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Automatic Digital Garment Initialization from Sewing Patterns
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(a) The initialized garment (front) (b) The initialized garment (back) (c) The simulated garment (front) (d) The simulated garment (back)

Fig. 1. A quilted coat example with 358 pattern pieces. By providing the sewing pattern and the sewing relationships for this garment, as depicted in the inset
of (a), our system reliably and efficiently calculates an initialization with no folding or intersection in 17 seconds, as shown in (a) and (b). This initial setup
forms the basis for a followup physics-based simulator, effortlessly producing visually stunning simulations in (c) and (d). Without our system, users would
encounter substantial challenges in preparing a garment of this complexity for simulation.

The rapid advancement of digital fashion and generative AI technology calls
for an automated approach to transform digital sewing patterns into well-
fitted garments on human avatars. When given a sewing pattern with its
associated sewing relationships, the primary challenge is to establish an ini-
tial arrangement of sewing pieces that is free from folding and intersections.
This setup enables a physics-based simulator to seamlessly stitch them into a
digital garment, avoiding undesirable local minima. To achieve this, we har-
ness AI classification, heuristics, and numerical optimization. This has led to
the development of an innovative hybrid system that minimizes the need for
user intervention in the initialization of garment pieces. The seeding process
of our system involves the training of a classification network for select-
ing seed pieces, followed by solving an optimization problem to determine
their positions and shapes. Subsequently, an iterative selection-arrangement
procedure automates the selection of pattern pieces and employs a phased
initialization approach to mitigate local minima associated with numerical
optimization. Our experiments confirm the reliability, efficiency, and scala-
bility of our system when handling intricate garments with multiple layers
and numerous pieces. According to our findings, 68 percent of garments can
be initialized with zero user intervention, while the remaining garments can
be easily corrected through user operations during post-processing.

CCS Concepts: • Computing methodologies→ Physical simulation.
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1 INTRODUCTION
With the rise of digital fashion businesses and the progress in genera-
tive AI models, digital sewing patterns have become more accessible
and affordable. This advancement raises an intriguing question: how
can we effortlessly convert digital sewing patterns into well-fitted
digital garments on human avatars, all through a fully automated
process? This capability is in high demand for a range of digital
fashion and entertainment applications, as it forms a key component
in the automated creation of 3D garments and characters.
Unfortunately, when presented with a sewing pattern and its

sewing relationships, cloth simulation often grapples with non-
uniqueness, resulting in visual artifacts primarily due to local min-
ima. These artifacts canmanifest as self-folding in Fig. 2a, cloth-body
intersection in Fig. 2b, or misplaced pieces stuck outside of the body
in Fig. 2c, depending on how the simulation objective is defined and
optimized. To mitigate the local minima issue, a natural solution is to
employ a suitable initialization. In essence, the goal of an initializa-
tion is to position the sewing pieces around the human body without
folding or intersection, thus enabling the generation of visually ac-
ceptable digital garments through simulation. An intersection-free
initialization is also important to simulators that rely on continuous
collision detection and interior point methods [Li et al. 2020].
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(a) A folded sleeve
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edge
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Fig. 2. Improper simulation outcomes of a sleeve on the body. Each outcome
signifies a local minimum in the simulation problem. Ideally, clothing should
be worn properly by the body with no folding or intersection.

While researchers have long acknowledged the challenge of ad-
dressing local minima in simulation, their primary focus has tradi-
tionally revolved around mitigating numerical instability [Volino
and Thalmann 2000; Wang et al. 2023; Wu and Kim 2023]. In this
pursuit, the complexities of establishing a suitable initialization have
often been overshadowed. A relatively straightforward aspect of
garment initialization involves the assignments of pattern pieces
to body parts. Such assignments can be automatically extracted
from pattern shapes and labels [Berthouzoz et al. 2013], or manually
determined by users. However, a more complex issue emerges when
trying to establish the suitable initial shape for each sewing piece
without folding or intersection. While simply projecting a piece
onto a pre-defined planar or cylindrical surface is adequate for basic
garments, it is impractical and demands significant manual interven-
tion when dealing with complex garments featuring small pieces,
multiple layers, or asymmetric sewing configurations like shirring.
Such manual intervention disrupts the smooth, automated workflow
for generating digital garments in an unsupervised manner.

