 Dataset, although it has a low resolution 
and complex background, we can generate more natural and sharper 
images. Compared with recent methods PoNA, GFLA and PT2, our 
method can restore more details and less artifacts.

Table  1 gives quantitative results of our model compared with sev-
eral stare-of-the-art methods: Pose-Attn [8], PoNA [11], XingGAN [10], 
BiGraph [9], GFLA [14], PISE [56], Pose2Pose [57] and PT2 [27]. 
Because PISE and Pose2Pose do not provide pre-trained model on the 
Market-1501 dataset, we only compare with them on the DeepFashion 
dataset. For DeepFashion, our results get the best FID score, which 
means our generated images are more realistic. Besides, we adopt LPIPS 
to compute the similarity in perceptual level and PSNR to measure the 
error in pixel level. Our method has the best results in terms of both 
LPIPS and PSNR, which indicates that our results have less error in 
pixel level and are more consistent in shape and texture with the target 
images. For Market-1501, the quantitative results demonstrate that the 
images generated by our method are closer to real images in shape and 
texture and our metrics outperform most other methods, even though 
the conditioned images are of lower resolution with significant changes 
in pose and background.

4.3. Ablation study

We train several ablation models to verify our assumptions and the 
effectiveness of each component.
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Fig. 8. The qualitative comparisons with several state-of-the-art models on DeepFashion dataset, including PATN [8], BiGraph [9], XingGAN [10], PoNA [11], GFLA [14], PISE [56], 
Pose2Pose [57], PT2 [27] and ours, respectively.
Fig. 9. The qualitative comparisons with several state-of-the-art models on Market-
1501 dataset, including PATN [8], BiGraph [9], XingGAN [10], PoNA [11], GFLA [14], 
PT2 [27] and ours, respectively.

Global-Enc: Our encoder consists of transformer layers and convo-
lution layers. We use only transformer layers as the backbone of the 
encoder, so that the network can obtain a global receptive field to verify 
the effectiveness of Transformer.

Local-Enc: We use only convolution layers as the backbone of the 
encoder to make the network pay attention to local information, to 
evaluate the performance of convolutional backbone and Transformer 
backbone.

Without Feature alignment network (w/o FA): In this model, we 
remove feature alignment network from our Full Model (w/o FA-F), to 
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Table 2
Quantitative results of ablation study.
 Model FID ↓ LPIPS ↓ PSNR ↑ 
 
w/o FA

w/o FA-F 13.92 0.2156 17.39  
 w/o FA-G 13.77 0.2142 17.49  
 w/o FA-L 13.54 0.2128 17.57  
 Global Enc 19.24 0.2270 17.02  
 Local Enc 14.05 0.2135 17.46  
 w/o SN 14.60 0.2147 17.45  
 w/o DA 18.27 0.2188 17.40  
 w/o DP 18.43 0.2224 17.35  
 w/o CX 18.86 0.2214 17.40  
 Ours 13.11 0.2120 17.64  

verify the effectiveness of the FA model on the final image. In addition, 
we removed the global module (w/o FA-G) and local module (w/o 
FA-L) from the alignment module separately to compare their effects 
in more detail.

Without Transformer synthetic network (w/o SN): In this model, 
we remove transformer synthetic network from our Full Model, to 
verify the effectiveness of the SN model on the final image.

Without the appearance discriminator (w/o DA): We do not use 
the appearance discriminator in the training phase to judge how likely 
𝐹𝑔 contains the same person as 𝐼𝑠.

Without the shape discriminator (w/o DP): We do not use the 
shape discriminator in the training phase to judge how well 𝐹𝑔 is 
aligned with the target pose 𝐼𝑝.

Without CX loss (w/o CX): We remove contextual loss from our 
full training loss, to verify the effectiveness of the contextual loss.

