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Abstract This study proposes a novel alternating optimization algorithm for bundle adjustment, a critical process in

structure from motion methods. We introduce the inverse depth of each three-dimensional (3D) point as an augmented

independent variable and develop a low-order polynomial error metric. Theoretically, the error can be adjusted to align

closely with the re-projection error since it essentially acts as a re-weighted re-projection error. We decouple the bundle

adjustment problem by breaking it down into three separate tasks: estimating the camera’s pose, determining the 3D

structure, and optionally estimating the camera’s intrinsic parameter. Each task can be handled independently, either by

camera or by point, allowing for easy distribution of computation. Camera pose estimation is a case of the absolute orientation

problem, which can be globally solved in closed form. A linearization scheme is proposed for 3D point estimation, which

allows the computation of the update direction and line search in closed form. Our algorithm proves to be efficient, reliable,

and accurate, as demonstrated by experimental results that confirm its superiority over recent alternatives.
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1 Introduction

Bundle adjustment (BA) is a crucial component in structure from motion (SfM) and simultaneous local-
ization and mapping (SLAM) [1–3] applications. It is formulated as a least-squares optimization problem
concerning the re-projection or photometric error of a set of matched 2D features [4–7].

Traditionally, methods like the Gauss-Newton algorithm and its variants are employed to tackle the
BA problem. A significant challenge is the time required to solve the normal equation system in each
iteration. To expedite this process, techniques such as the Schur complement [8] or preconditioned
conjugate gradient (PCG) [9] methods are often utilized.

In large-scale BA scenarios, such as city-scale problems where data is too extensive for a single machine,
alternating optimization (AO) methods are explored. These methods distribute the computation by
dividing variables into subproblems concerning either cameras or 3D points. By alternately updating
these subproblems, they aim to reduce the re-projection error. Some approaches, like proximal splitting
and the alternating direction method of multipliers (ADMMs) [10], first partition 3D points or cameras
into disjoint sets and then solve each in turn. However, these methods tend to achieve consensus through
variable aggregation and multiplier adjustment, which can lead to a slower convergence rate [10].

This study introduces a new algorithm for BA that is fast enough for real-time visual SLAM systems
and large-scale BA problems. Our algorithm also alternately refines camera poses, 3D points, and the
camera’s intrinsic parameters, leveraging key technical innovations to achieve fast convergence speed.

• We introduce the inverse depth of each 3D point as an augmented variable to modify the re-projection
error, significantly reducing non-linearity in the objective functions. This adjustment allows all subprob-
lems to be optimally refined with closed form solutions.

• We propose a linearization scheme to derive a closed form solution for refining 3D points. By treating
changes in inverse depths and 3D positions as variables and discarding second-order terms, we achieve
a linear objective function. This step enables the simultaneous solution of update directions for inverse
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depth and 3D positions. The original objective function is a fourth-order polynomial, and line search
also has a closed form solution.

The augmented inverse depth variable in our formulation aims to replace division with multiplication,
significantly reducing the nonlinearity of the objective function. While similar parameters are used in
photometric BA, where inverse depth parameterizes the 3D structure [6], here it is applied differently.
Our modified error measurement, involving inverse depth, is effectively a re-weighted re-projection error.
This allows us to seamlessly adjust the modified error back to the original error using the cosine of the
angle between the optical axis and the observation ray connecting the optical center and the 2D feature
point. Our objective function is not only easier to optimize compared to the re-projection error, but also
achieves the same accuracy.

Our framework permits independent update of each 3D point with fixed camera poses and vice versa,
facilitating straightforward distributed implementation. In our current setup, we partition captured
images into disjoint sets, requiring only transmission of data related to overlapping 3D points visible
across multiple sets. However, the transmitted information is utilized to solve the 3D-point updating
subproblem, which is different from the parameter or consensus steps in [10, 11].

Our method introduces a stable, efficient, and accurate solver for BA, which is also easy to imple-
ment. We evaluated our method against leading methods across various problem sizes, ranging from
small real-time SLAM to city-scale SfM tasks. The experimental results confirm the advantages of our
method, achieving the highest accuracy on datasets with ground truths among state-of-the-art methods.
Furthermore, it can solve very large BA problems on standard computers with a maximum of 8 GB of
memory.

The rest of this paper is organized as follows. Section 2 summarizes related work, Section 3 presents the
mathematical framework of our method, Section 4 compares our method with state-of-the-art approaches,
and Section 5 concludes the paper.

2 Related work

2.1 BA

BA involves solving a vision model that accounts for a set of matched 2D features. This model includes
a set of 3D points, camera poses, and optionally the camera’s intrinsic parameters, all of which are con-
sidered unknown variables. BA is typically defined as an optimization problem min J(θ) =

∑n

i ‖eri (θ)‖2,
where eri represents the re-projection error of the ith observation and θ the vector of unknowns.

