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Neural Homogenization of Yarn-Level Cloth
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Fig. 1. This example highlights a Karate avatar outfitted in a knitted T-shirt with 14K vertices. We’ve simulated the garment using our homogenized yarn-level
constitutive model, achieving 15FPS on a standard CPU. A key distinction of our model lies in its numerical stability, even with large time steps (up to 1/30
seconds). This enables our model to maintain yarn-level cloth behaviors, such as curliness, without sacrificing stability for accuracy. Most notably, our model
boosts simulation efficiency, reducing computational time by at least two orders of magnitude compared to other homogenized models.

Real-world fabrics, composed of threads and yarns, often display complex
stress-strain relationships, making their homogenization a challenging task
for fast simulation by continuum-based models. Consequently, existing ho-
mogenized yarn-level models frequently struggle with numerical stability at
large time steps, forcing a trade-off between model accuracy and stability. In
this paper, we propose a neural homogenized constitutive model for simulat-
ing yarn-level cloth. Unlike analytic models, a neural model is advantageous
in adapting to complex dynamic behaviors, and its inherent smoothness nat-
urally mitigates stability issues. We also introduce a sector-based warm-start
strategy to accelerate the data collection process in homogenization. This
model is trained using collected strain energy datasets and its accuracy is val-
idated through both qualitative and quantitative experiments. Thanks to our
model’s stability, our simulator can now achieve two-orders-of-magnitude
speedups with large time steps compared to previous model.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: Yarn-level Cloth Simulation, Homoge-
nization, Constitutive Model, Neural Networks
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1 INTRODUCTION
Yarn-level cloth simulation, a field pioneered by Kaldor et al. [2008;
2010], significantly enhances the visual detail of knitted fabrics,
showcasing features like curly effects. Subsequent researchers have
introduced innovations such as persistent contact modeling [Cirio
et al. 2016] and the integration of triangles with yarns in simula-
tors [Casafranca et al. 2020] to increase simulation speed. However,
despite these advancements, simulating yarn-level cloth remains
computationally demanding with modern graphics hardware.

To enhance efficiency, Sperl et al. [2020] introduced a numerical
homogenization method for yarn-level cloth (HYLC) simulation.
This method relies on providing the yarn’s physical properties, such
as Young’s modulus, and twisting and bending moduli, as well as
the local yarn geometric pattern. A homogenization procedure is
then developed to approximate the strain energy density function
through yarn pattern simulation. The strain energy density function
is defined as a function of the combination of the first and second fun-
damental forms – termed the HYLC strain space – which determine
the deformation of the local planar patch. HYLC employs Hermite
interpolation over the strain energy density values derived from
yarn pattern simulation at node points sampled in the HYLC strain
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space. This process forms a constitutive model, enabling highly
realistic simulations in continuum-based cloth simulators.

However, even with the implementation of positive definiteness
correction [Kim 2020; Kim et al. 2019; Teran et al. 2003; Wu and Kim
2023] to eliminate negative eigenvalues in the Hessian matrix, the
HYLC method’s simulation time step remains restricted to around
10−4s in a Newton-type solver, posing challenges for its applica-
tion in interactive environments. This limitation is partly due to
the discontinuity of second-order derivatives at the interpolated
node points of the strain energy density function. While Hermite
interpolation ensures gradient continuity at these node points, it
does not address discontinuity in second-order derivatives.
Inspired by recent advancements in AI for science [Wang et al.

2023] and in the design of neural material models [Li et al. 2023a],
we introduce a neural homogenization method for large time-step
simulations of yarn-level clothing. The key insight of our approach
is leveraging neural networks to allow greater flexibility in material
model design. A network-based representation eliminates the need
for meticulously choosing functions to describe nonlinear mate-
rial behavior and overcomes the limitations of traditional spline
interpolation, such as restricted-order derivative continuity at node
points. Building on this concept, our method involves training neu-
ral networks with synthetic strain energy density data. We utilize
the network’s capacity to incorporate smooth activation functions
in neurons, thereby enabling the creation of a neural network with
smooth derivatives for representing the hyperelastic constitutive
model. Specifically, we employ the sigmoid activation function and
introduce a regularization strategy. This strategy involves penaliz-
ing the magnitude of third-order derivatives during training, which
reduces oscillations in the second-order Hessian of the neural con-
stitutive model. Such an approach significantly improves the per-
formance of Newton-type solvers, which are prevalent in implicit
simulators [Baraff and Witkin 1998].

While penalizing the third-order derivatives of Hermite interpo-
lating functions, as used in [Sperl et al. 2020], is possible, directly
optimizing the numerous coefficients of Hermite basis functions
presents challenges. This difficulty is due to the high-dimensional
parameter space inherent in the HYLC strain space, making the
process both complex and time-consuming. From this perspective,
our neural constitutive model offers a more compact and efficient
representation of the high-dimensional Hermite interpolating func-
tions within HYLC. It also addresses the issue of discontinuity in
second-order derivatives at node points. Once trained, we convert
our neural constitutive model back into analytic basis functions,
thereby bypassing the computational overhead associated with de-
rivative calculation through the neural network’s computational
graph. Furthermore, acknowledging that the behavior of yarn fluc-
tuation in yarn-level simulation remains relatively stable across
the HYLC strain space, we have developed a sector-based warm-
start procedure. This approach significantly accelerates the data
collection process. Our contributions are summarized below.

• A neural constitutive model. We present a neural constitu-
tive model, designed to deliver stable and realistic results in
continuum-based simulations. The key factor contributing to
this model’s stability is the smoothness of the second-order

derivatives of the model represented by neural networks.
Additionally, we propose an efficient, parallelized baked im-
plementation, enabling seamless integration of our model
into a continuum-based cloth simulation.

