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Figure 1. Animate anything. Consistent and controllable animation for different kinds of control signals. Given a reference image and
corresponding user prompts, our approach can animate arbitrary characters, generating clear stable videos while maintaining consistency
with the appearance details of the reference object.

Abstract

We present a unified controllable video generation ap-
proach AnimateAnything that facilitates precise and con-
sistent video manipulation across various conditions, in-
cluding camera trajectories, text prompts, and user mo-
tion annotations. Specifically, we carefully design a multi-
scale control feature fusion network to construct a common
motion representation for different conditions. It explicitly
converts all control information into frame-by-frame opti-
cal flows. Then we incorporate the optical flows as motion
priors to guide the final video generation. In addition, to
reduce the flickering issues caused by large-scale motion,

*Joint first authors.
†Corresponding author.

we propose a frequency-based stabilization module. It can
enhance temporal coherence by ensuring the video’s fre-
quency domain consistency. Experiments demonstrate that
our method outperforms the state-of-the-art approaches.
For more details and videos, please refer to the anony-
mous webpage: https://yu-shaonian.github.
io/Animate_Anything/.

1. Introduction
The emergence of Sora [5] has led to a breakthrough in
large-scale video generation. Recently, controllable video
generation [17, 22, 45, 51], i.e. controlling camera trajecto-
ries and object movements, has gained significant attention.
It has expanded applications of video generation, making
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them directly applicable to film production and virtual re-
ality. However, due to the high complexity of large-scale
camera and object movements, achieving precise control
over video generation in such cases remains challenging.

MotionCtrl [45] and CameraCtrl [17] support camera
trajectory manipulation for dynamic video generation, but
they rely solely on text input. Since text descriptions pro-
vide only the overall characteristics of a video and cannot
convey specific details precisely, it is insufficient to manip-
ulate the video generation process only using text prompts.
In contrast, image guidance, such as user-annotated trajec-
tories or reference videos, can present more detailed visual
cues. Motion-I2V [38] allows for image-based guidance but
only enables slight object movements through user drag an-
notations, such as adjusting eye direction or indicating leg
motion. It is not capable of manipulating the camera tra-
jectory of a video. MOFA-Video [31] achieves control over
detailed, pixel-level movements but is also limited to small-
scale camera movement. To ensure global consistency in
dynamic videos, MOFA-Video requires users to specify the
movement direction for each local region of the input image
that may move, making the process overly complex for user
interaction.

This paper focus on image-to-video (I2V) generation
that simultaneously processes dynamic control signals, such
as arrow-based motion annotations, camera movements,
and reference videos. However, the integration of these sig-
nals is challenging due to their different modalities, making
the direct combination with a single video generation model
difficult. Current approaches [15] typically attempt to train
each control signal individually (for instance, through Lora
[24]), and then collaboratively apply these signals to en-
hance video generation results. Nevertheless, these meth-
ods often necessitate careful parameter tuning or denois-
ing strategies, making it difficult to maintain video stabil-
ity, which can lead to flickering effects or incoherent pixel
motion caused by different control signals. Some meth-
ods [31, 38] aim to facilitate the controllable generation of
local motion in videos by introducing optical flow fields;
however, they are ineffective in addressing camera motion
signals, as camera movement introduces global motion in-
formation that is independent of the subject’s motion. Based
on the insights presented above, we speculate that if the lo-
cal motion of the subject and the global motion of the cam-
era can be unified into a representation of frame-by-frame
pixel movements, namely optical flow, it would support the
guidance of the video generation model’s behavior, thereby
possessing the potential to achieve synchronous control of
various signals.

The key challenge is to handle incoherent pixel motion
caused by different control signals. For instance, as Fig. 2
shows, the optical flow generated from different control sig-
nals varies greatly. Camera motion involves global move-

Conditions Generated Optical Flow

Figure 2. The generated optical flow by our method with different
condition signals. Given a specific image, from top to bottom are
optical flows generated with camera trajectory, arrow-based mo-
tion annotation, and both conditions, respectively.

ment, affecting both foreground and background pixels (the
first row of Fig. 2), while a single motion annotation mainly
influences localized foreground pixel motion (the second
row of Fig. 2). Simultaneously introducing these two con-
ditions directly may result in control signal conflicts, mak-
ing the model confused about the following movements (the
third row of Fig. 2). It is difficult to directly integrate these
conditions through existing methods, since it demands con-
sidering both the individual impact of each condition and
their complex interactions, such as projection transforma-
tions and occlusion completion. Therefore, we strategi-
cally design various condition-injection modules based on
the representation and correlations of different control sig-
nals to enable unified optical flow generation.