Existing BA implementations belong to the family of Gauss-Newton methods [4]. A normal equation
system H∆θ = g is solved in each iteration. The number of unknowns is huge as it contains every 3D
point and camera pose. Therefore, the matrix H becomes considerably large, making the computational
process time-consuming as significant resources are devoted to solving the normal equation system.

To reduce computational complexity, the sparsity of the BA problem can be explored [4, 8]. This
sparsity arises because each term of the objective function involves only a single camera and a single 3D
point. This implies that the normal equation system can be represented in a sparse form [12]

[

B E

ET C

] [

∆y

∆z

]

=

[

g1

g2

]

,

where B and C represent block diagonal matrices, the inverses of which are easy to compute. Then, one
can eliminate ∆z to get [B −EC−1ET]∆y = g1 −EC−1g2, forming a smaller equation system, named
the reduced camera system (RCS). This technology is also known as the Schur complement trick.

Some variants can further accelerate BA computation. One such method, RootBA [13], uses a memory-
efficient nullspace projection of the Jacobian, offering a more sparse-efficient alternative to the Schur com-
plement. This technique allows for solving large-scale BA problems using only single-precision floating-
point numbers. Another approach, PowerBA [14], speeds up computation by expanding the inverse Schur
complement using a power series. Furthermore, STBA [15], uses a stochastic algorithm to decompose the
RCS during Levenberg-Marquardt (LM) iterations, thus accelerating computation.

However, the complexity of RCS remains as high as O(n2). Therefore, more efficient methods are
necessary for handling large-scale BA problems, such as city-scale reconstruction [10,16,17]. Most existing
methods often rely on PCGs or the ADMMs. Details of the methods are discussed below.
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2.2 Inexact method

Researchers in [9,12,18,19] have explored the use of inexact PCGs to solve the normal equation system.
The CG method solves a system of linear equations using non-expensive matrix-vector production, which
eliminates the need to explicitly construct the matrix in memory [9,12]. Thus, time and space complexity
are reduced.

Multicore [9] is likely the most efficient PCG-based method. It exploits the sparsity of both the
Jacobians and the preconditioners, thereby breaking down the computation into a series of simple matrix-
vector products, which is parallelized by dividing the computation into camera-, point-, and observation-
wise components.

Inexact methods, while efficient, may compromise accuracy. While the CG method requires a large
number of iterations to achieve satisfactory accuracy, most PCG-based BA methods employ a fixed,
limited number of iterations. Consequently, exact BA algorithms are more common in scenarios where
high accuracy is paramount, with most commercial 3D vision software opting for exact BA libraries [20].

2.3 ADMM based method

To solve BA problems in a distributed way, ADMM-based methods are proposed in [10, 21]. These
methods distribute the objective function and its variables across multiple machines, solving problems
iteratively in an alternating manner. In each iteration, individual machines independently optimize their
local variables. The newly computed local variables are sent to a master machine to compute the average,
which in turn broadcast back to the local machines. This process ensures the consensus of split variables
by using an additional penalty term in the objective function. Notable examples of these methods includes
RPBA [22], DPBA [23] and STBA [15].

However, the convergence rate of ADMM-based methods can be slow. This is because the ADMM
method is inherently designed for convex problems, which do not directly align with the nature of the
BA problem. To adapt ADMM for BA problems, approach [10] suggests using sufficiently large penalty
parameters, which unfortunately can further slow down the convergence rate.

2.4 Error measurement

The re-projection error is the gold-standard metric for building the objective function [24, 25]. It is

typically expressed as ‖v− p(θ)
λ(θ)‖, where v is an observation, p denotes an estimated 3D point, λ represents

the point depth, and θ indicates the parameter vector of the vision system. The re-projection error is a
fraction because λ depends on θ.

Minimizing the objective function based on re-projection error can be challenging owing to its nu-
merous fractions. A popular treatment is taking λ as an independent variable and moving it out of the
denominator [26, 27]. Then, the error becomes ‖vλ − p(θ)‖. The term vλ can be viewed as the back-
projection of an observation into the 3D space. This error measurement is sometimes referred to as the
space error.

The space error is easier to minimize but less accurate than the re-projection error because it does not
align with the distribution of vision noise, often re-weighting 3D points by using the point depth λ.

To simplify the error metric and preserve accuracy, we follow [27] and take the inverse point depth,
s = 1

λ
, as an independent variable. This transforms our error expression to ‖v− p(θ)s‖. The benefits of

our error definition are twofold. First, the resulting objective function becomes a low-order polynomial,
making it easier to minimize. Second, the error measurement is conducted from the camera side, ensuring
that the observation term v remains unaffected in our error expression. Moreover, our error can be
mapped back to the re-projection error with a negligible difference using a known constant factor. Further
details are provided in Section 3.

