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A B S T R A C T

Image-aware layout generation involves arranging graphic elements, including logo, text, underlay, and embel-
lishment, at the appropriate position on the canvas, constituting a fundamental step in poster design. This task
requires considering both the relationships among elements and the interaction between elements and images.
However, existing layout generation models struggle to simultaneously satisfy explicit aesthetic principles like
alignment and non-overlapping, along with implicit aesthetic principles related to the harmonious composition
of images and elements. To overcome these challenges, this paper designs a GAN with dual discriminators,
called DD-GAN, to generate graphic layouts according to image contents. In addition, we introduce a multi-
focus label matching method to provide richer supervision and optimize model training. The incorporation
of multi-focus label matching not only accelerates convergence during training but also enables the model to
better capture both explicit and implicit aesthetic principles in image-aware layout generation. Quantitative
and qualitative evaluations consistently demonstrate that DD-GAN, coupled with multi-focus label matching,
achieves state-of-the-art performance, producing high-quality image-aware graphic layouts for advertising
posters.
1. Introduction

Graphic layout generation, as shown in Fig. 1, involves arranging
various classes of 2D elements, such as logos, texts, underlays, and
other embellishment elements, in appropriate positions. This task is
fundamental to the design of posters [1–3], magazines [4,5], and
webpages [6–8]. Recently, layout generation based on deep generative
models like Generative Adversarial Networks (GANs) has attracted
increasing interest [9–11]. Conditional GANs provide precise control
over the layout generation process by incorporating conditions such
as image content and graphic element attributes (e.g., category, area,
and aspect ratio) [1,12]. Notably, image content plays a crucial role
in producing image-aware layouts for posters and magazines [2,4,13].
However, many current models define the layout generation prob-
lem simply as arranging graphic elements on a blank canvas [14,15].
Although some conditional methods [12,16] have been proposed to
guide the layout generation process, the majority are based on graphic
element attributes and rarely consider image content.

In poster layout (image-aware layout) design tasks, it is essential to
consider both the geometric relationships among graphical elements,
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such as overlap and alignment, and the coordination between the
image content and the graphical layout. This requires the model to
simultaneously model the geometric relationships between graphical el-
ements and the interactions between the graphical layout and the image
content. This paper focuses on generating image-aware graphic layouts
for advertising posters, considering both explicit aesthetic principles
(such as alignment and non-overlap) and implicit aesthetic principles
(such as the harmonious composition of images and elements).

For the image-aware layout generation task, Zhou et al. [1] anno-
tated and utilized inpainting [17,18] to remove graphic elements from
designed posters, constructing the CGL-Dataset with paired images and
graphic layouts. Although the CGL-Dataset significantly benefits the
training of image-aware networks, a domain gap [19] exists between
inpainted posters (source domain data) and clean product images (tar-
get domain data). To bridge the domain gap, CGL-GAN [1] applies
Gaussian blur on the inpainted poster to eliminate inpainted artifacts.
Although this strategy effectively removes these artifacts, it may dam-
age the color and texture details of images, leading to unpleasing results
in implicit aesthetic principles (content-relevant metrics). Xu et al. [2]
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combined unsupervised domain adaptation techniques [20] to propose
PDA-GAN for generating image-aware layouts. To balance the influence
of the two domains, PDA-GAN [2], trained with few annotated samples,
produces unsatisfactory results in explicit principles (graphic metrics)
due to a lack of rich supervisory signals. Our research aims to develop a
new method that can fully harness the generative power of GAN-based
models while considering both explicit and implicit aesthetic principles.

In this paper, we design a GAN with dual discriminators, called DD-
GAN, to generate image-aware layouts for posters that adhere to both
explicit and implicit aesthetic principles. One discriminator, similar to
the pixel-level discriminator in PDA-GAN [2], is employed to bridge the
domain gap and explore implicit aesthetic principles. Another global
discriminator, structurally resembling the generator, is introduced to
differentiate whether the images and layouts match and assess the
coherence of the composition of graphic elements. The layout generator
structure is designed based on the transformer architecture.

In the CGL-Dataset, individual images typically contain up to ten
elements, leading to a query count of 10 for the generator transformer
module. Given that the number of annotated elements for the majority
of samples is less than 5, only a small subset of queries is supervised
during each training step. To address this issue, we introduce multi-
focus label matching (MLM) to offer richer supervision and enhance
data efficiency. This strategy involves replicating annotated element in-
formation multiple times before conducting Hungarian matching [21].
The duplicated annotated element information is then matched with the
model’s output through Hungarian matching, computing a reconstruc-
tion loss that supervises the model. This approach effectively addresses
the issue of limited annotated elements and significantly enriches the
supervisory signals for the transformer module.

The experimental results demonstrate that DD-GAN, coupled with
multi-focus label matching, achieves state-of-the-art (SOTA) perfor-
mance on both graphic metrics (explicit aesthetic principles) and
content-relevant metrics (implicit aesthetic principles). Compared to
CGL-GAN with comparable performance in graphic metrics, our method
demonstrates relative improvements in content-relevant metrics, in-
cluding background complexity, occlusion subject degree, and occlu-
sion product degree metrics, by 4.61%, 9.94%, and 12.77%, respec-
tively. Similarly, in contrast to PDA-GAN with comparable performance
in content-relevant metrics, our method shows relative improvements
over graphic metrics, encompassing layout overlap, underlay overlap,
and layout alignment degree metrics, by 71.95%, 2.75%, and 7.32%,
respectively. Moreover, comprehensive ablation experiments reveal
that multi-focus label matching not only improves the performance of
our model, but also enhances the performance of other models. The
training loss curves further validate that multi-focus label matching can
accelerate model convergence.

In summary, this paper comprises the following contributions:

• We introduce a multi-focus label matching strategy to provide
richer supervision for the model. This strategy can be easily com-
bined with different models, accelerating training convergence
and improving models’ performances.

• We exploit the generative power of the GAN-based model to
propose a DD-GAN, featuring dual discriminators, to generate
image-aware layouts that simultaneously satisfy both explicit and
implicit aesthetic principles of advertising posters.