Full models (Ours): We use our proposed framework in this model.
Quantitative results on DeepFashion test images are shown in Ta-

ble  2. Global-Enc ignores local details and Local-Enc ignores context 
features. Compared with the Global-Enc and Local-Enc, our encoders 
produce better results than pure convolutions and pure transformers. 
In the ablation experiment, we compared only Transformer (Global-
Enc) and only convolution (Local-Enc) as the backbone network. The 
experiment proved that adding Transformer as the backbone network 
will make the network more powerful. However, without adding Trans-
former, our network can also achieve a 14.05 FID score, higher than 
other previous methods. In light of this, we can say that the network 
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Fig. 10. Qualitative results of ablation study.
benefits more from our proposed feature alignment module and syn-
thetic module. Besides, FA aligns the features of the semantic map and 
exemplar with the correspondence layer, which can better provide prior 
information. The global module and the local module of the feature 
alignment network can consider the global semantic information and 
the local texture information, respectively, in order to obtain more 
accurate correspondence information, and quantitative results show 
their effectiveness. In the synthetic network, the global receptive field 
provided by SN is also important. The appearance discriminator and 
the shape discriminator ensure the consistency of the generated image 
with the target image, and the CX loss can lead to more reasonable 
results with less texture distortion, as demonstrated by FID and LPIPS.

Fig.  10 shows some intuitive visual results of ablation study. It 
can be seen that the Global-Enc and Local-Enc can generate correct 
structures. However, they only focus on global or local information, and 
their texture details are not satisfactory. As shown in the second row, 
fourth, and fifth columns. Without the FA-F module, the resulting image 
is partially blurred. Without SN module, our model cannot preserve 
more details and generate sharper images, as shown in the third and 
fifth rows, and seventh column. In addition, without using the 𝐷𝐴
discriminator, the 𝐷𝑃  discriminator, or the CX loss during the training 
phase, the synthesized images will produce rough or incorrect textures, 
as shown in the eighth, ninth and tenth columns.

5. Conclusion and discussion

In this paper, we explore a transformer based method for the human 
pose transfer task. We find that combining transformer and convolution 
in a reasonable way will improve the performance of the model, while 
providing aligned feature regions in the embedded and disentangled 
feature space when synthesizing the final image will also improve 
the quality of the final image. Our method first generates aligned 
images with the target pose by the feature alignment network, and then 
generates high-quality images gradually by the transformer synthetic 
network. Experimental results demonstrate that our model can generate 
realistic images with vivid details by paying attention to both global 
and local information. In addition, the ablation study also verifies the 
effectiveness of each designed component.

However, our method has some shortcomings. First, our model 
requires more computing time and memory, compared to convolution 
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based methods. Since our method employs the Transformer struc-
ture, it has higher computational requirements than CNN-based meth-
ods and requires more inference time compared to models like Xing-
GAN [10], although it is still within the same order of magnitude. 
In the future, we aim to improve the efficiency of our method by 
introducing novel lightweight Transformer structures from other spatial 
deformation tasks, such as facial animation.

Second, our method might encounter cross-domain problems if the 
domains differ significantly. For example, training on DeepFashion 
data and testing on the Market-1501 dataset can lead to suboptimal 
outputs. There are significant differences between these two datasets: 
DeepFashion typically features images of models against plain white 
backgrounds with clear human poses, while Market-1501 contains 
images with complex street backgrounds, where subjects often blend 
with the surroundings and exhibit unclear and ambiguous poses. In 
our current experimental setup, this disparity makes it challenging 
for our encoder to extract accurate features, negatively impacting the 
generation of the pose guidance matrix and leading to suboptimal 
outputs.

To address this challenge, in our future work, we aim to enhance 
the model’s generalization capability through three specific research 
directions. First, we propose employing domain adaptation techniques, 
which are widely used in object detection [58,59]. By introducing 
feature adversarial training between source and target domain datasets, 
this approach enables the encoder to learn domain-invariant, generaliz-
able representations, thereby improving the model’s generalization ca-
pability across diverse datasets. We plan to alternately use DeepFashion 
and Market-1501 as the source and target domains for joint training, 
extracting intermediate features for adversarial learning. The objective 
is to capture shared features between the two datasets, achieving supe-
rior cross-domain generalization. Second, we intend to implement more 
effective data augmentation strategies, such as background replacement 
and pose transformation, to further enhance the model’s robustness in 
cross-domain scenarios. Finally, we plan to leverage language models to 
tackle this challenge. Language models have demonstrated significant 
effectiveness in pose-guided image generation tasks [60] and other 
visual applications [61]. We aim to utilize the semantic information 
extracted by language models as a global condition, embedding it 
into various layers of the model for feature fusion. This approach will 
guide the model to focus on human pose details and clothing textures, 
reducing the impact of background or pose variations on performance.
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