The concept of inverse point depth has been explored in extended Kalman filter (EKF)-based SLAM
approaches [28, 29]. However, their application of inverse point depth differs significantly from ours. In
EKF methods, inverse depths serve as intermediate variables to parameterize 3D points but are not
treated as independent. The error measurement in these methods remains based on the re-projection
error. Conversely, our approach treats inverse point depths as independent variables, allowing us to define
a new objective function.
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2.5 Learning-based method

Recently, learning-based methods [30–33] have been introduced to solve the SLAM problem. These
approaches often utilize a multilayer perceptron (MLP) as a scene encoder, to query scene density and
color using view coordinates. A differential rendering process then synthesizes images from this data.
By comparing these rendered images with a set of input images, gradient descent is used to optimize
the MLP and the view coordinates. Gradients are computed on a set of keyframes or sampled pixels to
manage computational demands and prevent catastrophic forgetting.

While learning-based methods enable joint camera tracking and dense surface reconstruction, they
require significant computational power. Currently, only room-size problems can be processed in real-
time using high-performance GPUs. Importantly, the issue of catastrophic forgetting still prevents these
learning-based methods from achieving a global optimum in large-scale BA problems. Consequently,
the traditional BA problem, which focuses on spare-matched 2D features, still needs investigation and
remains the primary focus of this study.

3 Our algorithm

In this section, we will first describe how to formulate the modified re-projection error using inverse depth
for pinhole cameras. We will then delve into the specifics of three tasks: refining camera pose, refining
3D points, and refining the camera’s intrinsic parameters.

Notations. We suppose a BA problem involving n 3D points observed in m images. The ith 3D
point in the world coordinate frame is denoted as pi = [X,Y, Z]Ti , i ∈ {1, . . . , n}. The camera pose of the
jth image is represented by a rotation matrix Rj and a translation vector tj , j ∈ {1, . . . ,m}. The local
coordinates of the ith 3D point under the jth camera pose are Rjpi + tj . Since cameras might share
intrinsic parameters, we denote the set of focal length parameters as fk, k ∈ {1, . . . ,K}.

3.1 Modified re-projection error

The re-projection of the ith 3D point onto the jth image using a pinhole camera model can be formulated
as follows:

v̂i,j =

[

(pT
i r

1
j + t1j )fk

pT
i r

3
j + t3i

,
(pT

i r
2
j + t2j )fk

pT
i r

3
j + t3j

, fk

]T

, (1)

where r3
j is the 3rd row of Rj , t

3
j the 3rd component of tj . The 3rd term of v̂i,j is fk because it is on the

image plane, as shown in Figure 1.
We denote the observation of the ith point on the jth image plane as follows:

vi,j = [ui,j, vi,j , fk]
T, (2)

where vi,j is computed from the pixel position of the corresponding feature using the camera’s intrinsic
parameters, which are obtained by either calibration or initialization. For simplicity, we consider vi,j

as known measurements when estimating camera poses and 3D points. In most SLAM and SfM tasks,
the cameras are already calibrated. We will also show how to refine the camera’s intrinsic parameters in
Subsection 3.2.3.

The re-projection error is the difference between the observation of a 3D point and its re-projection [24].
To facilitate the formulation in our paper, we write the re-projection error eri,j as follows:

eri,j = ‖vi,j − v̂i,j‖2 =

∥
∥
∥
∥
∥
vi,j − (Rjpi + tj)

fk

pT
i r

3
j + t3j

∥
∥
∥
∥
∥
2

, (3)

where ‖ · ‖2 denotes the Euclidean distance.
Reformulation with inverse depth. The term fk

pT
i r3

j+t3j
in (3) can be viewed as the inverse depth

of pi in the jth local frame scaled by the focal length fk. We propose to take this term as an augmented
variable and denote it as si,j . Therefore, the modified re-projection error function is expressed as follows:

ei,j = ‖vi,j − (Rjpi + tj)si,j‖2. (4)
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Figure 1 Pinhole camera projection of the ith point on the jth image. qi,j = Rjpi + tj represents the position of the point

within the local camera coordinate frame. v̂i,j denotes the re-projection position of the point on the image plane. vi,j indicates

the observed position of the point. q̂i,j = qi,jsi,j is the modified re-projection position of the point by our method. eri,j signifies

the original re-projection error, and ei,j is the modified error. Oj is the principal point of the camera, where Cj is the intersection

point between the image plane and the camera’s optical axis.

By introducing si,j , we replace division operations with multiplication. This reduces the nonlinearity
of the objective function, simplifying the derivation of closed form optimal solutions (please refer to the
details in Subsections 3.2.1 and 3.2.2).

The accuracy of the modified error ei,j presented in (4) can be studied by comparing it with the original
re-projection error eri,j in (3). We now show that ei,j can be explained as a re-weighted eri,j . Specifically,
ei,j = eri,jcos(αi,j), where αi,j is the angle between the optical axis and the re-projection line of the 3D
point (see Figure 1).