• Both quantitative and qualitative evaluations demonstrate that
our model, utilizing multi-focus label matching, achieves SOTA
performance and outperforms in generating image-aware graphic
layouts for posters.

2. Related work

Recently, the importance of layout in graphic design has driven
significant research efforts in layout generation. We categorize existing
2 
Fig. 1. Examples of image-conditioned advertising posters graphic layouts gen-
eration. Our model generates graphic layouts (middle) with multiple elements
conditioned on product images (left). The designer or even automatic rendering
programs can utilize graphic layouts to render advertising posters (right).

works into two types based on their consideration of image con-
tent: image-agnostic layout generation methods [22,23], which solely
study the relationship between graphic elements (explicit aesthetic
principles), and image-aware layout generation methods [2,24–26],
which simultaneously explore both the relationships among internal
graphic elements and between layouts and images (explicit and implicit
aesthetic principles).

Image-agnostic layout generation. Early works [27–31] embed
design rules into manually crafted energy functions but struggled to
generate complex and diverse layout results. LayoutGAN [10] is the
first to introduce deep generative networks for layout generation tasks,
promoting data-driven approaches to accomplish layout generation.
LayoutVAE [14] and LayoutVTN [15] both utilize variational autoen-
coder (VAE) techniques and are autoregressive methods. As the field
evolved, a prominent research trend involved imposing additional con-
straints [32–34] on models to achieve desired results. These constraints
are in various forms, including element attributes, scene graphs, and
partial layouts. However, in a nutshell, models with these constraints
primarily concentrate on modeling the internal relationship between
graphic elements and often neglect the relationship between layouts
and images. Consequently, they generate graphic layouts that do not
align with implicit aesthetic principles.

Image-aware layout generation. High-quality training datasets for
image-aware layout generation are difficult to obtain because they
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Fig. 2. Multi-focus label matching. The left side of this figure presents examples with three and six annotated elements, respectively. White queries indicate instances without
matches and, consequently, lack corresponding losses for supervision. On the right side, the elements on the left are replicated three times according to multi-focus label matching,
as detailed in Section 3.1.
Fig. 3. The architecture of our network. Clean product images (target domain data) are solely processed by the multi-scale CNN of the layout generator and fed into the
pixel-level discriminator since they lack annotated labels. Inpainted posters (source domain data) are processed by the layout generator, the pixel-level discriminator, and the global
discriminator. The definition of MLM can be found in Section 3.1. The weight coefficients of the various loss functions are provided in Section 3.2. The global discriminator is
structurally similar to the generator, while the pixel-level discriminator consists of three transposed convolutional layers with filter size 3 × 3 and stride 2. The annotations for
the symbols in the figure are shown within the dashed box on the right.
require numerous professional stylists to design layouts that provide
paired clean images and annotated layouts. ContentGAN [4] utilizes
white patches to mask graphic elements on magazine pages and re-
places clean images with processed pages for training. This approach is
the first to propose modeling the relationships among internal graphic
elements and between layouts and images. For this task, Zhou et al. [1]
propose to collect designed poster images to construct a dataset with
paired product images and graphic layouts. The graphic elements im-
posed on the poster images are removed through image inpainting [17]
and annotated with their geometric arrangements in the posters, re-
sulting in the state-of-the-art CGL-Dataset comprising 54,546 paired
data items. Although the CGL-Dataset significantly benefits the train-
3 
ing of image-aware networks, a domain gap [35–37] exists between
inpainted posters (source domain data) and clean product images (tar-
get domain data). To narrow the domain gap, CGL-GAN [1] applies
Gaussian blur to the entire poster to eliminate inpainted artifacts and
generate image-aware layouts. However, Gaussian blur may damage
the delicate color and texture details of images, leading to the gen-
eration of layouts that are unpleasing in implicit aesthetic principles
(content-relevant metrics). Xu et al. [2] combined unsupervised domain
adaptation techniques [19,38–41] to design a GAN with a pixel-level
discriminator, named PDA-GAN [2], for generating image-aware lay-
outs. To balance the influence of the two domains, PDA-GAN used a
limited number of annotated samples during training. Although PDA-
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GAN effectively models implicit aesthetic principles, it struggles with
explicit aesthetic principles due to the lack of rich supervisory sig-
nals. Therefore, we introduce a multi-focus label matching strategy to
provide richer supervision for image-aware layout generation models
and design a DD-GAN, featuring dual discriminators, based on PDA-
GAN. This approach simultaneously considers both explicit and implicit
aesthetic principles.

3. Our method

This paper aims to develop a model with high learning capacity that
can capture both explicit and implicit aesthetic principles to generate
high-quality image-aware layouts. To achieve this, we introduce a
multi-focus label matching strategy to provide richer supervision for
the image-aware layout generation model and design a DD-GAN with
ual discriminators based on PDA-GAN. This section provides detailed
escriptions of the multi-focus label matching strategy and our network
rchitecture.

3.1. Multi-focus label matching

Due to the exceptional representational power of transformers in
odeling information and learning complex feature representations,

ur model is designed based on transformer modules [42]. The inherent
power of transformers lies in their ability to capture intricate patterns
and dependencies within data, making them well-suited for various
tasks. However, in scenarios where real-world samples (target domain
data) are scarce, the performance of models built on transformers tends
to suffer. This is particularly attributed to transformers defaulting to a
one-to-one matching strategy for label assignment, implying that only
a limited number of transformer queries receive positive supervision
signals in each training iteration [43,44]. We perform the original label
matching between the predictions P, labels L pair and compute the
reconstruction loss as follows:

𝐿𝑟𝑒𝑐 = 𝐻 𝑢𝑛𝑔 𝑎𝑟𝑖𝑎𝑛(𝐏,𝐋) (1)

where 𝐏 = {𝑝1, 𝑝2,… , 𝑝10} represent the fixed set of ten queries from
the transformer’s output, 𝐋 = {𝑙1,… , 𝑙𝑖} (0 < 𝑖 ≤ 10) indicate the
annotated labels information. 𝐻 𝑢𝑛𝑔 𝑎𝑟𝑖𝑎𝑛 following DETR [45]. As a
result, the transformer modules heavily rely on obtaining adequate
supervision from an extensive dataset or through prolonged training
epochs to generalize effectively and enhance performance. Therefore,
exploring strategies to alleviate the impact of limited positive super-
vision is crucial to ensure the model’s robustness and generalization
capabilities in the face of insufficient datasets and limited computing
devices.