• Sector-based warm-start for yarn pattern simulation. The
essence of numerical homogenization is the derivation of
the strain-energy density function from synthetic data gen-
erated by yarn pattern simulation. To fulfill this task, we
introduce a sector-based warm-start strategy that signifi-
cantly reduces simulation costs. This strategy leverages the
deformation history of the yarn structure, leading to one
order-of-magnitude speedup compared to simulation from
scratch.

• Safeguard strategy for constitutive model. To enhance sim-
ulation stability under significant deformations, we devised
a safeguard-based strategy for the constitutive model. This
method uses a near-quadratic expansion technique to extend
the neural constitutive model beyond its trained domain,
thus improving the stability of the continuum-based simula-
tor when deformations are out of trained region.

Our experiments demonstrate that continuum-based cloth simu-
lator with our model can achieve 15FPS simulation for 14K vertices
on a desktop PC with an Intel i9-10850K CPU, as Fig. 1 shows.

2 RELATED WORK

2.1 Yarn-Level Cloth Simulation
Yarn-level simulators distinguish themselves from continuum-based
simulators by modeling cloth with a finer level of granularity, sim-
ulating individual yarns dynamics and inter-yarn contacts. This
approach, as demonstrated by Kaldor et al. [2008], offers highly
realistic cloth simulations through a purely Lagrangian formulation.
In contrast to continuum-based simulators, which can operate with
large time steps (Δ𝑡 ≈ 10−2s) using implicit Euler integration [Baraff
and Witkin 1998], yarn-level simulators typically require much
smaller time steps (Δ𝑡 ≈ 10−5s). The need for smaller time steps
in yarn-level simulators arises primarily from the non-linearity of
yarn dynamics and the challenge of managing tens of thousands
of contacts, where even minor increases in time step can lead to
instability. To overcome these challenges, Pizana et al. [2020] pro-
posed a stable bending model for yarn dynamics, aiming to prevent
degenerate simulation states and enhance overall stability. Addi-
tionally, incorporating dissipation energy within the yarn simulator
is another effective approach [Sánchez-Banderas and Otaduy 2017,
2018] to maintain wrinkle details while reducing instability.

While the fine-grained modeling of yarn structures in yarn-level
simulators improves realism, it also introduces significant com-
plexity. In an effort to reduce the computational cost and improve
simulation speed, the adaptive contact approach [Kaldor et al. 2010]
recognized that contact handling constitutes a bottleneck in yarn-
level simulators. To alleviate this, they propose a method to reuse
contact information by exploiting the persistence of contacts tem-
porarily. Building upon this idea, subsequent works [Cirio et al.
2014, 2016; Sánchez-Banderas et al. 2020], adopt persistent contacts
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between yarns, thus avoiding the explicit treatment of persistent con-
tacts to achieve performance improvements from a mixed Eulerian-
Lagrangian perspective. However, such a simplification limits the
generality of yarn-level simulators, particularly when dealing with
scenarios involving significant relative yarn sliding or tearing of the
entire yarn cloth. As an alternative, Casafranca et al. [2020] proposes
a method that combines continuum-based modeling with yarn-level
modeling. This hybrid approach employs yarn modeling specifically
in critical regions while employing continuum-based modeling in
less significant areas, offering a more flexible and efficient solution
for applying yarn-level simulations.

2.2 Continuum-based Simulation and Homogenization
Since the seminal work of Baraff et al.[1998], there has been a
surge of research aimed at enhancing the efficiency and realism
of continuum-based cloth simulators. For example, the (extended)
position-based dynamics framework [Macklin et al. 2016; Müller
et al. 2007] innovates by substituting traditional cloth dynamics
with positional constraints, thereby achieving stability even in the
presence of high stiffness. Additionally, the projective dynamics
framework [Bouaziz et al. 2014] integrates a local projection step
with a global solving step, constituting a single iteration of a rapid
solver. This framework has been further extended for parallel im-
plementations [Li et al. 2023b; Wang and Yang 2016].
The realism of continuum-based cloth simulation depends on

physical parameters. Both optimization-based methods [Bickel et al.
2009; Miguel et al. 2013; Wang et al. 2011] and learning-based meth-
ods [Feng et al. 2022; Yang et al. 2017] can be used to measure phys-
ical parameters of fabrics. Simulation realism can also be enhanced
through numerical homogenization techniques derived from yarn-
level simulations. Numerical homogenization involves learning the
macroscale constitutive model from microscale simulations [Guedes
and Kikuchi 1990]. Reviews of numerical homogenization can be
found in [Geers et al. 2010; Matouš et al. 2017]. Recently, numerical
homogenization [Chan-Lock et al. 2022; Fei et al. 2018; Montaz-
eri et al. 2021] has gained popularity in the graphics community.
Sperl et al. [2020] proposed homogenization of yarn-level cloth with
large strains, enabling the simulation of characteristic features of
yarn-level cloth in continuum-based simulators.

2.3 Deep Neural Network Constitutive Model
In material science and computational physics, researchers started
exploring the idea of incorporating neural networks into constitutive
models, since the early work by Ghaboussi and Ellis [1992; 1991].
Unlike analytic constitutive models, neural networks, as universal
approximators [Hornik et al. 1989], can represent complex functions
through a few layers [Lefik and Schrefler 2003]. This capability lends
them excellent realismwhen used in simulators based on an accurate
fit for experimental data, as shown in [Li et al. 2023a]. Compared
to other data-driven methods, such as support vector machines,
radial basis functions, or piece-wise linear functions [Huang et al.
2019], neural networks provide smoother results while maintaining
simplicity in design, implementation, and control.