As si,j is an independent variable, the solution for si,j that minimizes (4) must be optimal concerning
the other variables. When these other variables are fixed, the problem about si,j is a simple linear system.
Consequently, the solution to si,j is as follows:

si,j =
qT
i,jvi,j

qT
i,jqi,j

,

where qi,j = Rjpi+tj is the position of the ith 3D point under the jth camera pose. The error expression
in (4) can be written as ‖vi,j − qi,jsi,j‖. The role of si,j is evident, as seen in Figure 1. Specifically, it
finds a point q̂i,j = qi,jsi,j on the line between qi,j and Oj , so that q̂i,j closely matches the observation
vi,j . Therefore, the three points 〈vi,j , q̂i,j , v̂i,j〉 form a perpendicular triangle. This triangle is similar
to the triangle 〈Oj , Cj , v̂i,j〉, as shown in Figure 1. Therefore, we can deduce that ei,j = eri,jcos(αi,j),

with an optimal inverse depth value. Thus, we can use 1
cos(αi,j)

ei,j to re-weight ei,j back to the original

re-projection error eri,j .

Moreover, the re-weighting factor 1
cos(αi,j)

=
‖v̂i,j‖
fk

can be further approximated by a known constant

coefficient. As the magnitude of v̂i,j − vi,j is usually much smaller than fk in BA, we could safely ignore

the difference such that φi,j :=
‖vi,j‖
fk

≈ ‖v̂i,j‖
fk

= 1
cos(αi,j)

. Since vi,j and fk are known, the re-weighting

factor can be fixed.
In summary, we use φi,jei,j as our error measurement. It well approximates the re-projection error

while still maintaining its properties when deriving closed form solutions.

Remark 1. The previous discussion points out that the original re-projection error tends to assign
greater weight to pixels with larger projection angles. These pixels, typically located further from the
image center, are more prone to distortion, blur, and brightness decay. Therefore assigning significant
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weight to them is not practical. Another error measurement version, where φi,j = 1, changes this
unbalanced weighting. Hence, we reserve φi,j = 1 as an option to build the objective function. To clarify

notations, we call “V-metric” for φi,j = 1 and “Z-metric” for φi,j =
‖vi,j‖
fk

. In our experiments, both
metrics demonstrate similar performance, each achieving higher accuracy compared to methods relying
solely on the re-projection error.

3.2 Alternative optimization

According to our error metric, the objective function in our algorithm is expressed as follows:

J =
∑

i,j∈Ω

µi,je
2
i,j , (5)

where (i, j) ∈ Ω indicates that the ith point is visible on the jth image, and µi,j is a mixed weight to
account for our correcting factor φi,j , uncertainty [2] and the re-weighting factor of robustification [4],
to control the influence of a specific error term. Note that µi,j is a known and constant number in each
iteration, where ei,j is defined in (4).

3.2.1 Camera pose refinement

When refining camera poses, we keep the 3D point variables and the camera’s intrinsic parameters
constant. This means that each error term involves only one camera pose at a time. Thus, we can update
each camera pose independently and omit the subscript j when referring to the jth camera pose.

The objective function about the jth camera pose is as follows:

Jj(R, t) =
∑

i∈Ωj

µi‖vi − (Rpi + t)si‖22, (6)

where i ∈ Ωj means that the ith point is captured on the jth image. Setting the derivative with respect
to t to zero yields the solution to t:

t∗ =

∑

i∈Ωj
(visi −Rpis

2
i )µ

2
i

∑

i∈Ωj
s2iµ

2
i

. (7)

Substituting (7) to (6) yields the following:

Jj =
∑

i∈Ωj

µi

∥
∥
∥
∥
∥
vi −

(

Rpi +

∑

i∈Ωj
visi +R

∑

i∈Ωj
pis

2
i

∑

i∈Ωj
s2i

)

si

∥
∥
∥
∥
∥

2

2

=
∑

i∈Ωj

µi

∥
∥
∥xi −Ryi

∥
∥
∥

2

2
, (8)

where

xi = vi −
∑

visi
∑

s2i
si, yi =

(

pi +

∑
pis

2
i

∑
s2i

)

si.

Globally minimizing (8) constitutes a special case of the absolute orientation problem, for which closed
form solutions are available [34].

3.2.2 3D point refinement

Similarly, we refine 3D points and their inverse depth on different images while keeping camera poses and
intrinsic parameters fixed. For clarity, the subscript i is omitted when referring to the ith point. The
objective function about the ith point can be formulated as follows:

Ji(p, sj) =
∑

j∈Ωi

µj‖vj − (Rjp+ tj)sj‖22, (9)
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where Ωi represents the set of images on which the ith 3D point is detected.
The objective function in (9) is nonlinear because the term (Rjp + tj)sj involves the product of

optimization variables. Therefore, the closed form solutions for p and sj are not readily accessible.
Fortunately, since Eq. (9) is a low-order polynomial, it can be efficiently minimized using conventional
optimization methods, such as Newton’s method. In this paper, we introduce an alternative scheme that
simplifies the derivation of closed form solutions.