Therefore, we propose an innovative two-stage video
generation method to achieve multi-condition joint control.
In the first stage, we convert various motion control signals
into a unified optical flow, which is then used to guide the fi-
nal video generation in the second stage. To further enhance
video stability, we convert features from the time domain
to the frequency domain and introduce a spectral attention
mechanism to improve the overall quality of the generated
videos.

The main contributions are summarized as follows:

• We introduce a two-stage pipeline to achieve stable and
flexible video generation with different kinds of control
signals. In the first stage, all control signals will be uni-
fied into frame-by-frame optical flow, which is then fed
into the second stage to synchronize with text controls for
high-quality video generation.

• We utilize an adaptive feature refinement in the frequency
domain. This operation effectively suppresses instability
and flickering in the generated video by modifying the
temporal frequency features within the video.

• We perform extensive experiments to demonstrate the su-
periority of our method over state-of-the-art methods both
quantitatively and qualitatively.



2. Related Work
Controllable Video Generation. Text-to-video (T2V) gen-
eration has received significant attention in recent years,
especially after the emergence of Sora [24]. Typically,
in this area, the text-based control information is injected
via cross-attention mechanisms [17, 45]. While Magic-
Time [54] introduces a novel GPT [1]-based “Magic Text-
Encoder” to enhance text comprehension ability. However,
text-driven approaches often fail to convey video details
precisely. As a result, methods driven by text and image
simultaneously have become popular, significantly address-
ing these limitations. To achieve more effective video gen-
eration, pioneers [10, 13, 25, 43, 59] have explored gen-
erating videos under the guidance of some easily obtain-
able signals such as edges, depth, optical flow, or bounding
boxes. Taking reference video as motion guidance, Motion-
Clone [29] enables motion cloning by treating temporal-
attention weights as motion representation. Recently, with
the immense potential of the film industry and virtual reality
applications, precise control over camera and object motion
trajectories has gained increasing interest.
Camera Trajectory Driven Video Generation. To facili-
tate camera trajectory control, AnimateDiff [15] trains addi-
tional motion LoRA [21] modules for each specific camera
path. However, this method lacks precise control of cam-
era trajectory and cannot generate videos for unseen cam-
era trajectories. A straightforward solution to these issues
is to treat camera parameters as additional conditions for
video generation. MotionCtrl [45] employs 12 pose matrix
parameters as frame-level conditions to explicitly introduce
camera trajectory. Nevertheless, this method still shows
limitations in capturing the necessary geometric informa-
tion for precise camera control. CameraCtrl [17] enhances
camera information integration by using plücker embed-
dings to represent camera trajectories. To integrate the cam-
era embedding more effectively, VD3D [2] and CamCo [49]
introduce a ControlNet [57]-like conditioning mechanism
and an epipolar attention module, respectively.
Object Motion Trajectory Driven Video Generation.
CameraCtrl [17] and MotionCtrl [45] support basic motion
control through text description, which is rough and impre-
cise. Compared to T2V’s object motion control based on
motion descriptions, the Image-to-video (I2V) method gen-
erates videos from object motion trajectories. It allows for
a more precise and user-friendly description of object po-
sitions, movement directions, and motion amplitude within
the scene. Yin et al., Hao et al. and Shi et al. introduce ex-
plicit optical flow as an intermediate representation to guide
video generation. Similarly, MOFA-Video takes sparse mo-
tion hints as input and generates dense optical flows to warp
multi-scale features to guide video generation.

Motion-I2V [38] is the most relevant method to ours,
as both use a two-stage framework and select optical flow

as an intermediate motion representation. In the first stage
of optical flow generation, Motion-I2V derives optical flow
from text and reference motion field images. In contrast, we
treat optical flow as a unified visual motion representation
that incorporates reference images, drag actions, and view-
point changes. This allows for a more comprehensive and
balanced handling of diverse visual conditions. In the sec-
ond stage, while Motion-I2V directly integrates optical flow
with text and images, we employ the Expert AdaLN [51]
to promote feature space alignment adaptively, enabling a
deep fusion of multimodal features. This enhancement im-
proves the capability and generalization of this stage, al-
lowing it to perform effectively even when the image and
optical flow are not fully aligned.