In tasks such as object recognition and detection, image data aug-
mentation techniques are commonly employed. Techniques like crop-
ping, scaling, and rotation increase the diversity of training samples,
hereby enhancing the robustness and generalization capabilities of the

models. However, these methods are not suitable for the image-aware
graphic layout generation task. The reason is that changes in image
ontent lead to significant alterations in the corresponding graphic
ayout, including the categories, quantities, and positional relationships
f elements within the layout. Such variations mean that previously
nnotated layout information based on specific content will no longer
e applicable, rendering it ineffective for continued supervised training.
herefore, traditional image data augmentation methods do not meet
he specific requirements of the image-aware graphic layout generation
ask.

In this paper, we propose a label augmentation strategy called multi-
ocus label matching (MLM) to enhance the supervision signal for
ransformers by repeating ground truth (GT) labels before Hungarian
atching. As depicted in Fig. 2, the method involves replicating the

annotated labels L 𝑚 times while keeping P unchanged. For example,
the first sample in Fig. 2 includes three annotated elements, each
 f

4 
replicated three times (𝑚 = 3), resulting in a total of nine GT labels
̃ . The Hungarian matching is then performed between the fixed set
of ten queries P from the transformer output and the replicated labels
𝐋̃. In contrast to the original label matching, where only three queries
were supervised, the current MLM with nine queries provides effective
supervision signals. When the number of replicated elements exceeds
10, the first 10 GT labels are retained, and the rest are discarded. For
instance, in the second scenario shown in Fig. 2 with six annotated
elements, the original six GT labels are retained and the first four
eplicated GT labels are added. The reconstruction loss of MLM can be
omputed similarly to Eq. (1):

𝐿𝑀
𝑟𝑒𝑐 = 𝐻 𝑢𝑛𝑔 𝑎𝑟𝑖𝑎𝑛(𝐏, 𝐋̃) (2)

where 𝐋̃ = {𝐋𝟏,… ,𝐋𝐦} = {𝑙11 ,… , 𝑙1𝑖 ,… , 𝑙𝑚1 ,… , 𝑙𝑚𝑖 , }. 𝐋𝟏 = ⋯ = 𝐋𝐦,
similar 𝑙1𝑖 = ⋯ = 𝑙𝑚𝑖 . If 𝑖×𝑚 exceeds ten, the first ten labels are retained
and the rest are discarded. MLM offers a more enriched supervisory
signal to the transformers, leading to enhanced model performance
and convergence, especially in scenarios with a scarcity of annotated
elements. Additionally, these richer and more stable layout reconstruc-
tion supervisory signals can significantly improve the stability of the
early-stage training of the generative adversarial network. It is worth
noting that MLM may prompt the model to generate multiple similar
bounding boxes at the same location. Consequently, our model needs
to incorporate non-maximum suppression (NMS) [46] to filter out
duplicate predictions.

3.2. DD-GAN

We explore the generative power of a GAN-based model to design
a DD-GAN, incorporating dual discriminators, to generate image-aware
layouts that conform to the explicit and implicit aesthetic principles of
advertising posters. Fig. 3 illustrates our network architecture, compris-
ing three main components: a layout generator, a pixel-level discrimi-
nator (PD) [2,39], and a global discriminator (GD) [47,48]. Please note
that unlabeled target domain data exclusively undergo processing by
the multi-scale CNN [49,50] of the generator and are subsequently fed
nto PD to assist the generator in bridging the domain gap and studying
mplicit aesthetic principles. These data will not be propagated to other
odules of the generator or GD as they lack annotated labels.

The architecture of the layout generator network follows the DETR
[45] principle, consisting of three modules: a multi-scale convolutional
eural network (CNN), a transformer encoder–decoder, and two fully
onnected layers (FCs). The multi-scale CNN takes the concatenation

of the inpainted poster 𝒙𝑖𝑛𝑝 with its saliency map [51] 𝒙𝑠𝑎𝑙𝑖𝑛𝑝 (or the
lean product image 𝒙𝑖𝑚𝑔 with its saliency map 𝒙𝑠𝑎𝑙𝑖𝑚𝑔) as input and
xtracts image features. The encoder utilizes the standard transformer
rchitecture to further refine the image features. The decoder employs
ross-attentions to learn the relationship between image content and

graphic layout. Both the encoder and decoder consist of six transformer
blocks, each equipped with ten queries. The decoder features of each
query are passed through two FCs to predict the corresponding class
nd box coordinates. The predicted class and box information P are
btained using the softmax and sigmoid functions, respectively. These
redictions are then used to compute 𝐿𝑟𝑒𝑐 and 𝐿𝑀

𝑟𝑒𝑐 as specified in
qs. (1) and (2).