Specifically, we replace p and sj with p + δp and sj + δsj , respectively. By fixing the current values
of p and sj , we treat δp and δsj as new variables. With simple variable substitution and combination,
Eq. (9) can be reformulated as follows:

Ji(δp, δsj) =
∑

j∈Ωi

µj‖êj − δpsj − q̂jδsj − δpδsj‖22,

where êj = RT
j (vj − (Rjp+ tj)sj) and q̂j = RT

j (Rjp+ tj). Since the term δpδsj is of second order, we
propose to drop it, thereby obtaining a linearized objective function:

J̄i(δp, δsj) =
∑

j∈Ωi

µj‖êj − δpsj − q̂jδsj‖22. (10)

The analytical solution to minimize the linear (10) can be easily derived. Specifically, the solution of
δsj is as follows:

δs∗j =
q̂T
j (êj − δpsj)

q̂T
j q̂j

. (11)

Substituting (11) to (10) yields the following:

J̄i(δp) =
∑

j∈Ωi

µj

∥
∥
∥
∥
∥
êj − δpsj − q̂j

q̂T
j (êj − δpsj)

q̂T
j q̂j

∥
∥
∥
∥
∥

2

2

=
∑

j∈Ωi

µj

∥
∥
∥
∥
∥

(

I −
q̂j q̂

T
j

q̂T
j q̂j

)

︸ ︷︷ ︸

Aj

(êj − δpsj)

∥
∥
∥
∥
∥

2

2

, (12)

where I is an identity matrix. It is worth noting that AT
j Aj = Aj . Then, the solution of δp is as follows:

δp∗ = A−1
p yp, (13)

where Ap =
∑

j∈Ωi
Ajs

2
jµj and yp =

∑

j∈Ωi
Ajejµj .Importantly, Ap and yp are accumulations, as seen

in their formulas. This means that Ap and yp can be computed in a distributed way. Details are seen in
Subsection 4.2.5.

Our method offers a more computationally efficient alternative compared to the conventional Newton’s
method. Let dn = 3 + |Ωi|, where |Ωi| represents the number of the images on which the 3D point is
visible. The naive Newton’s method is employed, and a dn×dn linear equation system needs to be solved
for δp∗. By contrast, Ap in our method is only 3× 3.

Theorem 1. The optimal solution to (10) is a descent direction about the original objective function.
Proof. Let the optimal solution that minimizes J̄i in (10) be δp∗, δs∗j . We denote ē = δp∗sj + q̂jδs

∗
j .

Then,

J̄i(δp
∗, δs∗j ) =

∑

j∈Ωi

µj ê
T
j êj − 2

∑

j∈Ωi

µj ê
T
j ēj +

∑

j∈Ωi

µj ē
T
j ēj .

We suppose
∑

j∈Ωi
µj ê

T
j ēj < 0, and then

J̄i(−δp∗,−δs∗j ) = J̄i(δp
∗, δs∗j ) + 4

∑

j∈Ωi

µj ê
T
j ēj 6 J̄i(δp

∗, δs∗j ).
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However, this is not possible since Eq. (10) is a linear function, and its optimum is unique and global.
Thus,

∑

j∈Ωi
µj ê

T
j ēj > 0.

Let h be a step size. The original objective function along the direction of (δp∗, δs∗j ) is as follows:

Ji(h) =
∑

j∈Ωi

µj‖êj − (δp∗sj + q̂jδs
∗
j )h− (δp∗δs∗j )h

2‖22. (14)

Then,

dJi
dh

∣
∣
∣
h=0

= −
∑

j∈Ωi

µj ê
T
j ēj 6 0, (15)

where Ji is a smooth and continuous polynomial. Since the directional derivative along (δp∗, δs∗j ) is
non-positive, we conclude that this direction is a robust updating direction.

Ji(h) is a fourth-order polynomial. To find the optimal value for h, we solve a third-order polynomial
equation, for which well-known closed form solutions exist. Once the optimal step size h∗ is determined,
the 3D point is updated by p = p+ δp∗h∗ and sj = sj + δs∗h∗.

3.2.3 Camera intrinsic parameter update

This subsection presents the formulas for updating the camera’s intrinsic parameters, which is unnecessary
for cameras that are precalibrated.

The intrinsic parameters are encoded within the variables vi,j . When these parameters are known
or fixed, one can treat vi,j as constant coefficients. In this subsection, however, we focus on decoding
intrinsic parameters from vi,j , while keeping other variables fixed.

Following [12], we assume that the optical center [cx, cy] is positioned at the image center, as estimating
these in BA is challenging. Moreover, we assume the horizontal and vertical focal lengths, fx and fy, are
equal, denoted as fx = fy = f .