Assuming a digital garment is provided with the sewing pattern
and all sewing relationships, we present an automatic initialization
system to tackle the local minima issue in subsequent simulations.
Our system is founded on a phased approach, gradually introducing
pattern pieces and objective potentials into an optimization-based
initialization procedure. This phased approach not only addresses
the local minima but also offers unique advantages.
• It achieves high efficiency by optimizing only a small set of

pattern pieces at a time.
• It conveniently resolves inter-piece intersections based on

the order of piece arrangement.
• It is user-friendly and allows user intervention whenever

necessary, especially if the pattern input is imperfect.
Based on this approach, we make the following contributions:
• Seeding. We train a classification network to automat-

ically select the initial piece(s), referred to as the seed, to
be arranged. Subsequently, we formulate an optimization
problem to initialize the seed shape on the human body.

• Selection. We propose an effective heuristic function for
selecting the next piece to be arranged. We also illustrate
the essential criteria for simultaneously arranging multiple
pieces and introduce an algorithm for automated detection
and merging of these pieces.

• Arrangement. We formulate the arrangement of the se-
lected piece(s) as an optimization problem. To tackle the
local minima issue, we invent a phased approach by pro-
gressively adding potentials into the objective. Furthermore,
we provide a set of criteria for assessing the arrangement
quality. These criteria enable our system to reattempt the
arrangement if it does not meet the standards.

We have implemented the proposed automatic initialization system
on the CPU and tested it alongside our in-house simulation engine.
Our experiments confirm that the system can handle the initializa-
tion of a diverse range of garments on various human body avatars,
often necessitating minimal to no user intervention. Most garments
can be initialized within a matter of seconds, and the system exhibits
scalability in handling complex, multi-layered garments, including
the square down coat with 358 pieces, as depicted in Fig. 1.

2 RELATED WORK
2.0.1 Physics-based cloth simulation. Physics-based cloth simu-
lation has been a significant area of research in computer graphics
since the seminal work by Baraff and Witkin [1998]. Depending
on the representation of cloth, cloth simulation techniques fall into
three categories: spring-based [Bridson et al. 2003; Choi and Ko
2002; Liu et al. 2013], continuum-based [Narain et al. 2012; Volino
et al. 2009], and yarn-based [Cirio et al. 2014; Kaldor et al. 2008,
2010]. In recent years, cloth simulation research has predominantly
focused on three critical directions: modeling and characterizing
the mechanical properties of cloth [Miguel et al. 2012, 2013; Sperl
et al. 2022; Wang et al. 2011], effective handling of self-frictional con-
tacts [Bridson et al. 2002; Brochu et al. 2012; Chen et al. 2023; Li et al.
2018, 2020; Ly et al. 2020; Tang et al. 2018], and enhancing simula-
tion performance through numerical algorithms [Narain et al. 2016;
Tamstorf et al. 2015; Wang and Yang 2016; Wu et al. 2020]. Like other
simulation challenges, cloth simulation is notable for its issue with
local minima, particularly when dealing with cloth-body collisions
using repulsion potentials. While researchers have explored the im-
pact of local minima on the stability of numerical solvers [Volino and
Thalmann 2000; Wang et al. 2023; Wu and Kim 2023], there remains
an uncharted domain – the existence of multiple solutions, each
mathematically plausible but visually unsatisfactory for properly
draped garments.

2.0.2 Pattern design and optimization. In the past, researchers
predominantly considered sewing pattern modeling as a tool to
assist fashion manufacturing, often entailing extensive user interac-
tion. However, in recent years, there has been a growing acknowl-
edgment of the importance of automatic sewing pattern genera-
tion within the digital fashion and entertainment industries. Re-
search in this field can be broadly classified into two main direc-
tions: optimizing existing sewing patterns to meet specific user-
defined objectives [Bartle et al. 2016; Ly et al. 2018; Umetani et al.
2011; Wang 2018], and reconstructing sewing patterns from various
garment sources, including parametric templates [Korosteleva and
Lee 2021], meshes [Goto and Umetani 2021; Pietroni et al. 2022],
sketches [Wang et al. 2018], 3D scans [Bang et al. 2021; Korosteleva
and Lee 2022], and images [Liu et al. 2023; Yang et al. 2018].
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Our system seamlessly integrates with the majority of existing au-
tomatic sewing pattern optimization and generation techniques, as
they inherently provide patterns with sewing relationships that are
essential for our system. Our system also benefits from pattern pars-
ing techniques [Berthouzoz et al. 2013], which aim to automatically
determine sewing relationships and piece assignments.