3. Methods
In this section, we present AnimateAnything, a unified con-
trollable video generation approach for precise and consis-
tent video customization across various conditions. As the
pipeline illustrated in Fig. 3, we convert all visual control
signals into a unified optical flow representation and then
utilize it to guide the final video generation. In the following
subsections, we will provide a detailed explanation of pre-
liminary knowledge, each module of the pipeline, and the
corresponding training strategies. Firstly, we provide a brief
overview of Video Diffusion Models in Sec. 3.1. Afterward,
we present the architecture of converting all control signals
into unified flows in Sec. 3.2. Then, we introduce how the
flows guide the final video generation in Sec. 3.3. Finally,
we give detailed descriptions of the frequency stabilization
module 3.4 and training strategy 3.5.

3.1. Video Diffusion Models

The video diffusion model builds on the concept of image
diffusion probabilistic models, extending into the temporal
dimension. It captures the dynamic relationships between
frames in a video sequence, allowing for the generation of
continuous and high-quality video content. By learning to
reverse the added noise, it ensures temporal consistency and
coherence in the generated videos. Let x0 ∈ Rf×h×w×c

represent a video latent variable, where f is the total num-
ber of frames, each of size h × w with c channels. The
forward diffusion process is modeled as a chain that incre-
mentally adds Gaussian noise to the original video, defined
as follows:

xt =
√
ᾱtxt−1 +

√
(1− ᾱt)ϵ, ϵ ∼ N (0, 1) , (1)

where t ∈ {1, . . . , T} denotes the timestep, ᾱt regulates
the intensity of noise added at each t , and ϵ is drawn from
standard Gaussian noise. In the reverse process, a denois-
ing model is learned to estimate p (xt−1|xt), typically pa-
rameterized by a neural network θ. The optimization ob-



Trajectory
Encoder

Image VAE
Encoder ···

···

···

··· ···

Flow VAE
Encoder

×𝑇

A brown stallion leisurely 
strolls on the hillside

T5
Encoder

3D VAE
Encoder

Flow
Encoder

Feed
Forw

ard

Sparse Optical FLow

Optical Flow
Predictor

Control 
Signals

×𝑁

Text Expert AdaLN
𝑡 ∈ [0, 𝑁)

Unified Flow Generation Video Generation
Image Expert AdaLN

𝑡 ∈ [0, 𝑁)

Self Attention

Reference Attention

Temporal Attention

Camera Motion Attention

3D Full Attention

Denoising U-Net Step

Pixel-wise Addition

Iteratively Loop

Pixel-wise Multiply

Scale and Shift

Gate

LN Modulation

V
iT

B
lock

CRM

…
FGM

Flow VAE
Decoder

×𝑀	DiT	𝑏𝑙𝑜𝑐𝑘𝑠

Figure 3. AnimateAnything Pipeline. The pipeline consists of two stages: 1) Unified Flow Generation, which creates a unified optical
flow representation by leveraging visual control signals through two synchronized latent diffusion models, namely the Flow Generation
Model (FGM) and the Camera Reference Model (CRM). The FGM accepts sparse or coarse optical flow derived from visual signals other
than camera trajectory. The CRM inputs the encoded reference image and camera trajectory embedding to generate multi-level reference
features. These features are fed into a reference attention layer to progressively guide the FGM’s denoising process in each time step,
producing a unified dense optical flow. 2) Video Generation, which compresses the generated unified flow with a 3D VAE encoder and
integrates it with video latents from the image encoder using a single ViT block. The final output is then combined with text embeddings
to generate the final video using the DiT blocks.

jective is to minimize the following loss function: A de-
noising model, parametrized by neural network θ, estimates
p (xt−1|xt) in the reverse process, minimizing the given
loss function:

L(θ) = Ex0,ϵ,C,t
[
∥ϵ− ϵ̇θ (xt, C, t) ∥22

]
, (2)

where C denotes the guidance conditions, like text. To train
a video generation diffusion model using images, the image
encoding is typically concatenated with the xt, enabling the
model to efficiently use its semantic features.