The focal length f already appears in vi,j . Furthermore, we account for radical distortion, which is
usually modeled using the polynomial r̂ = rP (r) = r + c1r

2 + c2r
4. Here, r =

√
u2 + v2 represents

the distorted radius of a pixel, and r̂ is the corrected radius. It is important to note that we use back-
projection distortion coefficients, which correct the back-projection ray of a distorted pixel. This approach
contrasts with the more widely used distortion parameters that calculate the distorted pixel position of
an input ray.

Given the fixed 3D points and camera poses, the right side of the projection equation is a fixed 3D
point. Then, the objective function of the kth camera is as follows:

Jk =
∑

i∈Ωk

µi
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, (16)

where ri =
√

u2
i + v2i , and i ∈ Ωk indicates that the ith projection is made by the kth camera. The

optimal solution to the focal length f is straightforward, as follows:

f∗ =

∑

i∈Ωk
zkµ

2
i

∑

i∈Ωk
µ2
i

. (17)

Let r̂i =
√

x2
i + y2i . The objective function about c1 and c2 is also linear.

Jk(c1, c2) =
∑

i∈Ωk

µi‖ri + c1r
2
i + c2r

4
i − r̂i‖2. (18)

Let Ci =
[
r4
i

r6
i

r6
i

r8
i

]
. The solutions to c1 and c2 are

[

c1

c2

]∗

=

(
∑

i∈Ωk

Ciµ
2
i

)−1(
∑

i∈Ωk

Ci

[

r2i

r4i

]

(r̂i − ri)µ
2
i

)

. (19)
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Figure 2 (Color online) Examples of colored images from AirSim.

4 Experiments

To the best of our knowledge, there does not yet exist a very large BA dataset equipped with ground
truth. For a comprehensive evaluation, we use public and synthetic datasets, structuring our evaluation
as follows.

• We assess accuracy against ground truth using a dataset named ETHBA, which we derived from
the ETH3D SLAM Benchmark [35].

• We evaluate robustness in BAL [12] in the presence of significant outliers. A synthetic dataset
named ASBA, generated from AirSim [36], helps us evaluate robustness under conditions of inaccurate
initialization.

• We compare the efficiency of our method across all datasets.

• We conduct SLAM experiments using the EuRoC [37] dataset.

• We perform distributed experiments using the ASBA dataset.

As usual in the field, translation errors are measured using Euclidean distance. Rotation measures
are determined by the norm of the exponential coordinate of RgR

T
t , where Rt is the estimated rotation

matrix and Rg is its ground truth. All experiments ran on an Intel Core i5-4460 CPU at 3.20 GHz, with
8 GB of memory.

We compare our proposed alternating BA (ABA) with state-of-the-art methods, including CeresBA [38],
Multicore (MBA) [9], RootBA [13], and ORB-SLAM3 [2]. The open-source codes for these methods were
sourced online. We strictly adhere to the manuals of those codes and use their default control parameters
to ensure a fair comparison. Unfortunately, we could not find any open-source code for ADMM-based
methods.

Our approach is implemented in C++ and parallelized using the TBB library [39]. We plan to make
both the code and dataset publicly accessible online.

4.1 Dataset

The BAL dataset [12] is probably the most popular dataset for BA in the literature and is employed in this
study for evaluating efficiency and robustness. The images in BAL are either captured at a regular rate
using a Ladybug camera or sourced from the internet. This makes BAL a real-world, extensive dataset
that includes significant outliers, rendering it ideal for assessing efficiency and robustness. However, BAL
lacks ground truth data for camera poses and 3D points, making it unsuitable for accuracy evaluation.

Accuracy evaluation is conducted on a synthetic dataset called ETHBA, which we created from the
ETH3D SLAM benchmark [35]. This benchmark provides camera calibration, RGB-D images, and ground
truth camera poses. We detect and match 2D features in the color images using SURF features [40],
filtering out matches with a re-projection error larger than 4 pixels to prevent outlier interference in
accuracy evaluations.

The 3D scenes in ETHBA dataset is small, so we turned to AirSim [36] to generate a large dataset.
AirSim is a simulator designed for drones and cars, serving as a platform for AI research to experiment
with deep learning, computer vision, and reinforcement learning algorithms. We manually control a drone
to fly over a virtual city map called CityEnviron, collecting camera calibration data, camera poses, and
RGB-D images by frame. Some examples of these color images are shown in Figure 2. The data format
mirrors that of ETH3D, and we again use SURF feature to convert this data into a BA dataset, which
we refer to as ASBA in this study.

ETHBA and ASBA use the same format as BAL and are readily readable by all comparison methods.
Some basic information about the synthetic datasets is given in Table 1.