3 SYSTEM PIPELINE
Our system takes a sewing pattern and a human body as input and
generates an initialized garment on the same body as output. It
comprises three key processes as Fig. 8 shows. The first process is
seeding, which uses a classification network to find the first piece(s)
to be arranged and applies geometric optimization to calculate their
initial shapes. If the automatically selected seed is ineffective, users
can manually choose their seed. Once the system initializes the seed,
it runs the selection process to find the next piece(s) and employs the
arrangement process to initialize them. Compared with the others,
the arrangement process is more computation-intensive. It contains
three iterative steps and terminates only when the arranged shapes
are satisfactory enough. The system keeps running the selection-
arrangement procedure until all pieces have been arranged.
Our system operates based on the following assumptions.
• The body should be in an A-pose with both arms extended

50 degrees away from the torso.
• The pattern mesh should be resampled to achieve a uniform

resolution with an average vertex distance of 20mm.
• The pattern should be associated with all sewing lines, and

each sewing line should have a zero reference length.
• All of the pieces should face away from the body when

incorporated into a garment worn on the body.
• All of the pieces should be oriented upright within the pat-

tern space, matching their orientation on the garment.
Currently, we rely on preprocessing to meet these assumptions, and
we anticipate that sewing patterns generated by AI models will
naturally conform to these assumptions in the future.
Our system also offers postprocessing to enhance the generated

garment. During this procedure, a quasistatic simulation of the entire
garment is conducted using a small step size and greater repulsion
strength parameters. This simulation settles the garment under the
influence of gravity, eliminates remaining cloth intersections, and
adjusts the body to a desired pose if it differs from the A-pose.

4 SEEDING
The seeding procedure in our system serves a dual purpose: it de-
termines the seed piece(s) and their locations while also initializing
their shapes. As mentioned in Subsection 7.1, the choice of the
seed significantly influences system performance, with neck, waist,
and torso pieces often proving effective seeds in our experiments.
Based on this observation, we introduce both automatic and man-
ual seeding methods in Subsection 4.1, and we discuss geometric
optimization for initializing the seed in Subsection 4.2.

4.1 Seed Selection Methods
We can view seed selection as a pattern piece classification problem,
with a special aim of finding the piece(s) covering the neck, waist, or

torso, if the former two cannot be found. Before we present our seed
selection methods, we would like to address a small issue: there
can be multiple pieces covering the waist. To resolve this issue,
the system selects all of the rectangular pieces with their width-
to-height aspect ratios above three, and merges them if they are
connected by sewing lines in a head-to-tail fashion. Doing so allows
us to control the number of waist pieces to one.

4.1.1 AI-based seed selection. Given a pattern piece defined in
the 2D reference pattern space, we first need to construct the en-
coding for determining the category it belongs to. We choose radial
sampling [Liu et al. 2023] to define the shape feature of the piece.
However, the shape feature alone is insufficient for determining the
category, as many pieces share similar shapes but correspond to
different parts on a garment. Therefore, we consider not only the
piece’s own shape, but also its surroundings, including both the
shapes of the neighboring pieces and their sewing relationships.
Since the pieces can be located anywhere within the pattern space,
the length or direction of a sewing line is unimportant. Instead we
extract the feature of the sewing relationship between piece P and
its neighbor P′ based on where their sewing boundary is located
with respect to P′:

𝑆P→P′ =
∑︁

𝑒′∈𝜕P′
𝐶 (𝑒′,P)𝑈 (𝑒′), (1)

where 𝜕P′ is the sewing boundary of piece P′,𝑈 (𝑒′) is the column
area of P′ under edge 𝑒′ as Fig. 3a shows, and𝐶 (X,Y) is a function
testing if two sets X and Y are connected by any sewing line S:

𝐶 (X,Y) =
{

1, ∃𝑥,𝑦 : 𝑥 ∈ X, 𝑦 ∈ Y, {𝑥,𝑦} ∈ S,
0, otherwise. (2)

While there exist many other ways to encode the sewing relation-
ship, we choose Eq. 1 because it can be reused later for the piece
selection heuristic (in Section 5) and it well signifies neck and waist
pieces. Intuitively, when 𝑆P→P′ is large, it suggests that P is above
P′ on a garment1 and P′ is likely be to a neck or waist piece.
Our AI-based seed selection method is built upon a two-layer

graph attention network [Veličković et al. 2018]. The initial layer
aggregates the features of a piece and its surroundings, including
both piece shape features and sewing relationship features, using
an attention mechanism. The subsequent layer acts a classifier with
softmax activation to predict the probability of the piece belonging
to each category.

To train this classification network, we use the AdamW optimizer
and we set the initial learning rate to 5 × 10−5, the backbone to
5 × 10−6 and the weight decay to 10−4. The whole training process
takes 90,000 iterations and lasts 11 hours on two NVIDIA® GeForce
RTX™ 4090 GPUwith the batch size equal to 8. Our data set contains
23,276 labeled sewing patterns, corresponding to a wide range of
garments including dresses, pants, shirts, and coats. We use 80
percent of the data for training and the rest for testing.