3.2. Stage 1: Unified Flow Generation

In this stage, we carefully design different injection mod-
ules based on the characteristics of each control signal and
their relationship to achieve unified optical flow generation.
In detail, we categorize the injection modules into explicit
and implicit injection based on the attributes of visual con-
trol signals. The explicit injection module is proposed to
control signals that can be directly converted into sparse
optical flow for one or some frames, such as arrow-based
motion annotation on specific pixels. The implicit injec-
tion is to incorporate control signals that are difficult to di-
rectly convert to pixel-level optical flow like camera trajec-
tory. Finally, since information in the reference image, such
as semantic categories, is directly related to various control
signals, the image is involved in both implicit and explicit
injection methods. In the following, we will explain the
detailed operations for explicit and implicit injection, and
further discuss the unified control signal at this stage.

Explicit Injection. As shown in Fig. 3, we explicitly
convert different explicit control signals into initial sparse
optical flow, and then apply a classical latent diffusion
model [34], namely the Flow Generation Model (FGM),
to transform it into dense optical flows. For these sig-
nals like arrow-based motion annotation, we use the fol-
lowing pipeline for conversion. Given a reference im-
age, the user can label various motion trajectories on
the image to represent the desired movements of objects
and the environment. Take one trajectory for example,
the trajectory can be regarded as a 2D point set, M ∈
RP×2 = [(x0, y0) , (x1, y1) , . . . , (xP−1, yP−1)], where P
is the point number. The sparse control points can be ex-
tracted from M with bicubic interpolation and then used
to generate a point-wise sparse motion flow F s in the fol-
lowing equation, the same as MOFA-Video [31], allowing
us to guide the object motions and environmental changes
effectively.

F s
l−1(xi, yi) = T̂l(xi, yi)− T̂0(xi, yi) (3)

where l ∈ {1, 2, . . . , L − 1}, i denotes each pixel in the
image. We also use CMP [56] to enhance sparse optical
flows. Theoretically, any visual control signals convert-
ible to sparse optical flow through extraction [50] or gen-
eration [9, 52], such as audio [9, 14], videos, and object
landmarks [55], etc., can be input to FGM.
Implicit Injection. For implicit control signals like cam-
era trajectory condition, we adopt the progressive condition
injection design of AnimateAnyone [22] and implicitly em-
bed it into the FGM denoising process through the Camera



Reference Model (CRM) progressively. The CRM employs
a pre-trained image generation network based on the U-
Net [35] architecture (SD1.51) and is initialized with origi-
nal weights. It integrates camera trajectories with the refer-
ence image to get multi-scale reference features at specific
time steps through camera motion attention, which uses im-
age latens as query, camera features as both the key and
value in the original cross-attention part. Then these fea-
tures are utilized to guide the generation of dense optical
flow via the reference attention layer in the FGM the same
as AnimateAnyone. In order to better describe the camera
pose, we use Plücker embeddings [39] as the representa-
tion of camera trajectory. Given the extrinsic and intrinsic
camera parameters R, t,Kf for the f -th frame, we derive
a Plücker embedding p̈f,h,wv ∈ R6 for each pixel located
at (h,w). This embedding represents the vector from the
camera center to the pixel’s position as:

p̈f,h,w =
(
tf × d̂f,h,w, d̂f,h,w

)
(4)

d̂f,h,w = d
∥df,h,w∥ , df,h,w = RfKf [w, h, 1]

⊤ + tf (5)

Computing Plücker embedding for each pixel results in a
representation P̈ ∈ R6×F×H×W for a specified trajectory.
To inject the trajectory representation into the reference mo-
tion network, we designed a trajectory encoder structurally
similar to the camera encoder in CameraCtrl [17]. However,
we improved the architecture: after each 2D ResNet block,
we replaced the temporal attention with self-attention and
output multi-scale trajectory features.

Through the combined use of explicit and implicit injec-
tion, we can effectively mitigate the incoherent pixel mo-
tion caused by different control signals. In addition, we
used Unimatch [50] to extract a high-quality optical flow
from training videos as ground truth during training. Sim-
ilar to Motion-I2V [38], we trained a Flow Variational Au-
toencoder (VAE) to compress the optical flow of the pixel
space into a latent flow space reducing computational re-
sources.