Providing the external boundary condition and corresponding
macroscale deformation in a global setting, the neural constitu-
tive model can be trained with a differentiable simulator [Huang
et al. 2019; Xu et al. 2021]. However, this method is expensive since
each network weight update necessitates a scene simulation. A
more direct way is to train the neural constitutive model with sam-
pled strain-stress or strain-energy data, for elasticity [Shen et al.
2005], elasto-plasticity [Lefik and Schrefler 2003], steels with hys-
teresis [Wang et al. 2022], and laminated fabrics [Gao et al. 2022].
Colasante et al. [2016] proposed a method to build a network-based
constitutive model for in-plane deformation of fabrics. Other works
train the network on homogenized data, including both elasticity [Le
et al. 2015] and in-elasticity [Logarzo et al. 2021].
Constitutive models trained using strain-stress or displacement-

nodal force frameworks risk violating conservation laws when the
stiffness matrix lacks symmetry. To address this, our approach fo-
cuses on learning strain energy density functions. This choice en-
sures the preservation of stiffness matrix symmetry in our method.

3 BACKGROUND
Since ourmethod employs the yarn pattern simulation inHYLC [Sperl
et al. 2020], to prepare training data and develops neural networks
to represent the macroscale strain energy density function defined
in it, we briefly introduce the formulations of these two components
for the purpose of clarity.

Notations. The macroscale deformation of the mid-surface,
i.e., the local planar patch to which the yarn pattern is attached, is
determined by the macroscale strain s:

s =
[√︁

𝐼0 − 1
𝐼1√
𝐼0𝐼2

√︁
𝐼2 − 1 𝜆1 𝜆2 𝑐2

]
, I =

[
𝐼0 𝐼1
𝐼1 𝐼2

]
, (1)

where I is the first fundamental form of the mid-surface, and 𝜆1
and 𝜆2 are the maximum and minimum eigenvalues of the second
fundamental form. The last entry, 𝑐2, represents the square cosine
for the angle between the eigenvector and the x-axis. We denote
the 𝑖-th component of s as 𝑠𝑖 . For example, 𝑠0 =

√
𝐼0 − 1.

Yarn pattern simulation. It is designed tominimize the deforma-
tion energy model in the Discrete Elastic Rod (DER) method to repli-
cate the stretch, bending, and twisting dynamics of yarns [Bergou
et al. 2008], where the contacts between yarns are resolved using
Kaldor’s [2008] repulsion formulation. Specifically, given a node
point s in HYLC strain space, yarn pattern simulation can be formu-
lated as a constrained optimization problem:

𝜑∗s = min
u

𝜑pat (u), s.t. 𝐶 (u, s) = 0, (2)

where the solution vector u = [u0 𝜏0 u1 𝜏1 . . . u𝑛−1], u𝑖
is the Cartesian displacement of the i-th vertex with respect to the
initial position defined by the deformed mid-surface, and 𝜏𝑖 is the
twist displacement of the 𝑖-th edge. We integrate the homogeniza-
tion energy, denoted as 𝜑pat, and the constraint function 𝐶 (u, s),
as established in [Sperl et al. 2020]. The term 𝜑pat encompasses
the yarn’s elastic energy and the contact potential between yarn
segments, effectively representing these two energies. Meanwhile,
the constraint 𝐶 (u, s) serves to regulate the periodicity and the
fluctuation within the yarn patterns.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2024.



343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

4 • Anon. Submission Id: 283

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

(a) Basket (b) Stockinette (c) Honeycomb (d) Cartridge

Fig. 2. Four periodic yarn patterns used for evaluation purposes in our
experiments. For the sake of simplicity, we abbreviated cartridge belt rib as
cartridge throughout the remainder of this paper.

Macroscale strain energy function. To circumvent the curse of
dimensionality of 𝑠 in the HYLC strain space, we adopt the simpli-
fication approach utilized by [Sperl et al. 2020] and [Miguel et al.
2016] , which decomposes the six-dimensional energy density func-
tion into a combination of a constant component as well as one-
and two-dimensional functions. For any node point s, we define

Ψstretch (s) =
2∑︁

𝑖=0
Ψ1𝐷,𝑖 (𝑠𝑖 ) +

∑︁
{𝑖, 𝑗 }∈{{0,1},
{0,2},{1,2}}

Ψ2𝐷,𝑖, 𝑗 (𝑠𝑖 , 𝑠 𝑗 ), (3)

for
Ψbend
1𝐷 (s) = 𝑐2

[
Ψ1𝐷,3 (𝑠3) + Ψ1𝐷,4 (𝑠4)

]
+ (1 − 𝑐2)

[
Ψ1𝐷,3 (𝑠4) + Ψ1𝐷,4 (𝑠3)

]
,

(4)

and

Ψbend
2𝐷 (s) =

2∑︁
𝑖=0

[
𝑐2Ψ𝑖,3 (𝑠𝑖 , 𝑠3) + (1 − 𝑐2)Ψ𝑖,3 (𝑠𝑖 , 𝑠4)

]
+

2∑︁
𝑖=0

[
𝑐2Ψ𝑖,4 (𝑠𝑖 , 𝑠4) + (1 − 𝑐2)Ψ𝑖,4 (𝑠𝑖 , 𝑠3)

]
,

(5)

where we simplify Ψ2𝐷,𝑖 𝑗 to Ψ𝑖 𝑗 . The strain energy density function
Ψ(s) is defined as:

Ψ(s) = Ψ0 + Ψstretch (s) + Ψbend
1𝐷 (s) + Ψbend

2𝐷 (s), (6)

where Ψ0 is the constant strain energy density value for the yarn
pattern when s = 0, i.e., no deformation is applied to the mid-surface.