The first discriminator, PD, consists of three transposed convolu-
tional layers designed to bridge the domain gap between source and
arget domain data. PD is connected to the shallow-level feature map
nd computes the GAN loss for each input-image pixel. Since inpainted

areas occupy a small proportion of the input image [2], we apply label
moothing [9,52] to pixels not in the inpainted area (those pixels with

value 0 in the white patch map), which we refer to as one-target label
moothing. Specifically, we adjust the value of 0 to 0.2 in the ground

truth white patch map to enhance the generalization ability of the
rained model. The loss 𝐿𝑃 𝐷 (or 𝐿𝐺

𝑃 𝐷), with label smoothing applied
or updating PD (or generator), can be calculated similarly to [2].
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Table 1
Comparison with content-aware methods. Bold and underlined numbers denote the
est and second best respectively. ↓ (or ↑) means the smaller (or bigger) value, the
etter.
Model 𝑅𝑐 𝑜𝑚 ↓ 𝑅𝑠ℎ𝑚 ↓ 𝑅𝑠𝑢𝑏 ↓ 𝑅𝑜𝑣𝑒 ↓ 𝑅𝑢𝑛𝑑 ↑ 𝑅𝑎𝑙 𝑖 ↓ 𝑅𝑜𝑐 𝑐 ↑
ContentGAN [4] 45.59 17.08 1.143 0.0397 0.8626 0.0071 93.4
CGL-GAN [1] 34.11 15.41 0.783 0.0413 0.9400 0.0098 99.7
PDA-GAN [2] 32.07 13.56 0.727 0.0353 0.9205 0.0109 99.7
IUC-Layout [26] 33.06 15.93 0.826 0.0174 0.9221 0.0055 99.9
Ours 32.54 13.44 0.705 0.0099 0.9458 0.0101 100.0

Table 2
User study. 𝑃𝑒 (𝑃𝑏) represents the percentage of eligible-selected (best-selected) layouts.
The symbol * denotes the professional group.

Model 𝑃𝑒 ↑ 𝑃𝑏 ↑ 𝑃 ∗
𝑒 ↑ 𝑃 ∗

𝑏 ↑

CGL-GAN [1] 19.91 15.62 18.79 17.15
PDA-GAN [2] 24.31 27.35 18.91 28.88
IUC-Layout [26] 20.22 27.17 23.62 22.45
DD-GAN (Ours) 35.56 29.86 38.68 31.52

Table 3
Comparison with content-agnostic methods. 𝐿𝑇 and 𝑉 𝑇 𝑁 represent LayoutTrans-
former [22] and LayoutVTN [15], respectively.

Model 𝑅𝑐 𝑜𝑚 ↓ 𝑅𝑠ℎ𝑚 ↓ 𝑅𝑠𝑢𝑏 ↓ 𝑅𝑜𝑣𝑒 ↓ 𝑅𝑢𝑛𝑑 ↑ 𝑅𝑎𝑙 𝑖 ↓ 𝑅𝑜𝑐 𝑐 ↑
LT 40.92 21.08 1.310 0.0156 0.9516 0.0049 100.0
VTN 41.77 22.21 1.323 0.0130 0.9698 0.0047 99.9
Ours 32.54 13.44 0.705 0.0099 0.9458 0.0101 100.0

The second discriminator, GD, has a structure similar to the above
generator, taking concatenated 𝒙𝑖𝑛𝑝 with 𝒙𝑠𝑎𝑙𝑖𝑛𝑝 and replicated labels 𝐋̃ or
redicting layouts 𝐏 as input. GD, with only one fully connected layer,
udges whether the input image-layout pairs are true or false, resulting
n the loss 𝐿𝐺 𝐷 (or 𝐿𝐺

𝐺 𝐷) for updating GD (or Generator).
Therefore, the training loss for the layout generator network is as

follows:

𝐿𝐺 = 𝐿𝑟𝑒𝑐 + 𝛼 ∗ 𝐿𝑀
𝑟𝑒𝑐 + 𝛽 ∗ 𝐿𝐺

𝑃 𝐷 + 𝛾 ∗ 𝐿𝐺
𝐺 𝐷, (3)

where the weight coefficients 𝛼, 𝛽, and 𝛾 in this work are set to 1, 6,
and 8, respectively. By incorporating richer reconstruction supervisory
signals through 𝐿𝑀

𝑟𝑒𝑐 and jointly training with adversarial losses, the
training of the generative adversarial network becomes more stable.

his enhanced stability enables the model to generate layouts that
imultaneously satisfy both explicit and implicit aesthetic principles.

4. Experiments

In this section, we primarily compare our model with SOTA layout
eneration methods and present ablation studies for MLM.

4.1. Implementation details

We implemented our model in PyTorch 1.7.1 and utilized the Adam
ptimizer [55] for training. The initial learning rates are set to 10−5 for
he generator backbone and 10−4 for the remaining part of the model.
he model is trained for 300 epochs with a batch size of 128, and
ll learning rates are reduced by a factor of 10 after 200 epochs. To
nsure fair experimental comparisons, we employed the CGL-Dataset
or both training and test datasets, resizing the inpainted posters and
lean product images to 240 × 350 following the procedures of CGL-
AN and PDA-GAN. The total training time is approximately 9 h using
6 NVIDIA V100 GPUs. To encourage more researchers to participate
n the research and exploration of graphic layout generation tasks, we
ill release our model code to this community.
5 
Table 4
Ablations for different discriminators. GD and PD represent the global discriminator
and pixel-level discriminator, respectively. The symbol × denotes DD-GAN without the
inclusion of the corresponding discriminator, while the symbol ✓ signifies DD-GAN
with the discriminator incorporated. Bold and underlined numbers denote the best and
second best respectively.

GD PD 𝑅𝑐 𝑜𝑚 ↓ 𝑅𝑠ℎ𝑚 ↓ 𝑅𝑠𝑢𝑏 ↓ 𝑅𝑜𝑣𝑒 ↓ 𝑅𝑢𝑛𝑑 ↑ 𝑅𝑎𝑙 𝑖 ↓ 𝑅𝑜𝑐 𝑐 ↑
× × 34.12 14.55 0.806 0.0247 0.9321 0.0089 99.1
✓ × 32.53 15.66 0.776 0.0211 0.9306 0.0081 99.9
× ✓ 32.95 12.88 0.628 0.0125 0.9517 0.0109 99.9
✓ ✓ 32.54 13.44 0.705 0.0099 0.9458 0.0101 100.0

Table 5
Different configurations of the weights 𝜷 and 𝜸 in Eq. (3). The weights of 𝐿𝑟𝑒𝑐 , 𝐿𝑀

𝑟𝑒𝑐 ,
and 𝐿𝐺

𝑃 𝐷 are fixed at 1, 1, and 6, respectively. The effect of different weights for the
two discriminators in DD-GAN is evaluated by adjusting the weight of 𝐿𝐺

𝐺 𝐷 .