3.3. Stage 2: Video Generation

In the second stage, we aim to use the unified dense opti-
cal flow representation from the previous stage to guide the
video generation model in creating a final video that aligns
with the semantics of the reference image and annotations,
as shown in Fig. 3. For the video generation model, we in-
herit from CogVideoX framework [19, 51]. However, we
introduce optical flow as a conditional guidance. Specif-
ically, we use a flow encoder to encode the flows as the
flow latent zf . The flow encoder adopts four symmetrically
arranged stages, respectively performing 2× downsampling
and upsampling by the interleaving of ResNet block stacked

1https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
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stages achieving a 4× compression in the temporal dimen-
sion and an 8×8 compression in the spatial dimension simi-
lar to the 3D VAE encoder [51]. Then we use a single basic
Vision Transformer (ViT) block[12] to query video latents
zv from the flow latentszf before calculating self-attention
in the ViT block.

z′v = Attention(Q, K, V) = Softmax
(
QKT

)
V, (6)

where Q = WQzv ,K = WKzf ,V = WV zf . Notably, the
flow feature maps only serve as key and value features. At
the same time, the text prompts go through the text encoder
using the google-research T5 model [33]. The result of the
transformer block is then concatenated with text embedding
before going through the full-attention transformer block.
As shown in Fig. 3, we only train the optical flow encoder,
input transformer block, and our video smoothing module
(detailed in Sec. 3.4), keeping the parameters of other parts
fixed to reduce the training difficulty.

3.4. Frequency Stabilization

In the previous two subsections, we effectively incorporated
a large amount of motion control into our network through
a two-stage design, supporting the generation of significant
motion variations. In such cases, the corresponding optical
flow may change drastically, making it prone to flickering
and instability in the final video. To solve this problem,
we review the video generation task from the perspective
of information encoding. Treating the generated video as a
sequence of images, flickering typically occurs due to mis-
alignment of features between frames. This stems from the
training of video generation models, where noise added to
different frames at the same time step is independent. De-
spite temporal interactions among features, it remains chal-
lenging to prevent noise from negatively affecting the con-
tinuity and stability of video features. This instability will
greatly affect the video generation quality. Compared to
temporal features, frequency-domain features can more di-
rectly reveal some essential video-level information from
a different perspective with individual frequency compo-
nents, which is important for suppressing flickering issues.



Thus, we adaptively modify the frequency-domain features
extracted with the Fast Fourier Transform (FFT) [11] to
maintain temporal stability. Specifically, as shown in Fig. 4,
we modify the attention mechanism in the Diffusion Trans-
former (DiT) [32] architecture by first applying an FFT to
each weight matrix to obtain its spectral features. We then
multiply these features by a parameterized weight matrix
W , followed by an inverse FFT (InvFFT) to restore the orig-
inal temporal-domain feature. This is then used to compute
dot-product attention, ensuring the consistency of scene fea-
tures along the temporal direction during video generation.

3.5. Training Strategy

We conducted experiments on a server equipped with 8×
NVIDIA Tesla A800 80G GPUs. In the first stage, for op-
tical flow generation, we primarily use the Real10K [62]
and DL3DV10K [28] datasets for training. In the second
stage, for video generation, we utilize the WebVid10M [4]
and OpenVid [30] datasets. Both datasets are large and di-
verse, covering various aspects of daily life from multiple
sources, ensuring strong generalization.

Currently, achieving large-scale camera trajectory con-
trol for video generation remains a significant challenge.
One of the major difficulties is the limited availability of
video data with camera trajectory poses. The datasets avail-
able are Real10K [62] and DL3DV10K [28], but both are
primarily indoor or static scene datasets. The video model
trained on these datasets is unsuitable for dynamic scenes,
while the generation is prone to failure. Another difficulty
is that the dynamic video datasets available rarely con-
tain pose information due to the difficulty of camera pose
estimation in dynamic scenes using structure-from-motion
(SfM) methods like COLMAP [37]. So, we organize and
augment the data, and we further decompose the training of
the first stage to achieve multi-condition controllable net-
work training with limited data. Through careful search,
we found that many videos on OpenVid [30] are shot from
fixed camera positions, which can serve as a good starting
point to boost dynamic training. We select a batch of videos
with roughly fixed camera positions by evaluating the mo-
tion magnitude of the global optical flow, totaling around
10,000 videos. Our model is to first train the initial model
on the Real10K dataset, then set the camera viewpoint of
this batch of videos to be fixed at the origin, and subse-
quently train our model using the selected dynamic videos.

Given that the optical flow data required for the second
stage is directly sourced from the video, both stages can be
trained independently, with connection only needed during
the inference process. Additionally, we apply noise to the
optical flow in the training of the second stage to enhance
the learning capability of the video generation model.