4 DATA COLLECTION WITH WARM-START
We gather training data, comprising pairs of macroscale strain from
the mid-surface and the corresponding strain energy density values,
via yarn pattern simulation for four patterns: basket, stockinette,
honeycomb, and cartridge belt rib, as illustrated in Fig. 2. The pri-
mary objective of our warm-start strategy is to expedite the pattern
simulation process. This is achieved by initializing the solution at
a given node point in the strain space using the solution from a
neighboring point. This method is more efficient than beginning
optimization from scratch, where the solution vector u at each node
point is set to zero. Our approach focuses solely on the macroscale
deformation of yarn geometries relative to the macroscale strain
defined in s, thereby not taking into account the microscale fluctua-
tions in yarns that arise when setting u = 0.

To enhance the parallelism of the warm-start procedure, we em-
ploy sectors to group node points. While a simple warm-start strat-
egy in the HYLC strain space is to propagate the solution at a node

𝑠௜଴

𝑠௝଴

Group0 Group1 Group2 Group3

Group4 Group5 Group6 Group7
(a) Eight sectors of strain samples.

Optimization direction
Strain point

0 𝑠௜଴

𝑠௝଴

(b) The simulation sequence (in white)

Fig. 3. Strain sample sectors. As shown in (a), we categorize 2D strain
samples into multiple sectors. Within each sector, we gather training data
by executing yarn pattern simulation. This process involves progressively
increasing strains in a specific pre-defined sequence, as shown in (b).

point to its neighboring points through classical graph traversal
algorithms, such as the minimum spanning tree, it is not friendly
to parallel implementation, as only the solutions of a few node
points can be initialized simultaneously in the propagation and
then be optimized in parallel. To address this issue, we refine our
warm-start strategy by categorizing node points into different sec-
tors according to their polar coordinates, as illustrated in Fig. 3 for
the 2D case. In practice, we use 64 sectors in 2D and two sectors
in 1D. Given the definition of the sectors, The solution propaga-
tion can then be done with sector-level parallelism. Specifically,
we warm start a node point by using results from a point within
the same sector to which it belongs. Within each sector, we first
build an edge for a node point 𝑠𝑖 by selecting a node 𝑗 satisfy-
ing argmin𝑗

{
∥𝑠𝑖 − 𝑠 𝑗 ∥ : ∥𝑠 𝑗 ∥ < ∥𝑠𝑖 ∥, 𝑗 ∈ [0, 𝑁 − 1], 𝑗 ≠ 𝑖

}
. We use

breadth-first search to traverse the node points in the sector, and
select the node point closest to the origin to serve as the root. This
way, we can propagate the solution from node points with small
strains to those with large strains.
Given the warm-start strategy for yarn pattern simulation, we

must determine the sampling range and sampled node points next.
We choose different sampling ranges for different components in
the macroscale strain. For in-plane strain components, we set the
sampling ranges as follows: 𝑠0, 𝑠2 ∈ [−0.5, 0.8], and 𝑠1 ∈ [−0.5, 0.5].
For out-of-plane strain components, we choose a sampling range
of 𝑠3, 𝑠4 ∈ [−250, 250]. The sector-based warm-start strategy is
then applied to accelerate pattern simulation by breaking the 1D
sample ranges into sub-intervals and 2D sample ranges into sectors.
Consequently, we obtain five 1D strain energy datasets Ψ1𝐷,𝑖 for 𝑖 =
{0, 1, 2, 3, 4} and nine 2D strain energy datasets Ψ2𝐷,𝑖 𝑗 for network
training in Sec. 5. We also calculate the derivatives ∇𝑖Ψ1𝐷,𝑖 for the
1D dataset and ∇𝑖Ψ2𝐷,𝑖 𝑗 , ∇𝑗Ψ2𝐷,𝑖 𝑗 for the 2D dataset using finite
difference methods for network training later.

Our warm-start strategy accelerates the homogenization process,
yielding a tenfold increase in speed. Additionally, this strategy is
versatile, extendable to any dimensional space by defining an 𝑁 -
sphere. Please refer to the supplementary document for more details
about yarn pattern simulation and data collection.
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5 NEURAL CONSTITUTIVE MODEL TRAINING
We choose to represent each 1D and 2D function in Eq. 5 using
neural networks separately. As a result, there are a total of five
neural networks Ψ̂𝑖 (𝑠𝑖 ) used to represent 1D functions and nine
neural networks Ψ̂𝑖 𝑗 (𝑠𝑖 , 𝑠 𝑗 ) used to represent 2D functions. These
trained networks are summed together to form the neural consti-
tutive model used in our work. The network architecture is simply
a multi-layer perceptron network with a sigmoid activation func-
tion at each neuron. We will use Ψ̂𝐼 (s𝐼 ) to denote both 1D and 2D
functions when the context is clear. A sample point in the dataset is
denoted as s𝑑

𝐼
correspondingly.

The total loss function involved in network training is a weighted
combination of four loss terms:

𝐿final𝐼 (s𝐼 ; 𝜖) = 𝑤𝑍𝐿𝑍𝐼 (s𝐼 ) +𝑤
𝐹𝐿𝐹𝐼 (s𝐼 ; 𝜖)

+𝑤𝐶𝐿𝐶𝐼 (s𝐼 ; 𝜖) +𝑤
𝑆𝐿𝑆𝐼 (s𝐼 ) .

(7)

Next we provide the purpose and the definition of each term.