4.1.2 Manual seed selection. If AI-based seed selection fails to
find any seed or if the seed it finds is notably incorrect, the system
provides users with an option to manually select seeds. This process

1As mentioned previously in Section 3, we assume that all of the pieces are oriented
upright in the reference pattern space.
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Fig. 3. The scenarios involved in the piece selection process. Our system
determines the next piece(s) to be arranged by a heuristic function, which
is based on the (green) sewing relationship among the pieces.

is analogous to the arrangement procedure in other systems: users
select the piece(s) and assign them to pre-defined neck, waist, or
torso locations. Our system offers 15 such locations.

4.2 Seed Initialization
After selecting the seed piece(s), we would like to initialize its shape
x ∈ R3𝑁 around the body, where 𝑁 is the number of seed vertices.
To achieve this, we propose to solve an optimization problem x =

arg min 𝐹 init (x) with the following objective:

𝐹 init (x) = 𝐹 cent (x) + 𝐹up (x) + 𝐹dist (x) + 𝐹def (x). (3)

The centering potential, 𝐹 cent (x) = 1
2𝑘

ctr
x𝑐 − x0

𝑐

2, pulls the cen-
tral vertex x𝑐 of the seed piece(s) toward the assigned location x0

𝑐

with a strength parameter 𝑘ctr. Meanwhile, the upward potential
aims to maintain the seed’s orientation upward:

𝐹up (x) = −1
2
𝑘up

∑︁
𝑖

Sign
(
(r𝑖 − r𝑐 )T

[
0
1

] )
(x𝑖 −x𝑐 )T


0
1
0

 , (4)
where r𝑖 and r𝑐 are the reference vertex positions in the 2D pattern
space, and 𝑘up is the upward strength parameter. The body distance
potential keeps the seed piece(s) close to the body:

𝐹dist =
1
2
𝑘dist

∑︁
𝑖

max
(
Sign

(
n(x𝑖 ) · ∇𝜙 (x𝑖 )

)
, 0
)
(𝜙 (x𝑖 ) − 𝐷)2 , (5)

in which n(x𝑖 ) is the normal of vertex 𝑖 , 𝜙 (x𝑖 ) is the signed dis-
tance function of the body, 𝐷 is the desired vertex-body distance,
and 𝑘dist is its strength parameter. Eq. 5 disables the body distance
potential of vertex 𝑖 if the vertex is facing toward the body. This is
to prevent the seed from being stuck in a self-folded local minimum
state. Finally, we need the deformation potential 𝐹def (x) to con-
strain the deformation of the seed shape, including both planar and
bending deformations. For simplicity, we choose the spring model
to limit planar deformation for each mesh edge, and the quadratic
model [Bergou et al. 2006] to limit bending deformation for each
dihedral edge. Other deformation models can also be effective in
this context.
We use an iterative solver to solve this optimization problem.

Please refer to Section 7 for solver and parameter details.

5 PIECE SELECTION
Given a set of pattern pieces already being arranged on the body,
we are now faced with the task of determining the next piece(s) for
arrangement. This process is pivotal, as it not only influences the
quality of the final result, but also dictates how the system handles
inter-piece intersections in Subsection 6.3. In this section, we will
first introduce the heuristic score function, which helps us evaluate
and select an individual piece. Following that, we will explore the
importance of arranging multiple pieces simultaneously and our
approach to selecting them.

5.1 Single Piece Selection
Let’s first discuss the selection of a single piece. We propose the
following heuristic to choose a piece P with the highest score:

𝐻 (P) =
∑
𝑒∈𝜕P 𝐶 (𝑒, P̄)𝐿0

𝑒∑
𝑒∈𝜕P 𝐿0

𝑒

+ 𝑠𝑎𝐴(P) + 𝑠𝑏𝑆 P̄→P , (6)

in which P̄ is the set of already arranged pieces, 𝐿0
𝑒 is the reference

length of edge 𝑒 , 𝐴(P) is the reference area of piece P, 𝑆 P̄→P is
the sewing relationship score in Eq. 1, and 𝑠𝑎 and 𝑠𝑏 are two weight
variables. In Eq. 6, the first term gives precedence to the pieces
whose sewing boundaries are mostly determined by P̄ already. The
second term prioritizes the arrangement of large pieces. The third
term underscores the importance of selecting pieces that can be well
supported from the top, such as P0 with thickened sewing lines on
the top in Fig. 3b. Without this term, the system may opt for P1,
which could sag excessively under gravity during shape refinement
(in Subsection 6.3), due to missing support from the top.