𝛽 𝛾 𝑅𝑐 𝑜𝑚 ↓ 𝑅𝑠ℎ𝑚 ↓ 𝑅𝑠𝑢𝑏 ↓ 𝑅𝑜𝑣𝑒 ↓ 𝑅𝑢𝑛𝑑 ↑ 𝑅𝑎𝑙 𝑖 ↓ 𝑅𝑜𝑐 𝑐 ↑
6 4 32.55 13.11 0.667 0.0093 0.9321 0.0127 99.9
6 6 40.60 9.36 0.678 0.0077 0.7586 0.0094 99.7
6 8 32.54 13.44 0.705 0.0099 0.9458 0.0101 100.0
6 10 33.12 13.37 0.686 0.0107 0.9568 0.0118 100.0
6 12 33.36 14.64 0.757 0.0139 0.9544 0.0130 100.0

Table 6
Different weight configurations for 𝑳𝒓𝑒𝑐 and 𝑳𝑴

𝒓𝑒𝑐 in Eq. (3). 𝜃 represents the weight
of 𝐿𝑟𝑒𝑐 . The values of 𝛽 and 𝛾 are fixed at 6 and 8, respectively. The effect of different
weights for 𝐿𝑟𝑒𝑐 and 𝐿𝑀

𝑟𝑒𝑐 in DD-GAN is evaluated.

𝜃 𝛼 𝑅𝑐 𝑜𝑚 ↓ 𝑅𝑠ℎ𝑚 ↓ 𝑅𝑠𝑢𝑏 ↓ 𝑅𝑜𝑣𝑒 ↓ 𝑅𝑢𝑛𝑑 ↑ 𝑅𝑎𝑙 𝑖 ↓ 𝑅𝑜𝑐 𝑐 ↑
1 1 32.54 13.44 0.705 0.0099 0.9458 0.0101 100.0
1 2 33.13 13.99 0.691 0.0138 0.9361 0.0113 100.0
2 1 31.42 12.56 0.647 0.0074 0.9505 0.0113 99.6
1 3 32.15 14.27 0.697 0.0156 0.9550 0.0108 99.5
3 1 34.49 13.13 0.678 0.0066 0.9015 0.0090 98.0
1 4 32.99 18.57 0.813 0.0092 0.9374 0.0079 99.6
4 1 34.37 16.01 0.801 0.0140 0.9430 0.0093 99.9

4.2. Evaluation metrics

For quantitative assessments, we adhere to the methodology out-
lined in [1,2] and categorize layout metrics into composition-relevant
and graphic metrics based on explicit and implicit aesthetic princi-
ples of advertising posters. Graphic metrics associated with explicit
aesthetic principles encompass 𝑅𝑜𝑣𝑒, 𝑅𝑢𝑛𝑑 , and 𝑅𝑎𝑙 𝑖, measuring layout
overlap, underlay overlap, and layout alignment degree, respectively.
Composition-relevant metrics linked to implicit aesthetic principles
nclude 𝑅𝑐 𝑜𝑚, 𝑅𝑠ℎ𝑚, and 𝑅𝑠𝑢𝑏, which quantify background complexity,

occlusion subject degree, and occlusion product degree, respectively.
Additionally, we employ the metric 𝑅𝑜𝑐 𝑐 to denote the ratio of non-
mpty layouts predicted by models. All the aforementioned metrics

will be used to assess different models, validating the effectiveness
of our method. The formal definitions of these metrics are presented
in [1,2,10,12]. In addition to the aforementioned general quantitative
metrics, a user study based on subjective evaluations was conducted to
compare various methods.

4.3. Comparison with state-of-the-art methods

Image-aware layout generation methods. We begin by conduct-
ing experiments to compare DD-GAN with ContentGAN [4], CGL-

AN [1], PDA-GAN [2], and IUC-Layout [26], all capable of generating
mage-aware layouts. Quantitative results are presented in Table 1.

Our model has demonstrated robust performance across most content-
relevant and graphic metrics, showcasing the effectiveness of DD-GAN
with MLM in addressing both implicit and explicit aesthetic principles.
For example, compared to the SOTA method, our model achieves
superior performance on all evaluation metrics except 𝑅𝑐 𝑜𝑚. Similarly,
compared to the other two other image-aware layout generation meth-

ods, ContentGAN and CGL-GAN, our model outperforms them on all
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Fig. 4. Qualitative evaluation for image-aware layout generation methods. Layouts in a column are conditioned with the same image. And those in a row are from the same
model. This figure qualitatively compares and analyzes different models from explicit and implicit aesthetic principles.
metrics except 𝑅𝑎𝑙 𝑖. Similarly, in terms of graphical metrics, DD-GAN
achieves the best performance across all graphical metrics except 𝑅𝑎𝑙 𝑖.
Notably, it is also the only model to reach a score of 100.0 on the metric
𝑅𝑜𝑐 𝑐 .

To provide a comprehensive evaluation beyond general quantita-
tive metrics, a user study was conducted, as detailed in Table 2. We
randomly selected 80 test samples. Each sample includes one product
image and four corresponding predicted layouts (by CGL-GAN, PDA-
GAN, IUC-Layout, and DD-GAN). Participants were divided into two
groups (10 professional designers and 30 novice designers) and asked
to select the eligible and best layouts from the four predictions. The
eligible-selected (𝑃𝑒) and best-selected (𝑃𝑏) layout percentages, calcu-
lated as the ratio of this model’s vote count to the total votes across
all methods. The results demonstrate that our model outperforms other
methods, particularly in terms of the significantly higher proportion of
eligible layouts compared to the others.