5.1 Zero-Order Prediction Loss
This loss term is designed to prompt the networks to reproduce the
values of the strain energy density function at the points sampled
in the training dataset, resulting in:

𝐿𝑍𝐼 (s𝐼 ) =
1
𝑀

𝑀∑︁
𝑑=0

(
Ψ𝑑
𝐼 − Ψ̂𝐼

(
s𝑑𝐼
) )2

, (8)

where𝑀 is the number of samples, and 𝑑 indices through the sam-
ples in the training data.

5.2 First-Order Prediction Loss
This loss term penalizes the deviation of the first-order derivatives of
Ψ̂𝐼 with respect to the derivatives calculated for points in the training
data. It is important for the approximation accuracy of the trained
networks. To ease the implementation, we leverage finite differences
to approximate the first-order derivatives of neural networks and the
sampled points. Consequently, for the 1D neural constitutive model
Ψ̂𝑖 , we have 𝐺 (Ψ̂𝑖 , 𝑠𝑖 ; 𝜖) = (Ψ̂𝑖 (𝑠𝑖 + 𝜖) − Ψ̂𝑖 (𝑠𝑖 ))/𝜖 . For 2D functions
Ψ̂𝑖 𝑗 , we approximate their derivatives as follows: 𝐺𝑖 (Ψ̂𝑖 𝑗 , 𝑠𝑖 , 𝑠 𝑗 ; 𝜖) =
(Ψ̂𝑖 𝑗 (𝑠𝑖 + 𝜖, 𝑠 𝑗 ) − Ψ̂𝑖 𝑗 (𝑠𝑖 , 𝑠 𝑗 ))/𝜖 and 𝐺 𝑗 (Ψ̂𝑖 𝑗 , 𝑠𝑖 , 𝑠 𝑗 ; 𝜖) = (Ψ̂𝑖 𝑗 (𝑠𝑖 , 𝑠 𝑗 +
𝜖) − Ψ̂𝑖 𝑗 (𝑠𝑖 , 𝑠 𝑗 ))/𝜖 . The small interval 𝜖 is set to 10−3 by default. The
first-order prediction loss 𝐿𝐹

𝐼
for networks Ψ̂𝐼 is formulated as:

𝐿𝐹𝐼 (s𝐼 ; 𝜖) =
1
𝑀



∑𝑀
𝑑=0 (𝐺 (Ψ̂𝑖 𝑗 , 𝑠𝑑𝑖 ; 𝜖) − ∇𝑖Ψ

𝑑
1𝐷,𝑖

)2, if 𝐼 = 𝑖,

𝑀∑︁
𝑑=0

(
(𝐺𝑖 (Ψ̂𝑖 𝑗 , 𝑠𝑑𝑖 , 𝑠

𝑑
𝑗 ; 𝜖) − ∇𝑖Ψ

𝑑
2𝐷,𝑖 𝑗 )

2

+ (𝐺 𝑗 (Ψ̂𝑖 𝑗 , 𝑠𝑑𝑖 , 𝑠
𝑑
𝑗 ; 𝜖) − ∇𝑗Ψ

𝑑
2𝐷,𝑖 𝑗 )

2
)
,

if 𝐼 = {𝑖, 𝑗},

(9)
where ∇𝑖Ψ1𝐷,𝑖 and ∇𝑗Ψ2𝐷,𝑖 𝑗 denote the first-order derivatives com-
puted for sample points.

5.3 Third-Order Derivative Deviation Loss
This loss is employed to penalize the third-order derivatives of
networks. By minimizing the magnitude of third-order derivatives,
it can make the quadratic approximation of its function in the local

region much more accurate. Thus, it is critical for the stability of the
simulator in a large time step. Empirically, we observe that applying
the third-order derivative deviation loss effectively suppresses the
oscillation of second-order derivatives in elastic energy. For these
networks trained on the 1D strain dataset, it is easy to estimate and
penalize their third-order derivatives:

𝐿𝐶
𝑖
(s; 𝜖) = 1

2𝜖3

���Ψ̂𝑖 (𝑠𝑖+2𝜖)−2Ψ̂𝑖 (𝑠𝑖+𝜖)+2Ψ̂𝑖 (𝑠𝑖−𝜖)−Ψ̂𝑖 (𝑠𝑖−2𝜖)���2 . (10)
For constitutive networks trained on 2D strains, there are four
unique third-order derivatives of Ψ̂𝑖 𝑗 , which can be selected as
𝜕3Ψ̂𝑖 𝑗/𝜕𝑠3𝑖 , 𝜕

3Ψ̂𝑖 𝑗/𝜕𝑠2𝑖 𝜕𝑠 𝑗 , 𝜕
3Ψ̂𝑖 𝑗/𝜕𝑠𝑖 𝜕𝑠2𝑗 , 𝜕

3Ψ̂𝑖 𝑗/𝜕𝑠3𝑗 . For instance,

𝜕3Ψ̂𝑖 𝑗

𝜕𝑠3
𝑖

=
1
2𝜖3

(
Ψ̂𝑖 𝑗 (𝑠𝑖 + 2𝜖, 𝑠 𝑗 ) − 2Ψ̂𝑖 𝑗 (𝑠𝑖 + 𝜖, 𝑠 𝑗 )

+2Ψ̂𝑖 𝑗 (𝑠𝑖 − 𝜖, 𝑠 𝑗 ) − Ψ̂𝑖 𝑗 (𝑠𝑖 − 2𝜖, 𝑠 𝑗 )
)
,

(11)

and the third-order deviation loss for neural networks that represent
2D functions is formulated as follows:

𝐿𝐶
𝑖 𝑗
(𝑠𝑖 , 𝑠 𝑗 ; 𝜖) =

(
𝜕3Ψ̂𝑖 𝑗
𝜕𝑠𝑖

3

)2
+
(

𝜕3Ψ̂𝑖 𝑗
𝜕𝑠𝑖

2𝜕𝑠 𝑗

)2
+
(

𝜕3Ψ̂𝑖 𝑗
𝜕𝑠𝑖𝜕𝑠 𝑗

2

)2
+
(
𝜕3Ψ̂𝑖 𝑗
𝜕sj3

)2
. (12)

A general form of third-order deviation loss can be expressed as

𝐿𝐶𝐼 (s𝐼 ; 𝜖) =
1
𝑀

{∑𝑀
𝑑=0 𝐿

𝐶
𝑖
(𝑠𝑑
𝑖
; 𝜖), if 𝐼 = 𝑖,∑𝑀

𝑑=0 𝐿
𝐶
𝑖 𝑗
(𝑠𝑑
𝑖
, 𝑠𝑑
𝑗
; 𝜖), if 𝐼 = {𝑖, 𝑗}.

(13)

5.4 Strain Concentration Loss
The primary objective of this loss is to regulate the network’s be-
havior for points that lie outside the effective area covered by the
training data. In the absence of ground-truth values for the strain en-
ergy density function at these external points, we impose a different
constraint: the negative gradients at these points should approxi-
mately direct towards the point s = 0. This approach ensures that
the strain values do not increase outside the sampled region, but
rather concentrate around the central point s = 0. This concentra-
tion is achieved as the deformation energy is minimized, adhering
to the gradient constraints. The formulation of this loss is:

𝐿𝑆
𝐼
(s𝐼 ) = 1

𝑀

∑𝑀
𝑑=0



���Sign(𝐺𝑖 (Ψ̂𝑖 , 𝑠𝑑𝑖 ; 𝜖)) − Sign(𝑠𝑑
𝑖
)
���2 if 𝐼 = 𝑖���Sign(𝐺𝑖 (Ψ̂𝑖 𝑗 , 𝑠𝑑𝑖 , 𝑠

𝑑
𝑗 ; 𝜖)) − Sign(𝑠𝑑𝑖 )

���2 +���Sign(𝐺 𝑗 (Ψ̂𝑖 𝑗 , 𝑠𝑑𝑖 , 𝑠
𝑑
𝑗 ; 𝜖)) − Sign(𝑠𝑑𝑗 )

���2 if 𝐼 = {𝑖, 𝑗},

(14)
in which 𝐺 denotes the function used to compute derivatives, as in
the first-order prediction loss.

6 NETWORK BAKING AND SAFEGUARDING
Next we discuss practical issues involved in the use of our neural
model, including network baking for fast runtime performance, and
safeguarding when deformations are beyond the sampled region.

6.1 Network Baking
Conducting neural network inferences on the fly at each time step
would be too expensive in continuum-based cloth simulation. The
goal of network baking is to avoid runtime inferencing by convert-
ing the network defined in HYLC strain space back to Hermite
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interpolating functions, which can significantly boost the simula-
tion performance. Note that baking back to Hermite interpolating
functions does not lead to large second-order discontinuities. Since
the network is trained with a third-order derivative deviation loss,
the function that the network represents in each sub-region can
be well approximated by quadratic functions realized by Hermite
interpolating functions.
The baking can be achieved by evaluating the function values

and first-order derivatives at sampled points for 1D or 2D stretching
and bending functions, and piecewise Hermite interpolating func-
tions are constructed for each sub-interval in 1D or sub-squared
region in 2D. These functions can be directly located according to
the vector s and calculated in the continuum-based simulator. In
our experiments, we use 200 cubic Hermite functions for 1D, and
100×100 bi-cubic Hermite functions for 2D.

6.2 Safeguarding Strategy
When applying the learned strain energy function to continuum-
based cloth simulation, the macroscale strain of a triangle might fall
outside the region covered by the sampled node points. It can lead to
unstable simulation results if not carefully handled. Therefore, we
propose a safeguarding strategy to enforce the Hessian matrix for
these strain points to be close to the points on the boundary of the
sampled region. This is realized by constructing analytic quadratic
functions that equate their function values and derivatives to the
derivatives at the boundary points of the sampled region in a sector-
based manner. Subsequently, these functions are used as the strain
energy density functions for those points outside the sampled region.
This strategy mitigates discrepancies in second-order derivatives
of constitutive models within and outside the sampled region, thus
improves the stability of the simulation.

6.2.1 One-dimensional case. Let [𝑠min
𝑖

, 𝑠max
𝑖

] be the sample range
for a neural network Ψ̂𝑖 that represents one of the 1D stretching and
bending functions in Eq. 5. We first calculate the function values
(Ψ̂min

𝑖
, Ψ̂max

𝑖
), first-order derivative (𝑔min

𝑖
, 𝑔max

𝑖
), and second-order

derivatives (ℎmin
𝑖

, ℎmax
𝑖

) at its endpoints. With these quantities, we
then construct a quadratic function 𝑆1D,𝑖 as

𝑆1𝐷,𝑖 (𝑠𝑖 ) =


𝑎min𝑠

2
𝑖
+ 𝑏min𝑠𝑖 + 𝑐min, if 𝑠𝑖 < 𝑠min

𝑖
,

𝑎max𝑠2𝑖 + 𝑏max𝑠𝑖 + 𝑐max, if 𝑠𝑖 > 𝑠max
𝑖

,

Ψ̂𝑖 (𝑠𝑖 ) otherwise.
(15)

where the coefficients for 𝑠𝑖 < 𝑠min
𝑖

are computed by equating the
function value and derivative of the quadratic function to these
values of the network Ψ̂1D,𝑖 at 𝑠min

𝑖
, which yields:{

𝑎min = 1
2ℎ

min
𝑖

, 𝑏min = 𝑔min
𝑖

− 2𝑎min𝑠
min
𝑖

,

𝑐min = 𝑓 min
𝑖

− 𝑎min (𝑠min
𝑖

)2 − 𝑏min𝑠
min
𝑖

.
(16)

The coefficients, 𝑎max, 𝑏max, 𝑐max, can be computed in the same
way. It can be verified that the above safeguard function maintains
𝐶2 continuity at the end points of 1D sample ranges.