Table 1. Quantitative comparisons (Pose got by DUSt3R, Vg-
gSfM, and ParticleSfM). We compare against prior works on basic
trajectory and random trajectory respectively. T-Err, R-Err repre-
sent translation error and rotation error.

Basic Trajectory Difficult Trajectory

DUSt3R VggSfM ParticleSfM DUSt3R VggSfM ParticleSfM

T-Err↓ R-Err↓ T-Err↓ R-Err↓ T-Err↓ R-Err↓ T-Err↓ R-Err↓ T-Err↓ R-Err↓ T-Err↓ R-Err↓
CameraCtrl 0.090 0.300 1.405 0.177 2.277 0.825 0.082 0.306 1.559 0.144 2.172 0.722
MotionCtrl 0.057 0.233 1.324 0.258 1.811 0.868 0.060 0.267 0.875 0.137 2.424 0.756

Ours 0.041 0.159 1.036 0.125 1.648 0.685 0.053 0.203 0.447 0.119 2.042 0.572

4. Experiments
We evaluate our method through quantitative metrics that
confirm both the generation quality and its alignment with
control signals, alongside visualizing the generated results
for further qualitative comparison.

4.1. Image-to-Video Generation Ability.

As shown in Tab. 2, four classical image-level quality
metrics, including Fréchet Inception Distance (FID) [18],
SSIM [44], PSNR [20] and LPIPS [58], are used to
evaluate the quality of the generated video frames with
Motion-I2V [38], MOFA-Video [31], DynamiCrafter [48],
CogVideoX[51], PyramidFlow [26], and OpenSora [61] ,
and video-level metric Fréchet Video Distance (FVD) [40]
is applied to assess video-level quality, similar to previ-
ous video generation methods [6–8, 27, 46]. Following
CogVideo [51] and PyramidFlow [26], we employed sev-
eral metrics from VBench [23] to evaluate the Subject Con-
sistency (SubC), Motion Smoothness (MoS) and Aesthetic
Quality (AesQ) of Our Video as shown in Tab. 3 and Fig. 9
on OpenVid [30] and WebVid [3] datasets. With optical
flow guidance, our methods can achieve better performance
especially when the generated video contains human mo-
tions and animal motions.

4.2. Control Signals Driven I2V Generation.

Camera Trajectory. The distance between predicted
and ground-truth camera trajectories is used to measure
the camera alignment. Here, we use ParticleSfM[60],
VggSfM[41] and DUSt3R[42] to evaluate our camera tra-
jectory with CameraCtrl[17] and MotionCtrl[45] on basic
trajectory (sample every 8 frames) and difficult trajectory
(sample every max frame we can sample) in Real10K [63]
shown in Tab. 5 and Fig. 5. Specifically, we estimate the
camera trajectories for both the generated and real videos
using the same methods to eliminate the potential scale dif-
ferences caused by different Structure-from-Motion (SfM)
techniques. And, we evaluate the quality of these trajecto-
ries by evaluating the scale and differences in the rotation
and translation parameters of the camera matrix using ro-
tation error and translation error, as outlined in He et al.
[17], Wang et al. [45].
User Arrow Annotation. As shown in Fig. 1, we can turn
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Table 2. Video quality comparison.

webvid OpenVid

LPIPS↓ PSNR↑ SSIM↑ FID↓ FVD↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ FVD↓

Motion-I2V 0.375 16.14 0.487 94.77 720 0.329 15.28 0.488 72.14 704
MOFA-Video 0.351 18.43 0.603 57.12 524 0.300 19.64 0.655 52.66 654

DynamiCrafter 0.268 18.56 0.532 63.73 685 0.393 13.83 0.402 59.61 751
CogVideoX+image 0.147 24.22 0.762 59.20 486 0.164 22.61 0.762 43.29 547

Pyramid-Flow 0.152 24.99 0.792 55.78 470 0.122 23.37 0.789 39.48 453
Open-Sora 0.179 23.21 0.725 58.33 552 0.117 22.78 0.760 44.48 512

Ours 0.135 25.22 0.810 48.11 380 0.113 25.04 0.836 33.12 322

Table 3. Video consistency quality comparison. SubC: Subject
Consistency; MoS: Motion Smoothness; AesQ: Aesthetic Quality.

webvid OpenVid

SubC ↑ MoS ↑ Aesq ↑ SubC ↑ MoS ↑ Aesq ↑
DynamiCrafter 0.832 0.958 0.443 0.910 0.964 0.536