In the left part of Fig. 4, our model effectively prevents overlapping
of text boxes, contrasting with models ContentGAN, CGL-GAN, and
PDA-GAN. Specifically, when generating an underlay element, our
model generates a corresponding text box at the respective position
to complement it. These experimental cases illustrate the model’s pro-
ficiency in learning explicit aesthetic principles of graphic layouts.
Analyzing the rightmost two columns in Fig. 4, text boxes generated
by our model are often positioned in areas with simple backgrounds,
enhancing text readability. Moreover, in the first two columns on the
right side of Fig. 4, it is evident that when the entire background is
complex, the model simultaneously generates an underlay box to re-
place the intricate background, ensuring readability of text information.
Combining the right side of Fig. 4 with Fig. 5, the layouts generated by
our model effectively avoid subject regions of the products, facilitating
a comprehensive presentation of product information. These qualitative
analyses of these cases provide compelling evidence that our model
effectively learns implicit aesthetic principles of image-aware layouts.
6 
Table 7
Different models with multi-focus label matching. 𝐶 𝐺 𝐿 and 𝑃 𝐷 𝐴 represent CGL-
GAN [1] and PDA-GAN [2], respectively. ✓ (or × ) indicates the model with (or
without) multi-focus label matching.

Model 𝑀 𝐿𝑀 𝑅𝑐 𝑜𝑚 ↓ 𝑅𝑠ℎ𝑚 ↓ 𝑅𝑠𝑢𝑏 ↓ 𝑅𝑜𝑣𝑒 ↓ 𝑅𝑢𝑛𝑑 ↑ 𝑅𝑎𝑙 𝑖 ↓ 𝑅𝑜𝑐 𝑐 ↑
CGL × 34.11 15.41 0.783 0.0413 0.9400 0.0098 99.7
CGL ✓ 32.53 15.66 0.776 0.0211 0.9306 0.0081 99.9

PDA × 32.07 13.56 0.727 0.0353 0.9205 0.0109 99.7
PDA ✓ 32.95 12.88 0.628 0.0125 0.9517 0.0109 99.9

Ours × 32.62 13.51 0.756 0.0300 0.9323 0.0116 99.8
Ours ✓ 32.54 13.44 0.705 0.0099 0.9458 0.0101 100.0

Image-agnostic layout generation methods. We also compare our
model with image-agnostic methods, namely LayoutTransformer [22]
and LayoutVTN [15]. As depicted in Table 3, these image-agnostic
methods perform well on graphic metrics, focusing solely on explicit
aesthetic principles while neglecting implicit aesthetic principles. Con-
sequently, regarding content-relevant metrics, our model significantly
outperforms them. Specifically, DD-GAN surpasses LayoutTransformer
by 20.5%, 36.2%, and 46.2% in terms of 𝑅𝑐 𝑜𝑚, 𝑅𝑐 𝑜𝑚, and 𝑅𝑐 𝑜𝑚, respec-
tively. Similarly, DD-GAN exceeds LayoutVTN by 22.1%, 39.5%, and
46.7% with respect to 𝑅𝑐 𝑜𝑚, 𝑅𝑐 𝑜𝑚, and 𝑅𝑐 𝑜𝑚, respectively. Compared
to VTN, DD-GAN improves the score of 𝑅𝑜𝑐 𝑐 from 99.9 to 100.0,
generating eligible layouts for all test images.

4.4. Ablations

4.4.1. Ablations for different discriminators
Ablation experiments evaluating DD-GAN with various discrimina-

tor configurations are detailed in Table 4. When DD-GAN is configured
without any discriminator, as indicated in the first row of Table 4,
it exhibits the lowest performance across multiple metrics, including
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Fig. 5. Qualitative evaluation for different models in product attention maps. The color transition from blue to red in heatmaps reflects the variation of product attention
values from low to high [1,53,54]. A well-designed layout can strategically avoid areas with high heat values, ensuring it does not impact the display of products.
Fig. 6. Training loss curves for different models with (without) the incorporation of multi-focus label matching.
𝑅𝑐 𝑜𝑚, 𝑅𝑠𝑢𝑏, 𝑅𝑜𝑣𝑒, and 𝑅𝑜𝑐 𝑐 . Although DD-GAN with only the PD achieves
the best results on metrics 𝑅𝑠ℎ𝑚, 𝑅𝑠𝑢𝑏, and 𝑅𝑢𝑛𝑑 , it performs slightly
worse than DD-GAN with both GD and PD on the other four metrics.
Overall, as shown in Table 4, DD-GAN equipped with both discrimi-
nators consistently achieves first or second-best performance on most
metrics. This improvement arises from the complementary effects of the
two discriminators: PD addresses domain discrepancy issues, while GD
7 
enhances the coordination between the generated layout and the input
image.

4.4.2. Ablations for different configurations
PDA-GAN demonstrated strong performance in content-related met-

rics. Based on this, we adopted a similar setup, with the weight ratio
between the reconstruction loss and the pixel-level discriminator loss
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Table 8
Comparison with multi-iteration training. The first six rows present the test results
f PDA-GAN [2] at intervals of 300 epochs, ranging up to 1800 epochs during training.
he last row shows the test results of the PDA model, which incorporates our designed
LM and undergoes training for 300 epochs.
𝑀 𝐿𝑀 𝐸 𝑝𝑜𝑐 ℎ 𝑅𝑐 𝑜𝑚 ↓ 𝑅𝑠ℎ𝑚 ↓ 𝑅𝑠𝑢𝑏 ↓ 𝑅𝑜𝑣𝑒 ↓ 𝑅𝑢𝑛𝑑 ↑ 𝑅𝑎𝑙 𝑖 ↓ 𝑅𝑜𝑐 𝑐 ↑
× 300 32.07 13.56 0.727 0.0353 0.9205 0.0109 99.7
× 600 32.15 13.33 0.705 0.0373 0.9113 0.0114 99.4
× 900 32.43 13.44 0.704 0.0377 0.9134 0.0115 99.4
× 1200 32.44 13.44 0.703 0.0377 0.9139 0.0115 99.4
× 1500 32.44 13.43 0.703 0.0377 0.9139 0.0115 99.4
× 1800 32.44 13.43 0.703 0.0377 0.9139 0.0115 99.4
✓ 300 32.95 12.88 0.628 0.0125 0.9517 0.0109 99.9