Meanwhile, we use the public dataset EuRoC [37] for the SLAM experiment as EuROC is readily
readable by the ORB-SLAM3 code.
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Table 1 Basic statistics of the ETHBA and the ASBA datasets.

cables1 table7 repetitive ASBA

Images 1158 1484 1015 32739

3D points 68824 11189 11639 3446776

Projections 860608 126835 167178 29738513

Figure 3 (Color online) Convergence curve concerning computational time on the ETHBA dataset.

Table 2 Camera pose errors of the compared algorithms on the ETHBA and the ASBA datasets.

cables1 table7 repetitive ASBA

Translation (mm)

ABAv 0.0104 0.0196 0.0204 1.30

ABAz 0.0101 0.0194 0.0203 1.296

CeresBA 0.0196 0.0274 0.0279 –

MBA 0.3529 0.3608 0.6609 –

Rotation

ABAv 0.0122 0.0183 0.0114 0.0042

ABAz 0.0118 0.0179 0.0113 0.0041

CeresBA 0.0201 0.0356 0.0200 –

MBA 0.4570 0.2790 0.4252 –

4.2 Experimental results

4.2.1 Accuracy

In our accuracy comparison using the ETHBA dataset, we benchmarked our method against the ground
truth. Notably, RootBA is excluded in this experiment because the available RootBA code does not
provide camera pose outputs. We denote our method as ABAz for “Z-metric” and ABAv for “V-metric”.

The experimental results show that our method achieves the highest accuracy. The convergence curves
of the evaluated algorithms are presented in Figure 3, with errors being summarized in Table 2. MBA
fails to converge to the ground truth, probably due to its intrinsic inexact PCGs solver. The solutions
of CeresBA are slightly less accurate than our method on every image sequence. Generally, the accuracy
heavily depends on the objective function’s design. Therefore, we can confidently conclude that our
modified error is at least as accurate as the re-projection error used by CerasBA. Our experiments reveal
no notable performance difference between the “Z-metric” and the “V-metric”, indicating that the choice
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Figure 4 (Color online) Generated 3D structures and camera poses of our ABAv method on the “ladybug” and the “final”

problem from BAL. The black dots correspond to 3D points, while the red blocks correspond to camera poses. The 3D structure

is consistent with the scene, indicating that our algorithm works well on the two problems.

of re-weighting factors may not be crucial.

Further validation of our method’s high accuracy is provided on the ASBA dataset, as shown in
Table 2. Our method achieves an average camera translation error of approximately 1 mm, which is
small compared to the dimensions of the city-size 3D structure.

4.2.2 Robustness

In our evaluation of robustness against significant outliers, we use the BAL dataset. Since there is
no available ground truth, we assessed each algorithm’s correctness by visually inspecting their output
3D structures. Our method appears accurate as its 3D structures align well with the target scene, as
illustrated in Figure 4. All compared methods generated similar point clouds.

Robustness was also evaluated by examining convergence curves, using the objective function’s value
to represent the convergence behavior owing to the absence of ground truth for BAL. These convergence
curves, presented in Figure 5, indicate that RootBA and our approach converge steadily. By contrast,
rises are observed on the curves of MBA and CeresBA. It is worth noting that our method rigorously
decreases the objective function in every iteration. Conversely, methods based on Newton’s approach do
not guarantee such consistent converge behavior without an exact line search. However, an exact line
search is challenging to achieve with re-projection error owing to the complexity introduced by division
operations.

We further evaluate the robustness of our method under conditions of heavily inaccurate initializa-
tions, using the ASBA dataset, which contains more than 2.9× 107 images. Successfully solving ASBA
demonstrates great reliability.

Our approach involved selecting two frames from ASBA, and initializing their poses using essential
matrix estimation and decomposition, a common technique in SFM tasks. Subsequently, additional
camera poses and 3D points are incrementally initialized by minimizing their corresponding space errors.
The already initialized camera poses, and 3D points constitute a temporary BA problem, which we refine
using our solver to mitigate cumulative errors.

The experimental results confirm the reliability of our method to handle very large BA problems
despite inaccurate initializations. The resulting 3D structures and camera poses align well with the city
landscape, as illustrated in Figure 6. The error of our method against ground truth is small, as shown
in Table 2. Unfortunately, no other methods support incremental BA solving like ours. Thus, only the
outcome of our method is presented.

4.2.3 Efficiency

Our experiments also highlight the efficiency of our method. As shown in Figure 3, where both CeresBA
and ABA converge, our method needs only one-tenth of the computational time needed by CeresBA. In
Figure 5, CeresBA’s performance significantly slows as the problem scale increases to that of the BAL
dataset. While PCG-based MBA achieves significant improvements in efficiency, RootBA and ABA are
slightly faster than MBA.

Beyond computational speed, our method excels in memory efficiency. The baseline methods struggle
with large-scale problems like the BAL final problem and ASBA owing to the memory limitations of
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Figure 5 (Color online) Convergence curves on the BAL dataset. The absolute error value differs significantly among algorithms

owing to different outlier rejection strategies or thresholds. To ensure a fair comparison, we use the logarithm of the relative error.