CogVideoX+image 0.855 0.984 0.443 0.929 0.987 0.567
Pyramid-Flow 0.906 0.991 0.438 0.941 0.991 0.537

Open-Sora 0.897 0.989 0.438 0.954 0.990 0.524
Ours 0.928 0.991 0.474 0.971 0.993 0.600

any kind of user drags into corresponding optical flows,
which are then treated as the unified guidance for the fi-
nal video generation. For this part, we compare with cur-

rent state-of-the-art user drag animation methods MOFA-
Video [31], DragAnything [47], Motion-I2V [38] shown in
Fig. 7. Our method can achieve more stable and consistent
video generation on specific user drags. More results can be
seen on the anonymous project webpage.
Reference Video. We demonstrate the capability of
our Stage 2 in generating animations driven by reference
videos, where a dense optical flow can be extracted. First,
we test the case that the optical flow and given images are
well aligned. Specifically, we generated the reference image
by replacing or stylizing the subject in the first frame of the
video as the reference image [36]. As shown in Fig. 6, it can
be seen that Motion-I2V lacks sensitivity to a wide range
of motions. Although MotionClone and MOFA-Video can
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Figure 6. Motion Transfer comparison with state-of-the-art methods.
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Figure 7. Users drag animation comparison with other animation
methods.

achieve significant video motions, they result in style in-
consistency and artifacts. Our generated results maintain
significant motion alignment without a skeleton or facial
keypoint extraction, while achieving optimal subject con-
sistency. To better evaluate the generalization, we further
experiment on the facial replacement task with the setting
that the image and the unified optical flow are not perfectly
aligned. The dense optical flow here inputted to Stage 2
is directly extracted from another facial motion video. As
shown in Fig. 8, our Stage 2 can tolerate some misalign-
ments while still performing effectively, producing consis-
tent expressions and lip motions. This provides our method
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Figure 8. Human face animation with optical flow extracted from
reference video

with greater flexibility and robustness.

4.3. Ablation Study And Analysis

Setups. To verify the effectiveness of the components in
our video generation pipeline, we designed several sets of
ablation experiments on Real10K [63]. (1) The multi-frame
camera encoding is added to the latent variables and used
as input to the DiT blocks. (2)We replicate the first half of
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Figure 9. Image to video generation comparison with current state-
of-the-art methods.

Table 4. Ablation study.

Visual Quality Trajectory Alignment

LPIPS↓ PSNR↑ SSIM↑ FID↓ FVD↓ TransErr↓ RotErr↓
Camera embedding 0.401 14.22 0.531 52.46 346 0.551 0.048

ControlNet-Like 0.400 14.21 0.528 50.96 356 0.737 0.050

w/o FS 0.241 17.88 0.615 46.85 311 0.671 0.059
w/o noise 0.228 19.32 0.654 49.38 474 0.425 0.048

Full Model 0.142 23.22 0.796 41.67 168 0.354 0.047

the blocks of FGM as a reference network and then add the
output of each block of the reference network to the output
of the corresponding original block, like ControlNet. (3)
and (4) both use the globally estimated optical flow from
the video data as input, with the distinction that (3) removes
Frequency Stabilization (FS), while (4) does not apply noise
before feeding the global optical flow into the Flow En-
coder.
Analysis. As shown in Tab. 4, From the first two rows,
we can see the superiority of using a unified optical flow
representation, which surpasses other camera control sig-
nal guidance methods in terms of visual quality and camera
rule prediction. The third row reflects that not using Fre-
quency Stability during the training process leads to a sig-
nificant drop in performance. However, it is still better than
the other two camera signal guidance methods. The fourth
row illustrates that the noise application conducted before
feeding the Optical Flow into the Flow encoder effectively
enhances the robustness of the generation.

5. Conclusion
In this paper, we present a unified controllable video gen-
eration approach enabling precise and consistent video ma-
nipulation across various conditions. We unified Flow as
a joint control signal by converting diverse visual control
signals (e.g., object motion, camera motion) into a joint op-
tical flow representation. Then the unified flows are used
to guide the final video generation. This strategy reduces
the complexity of handling multiple, isolated control sig-
nals and promotes consistency in the generated video. In
addition, we propose a frequency-based stabilization mod-
ule to preserve the key features in the frequency domain
and reduce the flickering issues caused by large-scale mo-
tion. Experiments demonstrate that this two-stage pipeline

can control the video generation precisely and have impres-
sive generalization capabilities.
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