Table 9
MLM with different repeated times. The first row presents the test results of PDA-
GAN without MLM. The second to fifth rows represent the introduction of MLM into
DA-GAN with repetition 2 to 5 times, respectively.
𝑡𝑖𝑚𝑒𝑠 𝑅𝑐 𝑜𝑚 ↓ 𝑅𝑠ℎ𝑚 ↓ 𝑅𝑠𝑢𝑏 ↓ 𝑅𝑜𝑣𝑒 ↓ 𝑅𝑢𝑛𝑑 ↑ 𝑅𝑎𝑙 𝑖 ↓ 𝑅𝑜𝑐 𝑐 ↑
1 32.07 13.56 0.727 0.0353 0.9205 0.0109 99.7

2 31.41 12.93 0.698 0.0109 0.9306 0.0097 98.4
3 32.95 12.88 0.628 0.0125 0.9517 0.0109 99.9
4 32.22 11.58 0.594 0.0099 0.9690 0.0076 98.8
5 31.67 9.768 0.523 0.0095 0.9228 0.0091 99.3

Table 10
Different configurations of 𝑳𝒓𝑒𝑐 and 𝑳𝑴

𝒓𝑒𝑐 . Bold and underlined numbers denote the
best and second best respectively. The first row presents the test results of PDA-GAN

ithout 𝐿𝑀
𝑟𝑒𝑐 . The second row presents the test results of PDA-GAN without 𝐿𝑟𝑒𝑐 . The

hird row represents the model with only 𝐿𝑀
𝑟𝑒𝑐 in the first 150 epoch and only 𝐿𝑟𝑒𝑐 in

he second 150 epoch. The fourth row represents the model with both 𝐿𝑟𝑒𝑐 and 𝐿𝑀
𝑟𝑒𝑐

hroughout the training process.
𝐿𝑟𝑒𝑐 𝐿𝑀

𝑟𝑒𝑐 𝑅𝑐 𝑜𝑚 ↓ 𝑅𝑠ℎ𝑚 ↓ 𝑅𝑠𝑢𝑏 ↓ 𝑅𝑜𝑣𝑒 ↓ 𝑅𝑢𝑛𝑑 ↑ 𝑅𝑎𝑙 𝑖 ↓ 𝑅𝑜𝑐 𝑐 ↑
✓ × 32.07 13.56 0.727 0.0353 0.9205 0.0109 99.7
× ✓ 34.91 19.48 0.927 0.0166 0.9232 0.0055 100.0
– – 35.20 20.00 0.975 0.0070 0.8961 0.0101 99.9
✓ ✓ 32.95 12.88 0.628 0.0125 0.9517 0.0109 99.9

set to 1:6. Other training details, such as the number of epochs and
earning rates, are provided in Section 4.1. With this configuration,
e performed ablation studies on the weight parameters in Eq. (3),

including the weight ratio between the two discriminators and the two
reconstruction losses, to determine the optimal settings for DD-GAN.
Different weight configurations for 𝐿𝐺

𝑃 𝐷 and 𝐿𝐺
𝐺 𝐷 As mentioned

earlier, based on the weight ratio of 1:1:6 for 𝐿𝑟𝑒𝑐 , 𝐿𝑀
𝑟𝑒𝑐 , and 𝐿𝐺

𝑃 𝐷, we
conducted ablation experiments on different weight configurations for
𝐿𝐺
𝐺 𝐷, as shown in Table 5. It can be observed that when both 𝛽 and
are set to 6, the model achieves optimal results across most metrics.
owever, in this case, the 𝑅𝑜𝑐 𝑐 metric, which measures the ratio of non-
mpty layouts predicted by the model, shows that three images fail to
enerate any layout elements. When the weight of 𝛾 is set to 8 or higher,
he model successfully generates graphical elements for all test images,
esulting in an 𝑅𝑜𝑐 𝑐 value of 100.0. Therefore, we set 𝛽 to 6 and 𝛾 to 8.
Different weight configurations for 𝐿𝑟𝑒𝑐 and 𝐿𝑀

𝑟𝑒𝑐 We also conducted
ablation experiments with different weight configurations for 𝐿𝑟𝑒𝑐 and
𝐿𝑀
𝑟𝑒𝑐 , as shown in Table 6. It can be seen that the model’s overall perfor-
ance is not significantly affected by different weight configurations.
his stability benefits from our model, which considers both the explicit
esthetic of the graphical layout geometry and the implicit aesthetic of

the coordination between the image and the graphical layout. Since the
model achieves stable performance across all metrics with an 𝑅𝑜𝑐 𝑐 value
of 100.0 when the weight ratio of 𝐿𝑟𝑒𝑐 to 𝐿𝑀

𝑟𝑒𝑐 is 1:1, we ultimately set
both weight coefficients to 1.

4.4.3. Ablations for MLM
To fully demonstrate the effectiveness and seamless integration of

he proposed MLM, we incorporated MLM into the CGL-GAN, PDA-
GAN, and DD-GAN in the first ablation study, comparing the perfor-
mance changes before and after the integration. In subsequent ablation
8 
studies, we further demonstrated the straightforward integration of
MLM by using PDA-GAN as the base model. We conducted compar-
ative experiments involving multi-iteration training, ablation studies
with varying repetition times, and configuration ablation experiments
related to 𝐿𝑟𝑒𝑐 and 𝐿𝑀

𝑟𝑒𝑐 .
Different models with MLM. Table 7 presents the performance results
f integrating MLM into various models for comparative evaluation.
n comparison to the original PDA-GAN [2] model, the inclusion of

MLM resulted in improvements across all measurement metrics except
for 𝑅𝑐 𝑜𝑚. Particularly within our model, the introduction of MLM
led to improvements in all measurement metrics, affirming that MLM
imparts stronger supervisory signals. These supervisory signals enable
the model to gain a more profound understanding of both explicit
and implicit aesthetic principles in image-aware graphic layouts. As
shown in Fig. 6, the model incorporating MLM demonstrates rapid
convergence in the initial training phase. Although the CGL-GAN with