Specifically, let e(t) denote the error with respect to time, and let e∗ be the minimum ever reached. Then, the convergence rate

is measured by log(
e(t)
e∗

). RootBA runs out of memory to solve the problem of Venice and final. CeresBA and MBA run out of

memory on the problem of final. The maximum memory size of the experimental computer is 8 GB.

Figure 6 (Color online) 3D structure and camera trajectory of the output of our incremental BA on the ASBA dataset.

the experimental computer. By contrast, ABA only requires about 4 GB of memory to solve the two
problems.

4.2.4 Usefulness on SLAM

We evaluate our method for SLAM using the open-source ORB-SLAM3 code [2]. In this experiment, we
replaced the backstage BA solver with ABAv, while keeping all other components, such as the tracking
thread, key frame management, and frame rate, unchanged. Our method was then compared to the
original ORB-SLAM3. The mean of the absolute translation error of the camera poses is measured using
the evaluation script included in the ORB-SLAM3 source code.
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Table 3 Translation error on the EuRoC dataset of SLAM experiments. The error is calculated by using the script in the

ORB-SLAM3 source code. Both ABA and ORB-SLAM3 fail to solve the V103 and the V203 sequences.

V101 V102 V201 V202

ORB-SLAM3 0.031 0.012 0.021 0.017

ABAv 0.031 0.013 0.011 0.023

MH01 MH02 MH03 MH04 MH05

ORB-SLAM3 0.017 0.027 0.023 0.100 0.046

ABAv 0.014 0.014 0.027 0.076 0.049

Figure 7 Workflow of distributed computation. Ap and yp are defined in (13). p represents the updated value of the 3D point.

This experiment aims to evaluate the applicability of our method for SLAM rather than perform a quan-
titative comparison. Owing to the inherent randomness in dynamic processes, even minor interferences
can lead to varying experimental results, potentially rendering quantitative comparisons meaningless. For
SLAM task, balancing between efficiency and accuracy is crucial, as any inefficiencies can lead to error
accumulation. Thus the focus is on whether an algorithm can complete SLAM tasks. CeresBA, MBA,
and RootBA are not designed for small-scale, real-time tasks, and were not included in this evaluation.

The experimental results, presented in Table 3, confirm the effectiveness of our method for SLAM
task. Our approach successfully accomplishes all tasks that ORB-SLAM3 does, achieving comparable
accuracy.

4.2.5 Distributed BA

Our method is designed for efficient distributed computation. To illustrate this, we demonstrate a dis-
tributed implementation by partitioning camera pose variables. This setup results in certain 3D points,
called overlap 3D points, which involve camera poses distributed across multiple machines. To update
these overlapping 3D points, it is important to note that the matrixAp and the vector yp in (13) are accu-
mulations. Each local machine computes its local Ap and yp. Then, the local Ap and yp are transferred
to a master machine to recover (13). Subsequently, the point is updated in the master machine and then
broadcast back to the local machines. Figure 7 illustrates the workflow of our distributed computation.

The ASBA dataset is employed to evaluate our distributed method. We develop a simple trick to
simulate distributed computation on a single machine by utilizing disk storage as supplementary memory.
This allows the single computer to alternate roles, mimicking multiple machines. The original large
ASBA dataset is partitioned into two blocks based on image indices: the first contains the initial 16369
images, while the remaining images form the second block. These blocks are loaded, processed, and
saved alternately to solve the overall BA problem. A third file facilitates communication between the two
blocks.

The experimental results confirm the effectiveness of our distributed method. As shown in Figure 8, the
convergence curve aligns closely with the efficiency and robustness observed in Figure 3. Our distributed
method mirrors the computational process of its nondistributed counterpart, whereas ADMM-based
methods require an additional consensus strategy, potentially sacrificing efficiency. We believe that this
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Figure 8 (Color online) Convergence curves of our distributed method on the ASBA dataset.

feature highlights the appeal of our approach.
This experiment also underscores the minimal communication load associated with our method. The

size of the third file is 19.6 MB, which is relatively small compared to the 1.2 GB and the 1.4 GB block
files.

5 Conclusion

This paper proposes a novel approach to solving the BA problem by utilizing AO. The inverse depth of
each 3D point is introduced as an augmented independent variable. This results in a low-order polynomial
error metric, which can be safely converted back to the traditional re-projection error using known
constant factors. Consequently, we derived closed form formulas to optimally refine camera poses, 3D
structures, and the camera’s intrinsic parameters. Extensive experiments were conducted on various
datasets, including small-scale, real-time SLAM, and large city-scale SfM cases. Experimental results
demonstrate the advantages of our approach.

Our method is tailored to address fundamental BA problems and showcases impressive performance.
However, it is not easily adaptable to generalized BA problems. Looking ahead, we plan to broaden our
research to include more diverse feature types, such as lines and circles.
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