6.2.2 Two-dimensional case. Unlike the 1D case, there are a large
number of boundary points in the 2D case, and we must determine
the choice of boundary points before constructing the quadratic
energy density function for a point 𝑥 = (𝑠𝑖 , 𝑠 𝑗 ) outside the sampled

Table 1. Quadratic expansion error analysis. This analysis shows our model
has a lower quadratic expansion error, i.e., smoother third-order derivatives.

Type Basket Stockinette Honeycomb Cartridge

[Sperl et al. 2020] 1.31e-3 2.67e-3 5.37e-3 1.60e-3
Ours 6.28e-4 4.05e-4 1.73e-3 1.26e-3

region. Therefore, we choose to divide the 2D plane into 𝑁 sectors,
similar to the warm-starting approach, and construct a quadratic
function at each edge between two neighboring sections. Once
constructed, the quadratic function for any point 𝑥 is computed
through the linear blending of two functions constructed at the
two boundary edges of the sector to which 𝑥 belongs. This design
transforms the 2D quadratic function construction problem into
several 1D problems.

Suppose we divide the 2D sample region into 𝑁 sectors uniformly
around the origin. For the 𝑘-th sector, it contains all of the points
with their polar angles between 𝜙𝑘 and 𝜙𝑘+1, where 𝜙𝑘 = 2𝜋

𝑁
𝑘 . If we

have constructed 2D quadratic functions, 𝐺𝑘
𝑖 𝑗
and 𝐺𝑘+1

𝑖 𝑗
, at its left

and right edges, respectively, the quadratic energy density function
𝑆2D,𝑖 𝑗 (𝑠𝑖 , 𝑠 𝑗 ) for a point (𝑠𝑖 , 𝑠 𝑗 ) in this sector but outside the dataset’s
effective region Ω is

𝑆2D,𝑖 𝑗 (𝑠𝑖 , 𝑠 𝑗 ) =
{
𝑤𝐺𝑘

𝑖 𝑗
(𝑠𝑖 , 𝑠 𝑗 ) + (1 −𝑤)𝐺𝑘

𝑖 𝑗
(𝑠𝑖 , 𝑠 𝑗 ), if (𝑠𝑖 , 𝑠 𝑗 ) ∉ Ω

Ψ̂𝑖 𝑗 (𝑠𝑖 , 𝑠 𝑗 ), otherwise
(17)

We construct 𝐺𝑘
𝑖 𝑗

by equating the function value, gradient, and
Hessian to the endpoint of the sector boundary edge, similar to the
1D case. 𝑤 is the polar barycentric coordinate of the point in this
sector. Given the function value 𝑓𝑘 , the gradient g𝑘 , and the Hessian
matrix H𝑘 of Ψ̂𝑖 𝑗 , we calculate 𝐺𝑘

𝑖 𝑗
as

𝐺𝑘
𝑖 𝑗 (𝑠𝑖 , 𝑠 𝑗 ) =

[
𝑠𝑖 𝑠 𝑗

]
A𝑘

[
𝑠𝑖
𝑠 𝑗

]
+
[
𝑠𝑖 𝑠 𝑗

]
b𝑘 + 𝑐𝑘 , (18)

in which {
A𝑘 = 1

2H𝑘 , bk = g𝑘 − 2A𝑘 t𝑘
𝑐𝑘 = 𝑓𝑘 − t𝑇

𝑘
A𝑘 t𝑘 − b𝑇

𝑘
t𝑘 .

(19)

While, in this setting, the second-order discontinuity occurs for
points within the sector, it can be controlled by increasing the num-
ber of sectors. In our implementation, we set the number of sectors
to 128, which works well empirically.

7 RESULTS
(Please refer to the supplemental video and document for additional
examples.) Our continuum-based simulator runs on CPUs and it
utilizes implicit Euler time integration in conjunction with our neu-
ral constitutive model. It employs a hierarchical grid [Fan et al.
2011] for proximity search and handle contacts by impulse-based
approaches [Bridson et al. 2002; Narain et al. 2012]. By default, it uses
Newton’s method to solve time integration, with no backtracking
line search. (The step size is fixed at one.)

In the simulation of a T-shirt with 14K vertices, as shown in Fig. 8,
with a time step of Δ𝑡 = 1/30s, the computational time for one
time step is divided as follows: 16ms for calculating the triangles’
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Fig. 4. Ablation studies conducted on the hanging simulation of a 20cm×20cm fabric sample. We demonstrate the crucial roles of three specific losses: the
first-order prediction loss, the strain concentration loss, and the third-order deviation loss. Each of these losses contributes uniquely to the accuracy and
stability of the simulation, highlighting their importance in our model.

fundamental forms [Grinspun et al. 2006]; 10ms for accessing the
constitutive model; 15ms for matrix assembly and solving linear
systems; and 26ms for collision detection and handling.