LM experiences loss fluctuations during training, the final loss value
tabilizes at a low level after training. Furthermore, for PDA-GAN and
D-GAN with MLM, the loss values remain consistently low throughout

he training process. From the two subfigures on the right side of
Fig. 6, the model without MLM exhibits oscillations during training.
In contrast, the model with MLM demonstrates greater stability during
training, benefiting from the richer reconstruction information pro-
vided by MLM for supervision. This clearly illustrates the convenience
and effectiveness of integrating MLM into other models, providing more
effective supervisory signals.
Comparison of MLM and Multi-Iteration Training. To validate the
ease of integrating MLM into other models and its provision of more
effective supervisory signals, we incorporated MLM into PDA-GAN [2]
and compared it with the original PDA-GAN through multiple train-
ing iterations, as depicted in Table 8. As the training iterations in-
creased, the original PDA-GAN exhibited marginal improvements in
𝑅𝑐 𝑜𝑚, 𝑅𝑠ℎ𝑚, and 𝑅𝑠𝑢𝑏. In contrast, the PDA-GAN that incorporates
MLM achieved optimal results across all measurement metrics after
only training 300 epochs, except 𝑅𝑐 𝑜𝑚. Particularly noteworthy is the
significant improvement in 𝑅𝑠ℎ𝑚, 𝑅𝑠𝑢𝑏, 𝑅𝑜𝑣𝑒, and 𝑅𝑢𝑛𝑑 , where the PDA-
GAN with MLM, trained for 300 epochs, outperformed the PDA-GAN
without MLM trained for 1800 epochs by 4.1%, 10.7%, 66.8%, and
4.1%, respectively. This clearly demonstrates that MLM provides more
comprehensive supervisory signals for the model compared to multi-
iteration training, enabling the model to better learn both explicit and
implicit aesthetic principles of image-aware graphic layouts.
MLM with different repeated times. Table 9 demonstrates that the
model achieves enhanced performance with the inclusion of MLM
under various repeated times. Moreover, a comparison with Table 8
in the paper reveals that incorporating MLM into the model out-
performs multi-iteration training. The primary reason is that multi-
iteration training does not guarantee effective supervision for each
query, whereas MLM ensures that every query receives consistently
effective supervisory signals.

Additionally, as shown in Table 9, the model’s performance varies
with different repetition times, exhibiting a nonlinear relationship.

his indicates that performance does not simply improve or decline
monotonically with the number of repetitions. For example, when the
repeated time exceeds 3, excessive supervised learning can lead to over-
itting, resulting in decreased test set performance of 𝑅𝑜𝑐 𝑐 . Conversely,

when the repeated time is less than 3, insufficient supervision leads
to underfitting, also decreasing 𝑅𝑜𝑐 𝑐 . Considering the performance in
terms of the ratio of non-empty layouts (𝑅𝑜𝑐 𝑐), we ultimately choose to
replicate three times as the final setting for the model.
Configurations of 𝐿𝑟𝑒𝑐 and 𝐿𝑀

𝑟𝑒𝑐 . In our ablation study, we also
explored the effects of supervising our model using only 𝐿𝑟𝑒𝑐 , only
𝑀
𝑟𝑒𝑐 , or both 𝐿𝑟𝑒𝑐 and 𝐿𝑀

𝑟𝑒𝑐 . Furthermore, we experimented with using
𝐿𝑀
𝑟𝑒𝑐 during the initial unstable training phase and switching to 𝐿𝑟𝑒𝑐

after 150 epochs for another 150 epochs. As shown in Table 10,
when the model was supervised only by 𝐿 , it performed well on
𝑟𝑒𝑐
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Fig. 7. The demonstration of DD-GAN’s performance when transferred to other datasets.
content-relevant metrics but poorly on graphic metrics. Conversely,
when supervised only by 𝐿𝑀

𝑟𝑒𝑐 , the model showed improvement in
graphic metrics but a significant decline in content-relevant metrics.
When both 𝐿𝑟𝑒𝑐 and 𝐿𝑀

𝑟𝑒𝑐 were used simultaneously for training, as
indicated in the fourth row of Table 10, the model achieved the best or
second best performance in all metrics, particularly excelling in metrics
of 𝑅𝑠ℎ𝑚, 𝑅𝑠𝑢𝑏, and 𝑅𝑢𝑛𝑑 . Based on these results, we ultimately decided
to use both 𝐿𝑟𝑒𝑐 and 𝐿𝑀

𝑟𝑒𝑐 for supervision to generate content-aware
graphic layouts that balance both explicit and implicit aesthetics.

4.5. Testing DD-GAN on other datasets

In the previous experiments, we primarily focused on evaluating the
performance of various models on the CGL-Dataset. Here, we assess the
performance of DD-GAN on the PKU-Dataset [13], as shown in Fig. 7.
From the first row of Fig. 7, it can be observed that DD-GAN effectively
avoids the main subject areas in the PKU-Dataset, ensuring that both
the primary content of the original image and the generated layout
elements are well presented. In the second row of Fig. 7, text elements
tend to be placed in smooth background regions, improving the read-
ability of the text. The third row shows that when the background of
text elements is complex, DD-GAN often generates an underlay element
to replace the intricate background, thereby enhancing the readability
of the textual information. In summary, these results demonstrate that
DD-GAN can be effectively applied to other datasets, showcasing strong
robustness and adaptability.

5. Conclusion

To address the challenges of capturing both explicit and implicit
aesthetic principles in existing layout generation models, this paper in-
troduces multi-focus label matching and proposes DD-GAN. The multi-
focus label matching accelerates convergence and provides richer su-
pervision for models during training. Both quantitative and qualitative
9 
evaluations demonstrate that DD-GAN, coupled with multi-focus la-
bel matching, can generate high-quality image-aware graphic layouts
for advertising posters, which simultaneously satisfy explicit aesthetic
principles. In the future, we will further explore video layout genera-
tion tasks, focusing on acquiring video datasets and ensuring smooth
transitions in continuous frame layouts.
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