7.1 Ablation Studies
In ablation studies, we focus on the hanging simulation of a square
fabric sample. Figure 4(a) illustrates the significance of the first-order
prediction loss, 𝐿𝐹 , in preventing distortions in the reference con-
figuration, which are typically caused by incorrect internal forces.
Figure 4(b) highlights the necessity of the strain concentration loss,
𝐿𝐵 , for maintaining a monotonically increasing strain energy den-
sity function outside of the sampled region (in blue). Absence of
this loss leads to an incorrect decrease in energy as strain intensifies
(in red arrows). Finally, Figure 4(c) demonstrates that increasing
the weight of the third-order deviation loss, 𝑤𝐶 , from 0 to 10−3
enhances the largest stable time step from 1/5000s to 1/30s.

7.2 Stability Evaluation
A key reason for the stability of our simulations is attributed to our
model’s smoother third-order derivatives, as shown in Fig. 5(a). This
characteristic enables our model to provide an accurate quadratic
expansion. To support this claim, we uniformly sampled 10K points
from each 2D baked constitutive model, integrated their quadratic
expansions, and conducted a comparative analysis. The results, pre-
sented in Table 1, reveal that the quadratic expansion error of our
model is 20 to 80 percent lower than that of [Sperl et al. 2020].
Without backtracking line search, the stability issue in a con-

stitutive model becomes apparent through its inability to perform
simulations at large time steps. This is demonstrated in the two
animated examples in Fig.7. In these examples, simulations using
our model run robustly with a time step of Δ𝑡 = 1/30s. In contrast,
simulations employing the HYLC model, as proposed in [Sperl et al.
2020], fail when the time step is Δ𝑡 = 1/1000s only. Additionally,
Fig. 8 highlights our model’s capability to simulate knitted garments
on rapidly moving avatars, when using large time steps.

With backtracking line search, simulations should be able to run
stably at any large time step. However, the challenge shifts to de-
termining how small the step size should be to ensure stability. As
depicted in Fig.5(b), our model maintains stability with Δ𝑡 = 1/30s
by simply setting the step size to one, as expected. In contrast, the
HYLC model requires a significantly smaller minimal step size to
achieve stability. This disparity is also observed when our simulator

employs the gradient descent solver with Hessian precondition-
ing [Wang and Yang 2016]. This suggests that the stability issue is a
universal concern, independent of the choice of solver.

7.3 Accuracy Evaluation
To assess the accuracy of our model within continuum-based sim-
ulators, we executed an experiment involving the simulation of
stretching a stockinette fabric strip measuring 5cm by 12cm, in both
the course and wale directions. For comparison, we used a ground
truth generated by a DER-based yarn-level simulator [Bergou et al.
2008]. As depicted in Fig. 6(a) and 6(b), our model’s simulation
closely mirrors the real-world Poisson and curly effects observed in
the middle of the fabric strip, with Hausdorff distances to the ground
truth being 0.69cm and 0.72cm, respectively. This contrasts with
the results from the HYLC model proposed in [Sperl et al. 2020],
which deviates from the ground truth, with Hausdorff distances
exceeding 1.0cm. Furthermore, Fig. 6(c) compares the relationship
between force density and stretch ratio as predicted by our constitu-
tive model and the HYLC model. This comparison reveals that our
model’s predictions align more closely with the ground truth.

8 CONCLUSIONS, LIMITATIONS AND FUTURE WORK
This study presents a new neural homogenization method for yarn-
level cloth, enhancing efficiency and accuracy in continuum-based
simulations. By incorporating sector-based strategies and neural
constitutive model, a simulator achieves remarkable stability with
larger time steps. The accuracy of our method is justified by quali-
tative experiments.

Our current homogenization approach depends on synthetic data
from yarn-level simulations, not real-world data. Consequently, the
realism of our simulations is limited to the fidelity of yarn-level simu-
lations. In developing our neural model, we omit higher-dimensional
strain energy components, notably those in the third and fourth di-
mensions, which compromises the accuracy of homogenization. Ad-
ditionally, the expenses associated with data collection and network
training are substantial and should not be overlooked, especially
when considering the interactive design of fabric materials.

In the near future, we aim to tackle the previously mentioned
limitations, with a particular focus on the possibility of collecting
real-world data for homogenization. Our long-term objective is to
create a unified constitutive model suitable for a broader range of
applications. This development is anticipated to significantly elevate
the realism, accuracy, and usability of our method.
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Fig. 5. Stability analysis based on third-order derivatives and minimal step sizes. As depicted in (a), our model exhibits smoother and smaller third-order
derivatives compared to the HYLC model referenced in [Sperl et al. 2020]. This indicates that our model is suitable stable simulations and can accommodate
greater minimal step sizes in both Newton’s method and the preconditioned gradient descent method as shown in (b).
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Fig. 6. A uni-axial stretching experiment involving a stockinette fabric strip. Our model demonstrated its accuracy in continuum-based simulation when
compared with the ground truth. This accuracy is evident both qualitatively, as seen in the Poisson and curly effects in the middle of the strip depicted in (a)
and (b), and quantitatively, as illustrated by the correlation between force density and stretch ratio shown in (c).
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(b) A 20cm×50cm flag under strong wind

Fig. 7. Animation examples simulated with our model and the HYLC model, as referenced in [Sperl et al. 2020]. While the simulations with our model run
stably at Δ𝑡 = 1/30s in both examples, the simulations with the HYLC model fails even when Δ𝑡 = 1/1000s.

  
(a) A dancing avatar wearing a dress

  

(b) A Karate avatar wearing a T-shirt

Fig. 8. Knitted garments simulated with our model on rapidly moving avatars. Thanks to the stability of our model, the continuum-based simulator can
robustly simulate these examples at Δ𝑡 = 1/30s, without backtracking line search. (The step size is fixed at one.)
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