5.2 Multiple Piece Selection
In practice, it is necessary to arrange multiple pieces simultaneously
for two compelling reasons.

The first reason arises when a single piece must be intentionally
divided into multiple components, often due to the use of different
fabrics, such as the trench coat in Fig 10o. Arranging these pieces
consecutively could result in an improper fit to the corresponding
body part. To address this challenge, we need to determine whether
multiple pieces can be selected and arranged as a unified whole. This
determination involves testing whether the sewing boundaries of
adjacent piece candidates smoothly connect on P̄, as demonstrated
by the two edges 𝑒0 and 𝑒1 in Fig. 3c. If this smooth connection is
confirmed, we treat these pieces as part of a larger, combined piece.
Subsequently, we calculate the heuristic score for this amalgamated
piece, similar to other individual pieces, and decidewhether it should
be selected next, as described in Subsection 5.1.

The second reason is related to parallelization. According to Sec-
tion 7, on average, each piece comprises just 197 vertices, with over
half of the pieces containing fewer than 100 vertices. Sequencing
such small pieces one after another would not fully leverage the
power of parallel processing. To address this challenge, we employ
the following approach: we iteratively select additional pieces using
the aforementioned process until the total number of vertices in the
selected set reaches a specified cap, which, in our system, is set at
1,024. Our experiments demonstrate that this practice reduces the
computational time by 60 to 80 percent.
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6 PIECE ARRANGEMENT
We formulate the arrangement of the newly selected piece(s) as an
optimization problem with the following objective function:

𝐹 (x) = 𝐹def (x) + 𝐹 sew (x) + 𝐹 ext (x) + 𝐹body (x) + 𝐹 self (x) . (7)

This objective shares the same deformation potential, as described
in Eq. 3. However, it operates within a distinct problem domain and
incorporates additional potentials. Before discussing these differ-
ences, it is important to note that this optimization is prone to local
minima issues if solved immediately, as illustrated in Fig. 5a. To
overcome this challenge, we employ a phased approach, gradually
introducing new potentials into the system over three steps.

6.1 Initial Alignment
Let P̄ be the set of arranged pieces and P be the selected piece(s).
We want to make an initial alignment of P to P̄ first, without
considering body or self intersection. To do so, we initialize P by
applying an affine transformation

{
t,A

��t ∈ R3,A ∈ R3×2 }, which
minimizes the sewing gap between P and P̄:

{t,A} = arg min
∑︁

{𝑖, 𝑗 }∈S,𝑖∈P, 𝑗∈ P̄

t + Ar𝑖 − x𝑗 2
, (8)

where {𝑖, 𝑗} is a sewing pair between P and P̄, r𝑖 is the 2D pattern
position of vertex 𝑖 , and x𝑗 is the 3D garment position of vertex 𝑗 . To
solve Eq. 8, we use its closed-form solution [Müller et al. 2005], which
requires at least two non-trivial sewing lines between P and P̄. If
that is not true, we simply set A = [I 0]T. Once we transform P,
we optimize its shape by minimizing a truncated objective function:
𝐹 (x) = 𝐹 sew (x) + 𝐹def (x) + 𝐹 ext (x). Here we define the sewing
potential by quadratic energies:

𝐹 sew (x) = 1
2
𝑘sew

∑︁
{𝑖, 𝑗 }∈S

x𝑖 − x𝑗 2
, (9)

where 𝑘sew is the sewing strength parameter. We define the external
potential as:

𝐹 ext (x) = 1
2
𝑘fix

∑︁
𝑖∈ P̄

x𝑖 − x0
𝑖

2 − 𝑘const
∑︁
𝑖∈P

xT𝑖
f
∥f ∥ , (10)

where 𝑘fix and 𝑘const are two strength parameters. In Eq. 10, the
first term tries to prevent each vertex 𝑖 of piece P̄ from leaving its
originally arranged position x0

𝑖
, while the second term pushes each

vertex of P in a constant direction: f =
∑
{𝑖, 𝑗,𝑘 }

(
x𝑖 + x𝑗 − 2x𝑘

)
, in

which 𝑖 , 𝑗 , and 𝑘 are the vertices of a sewing boundary triangle on
P̄, as shown in Fig. 4a. Without the second term, P may get stuck
in the opposite side of the sewing boundary.

To smooth the boundary betweenP and P̄, we define the problem
domain x as the union of P and the two-ring sewing boundary
neighborhood on P̄, as Fig. 4a shows. We also integrate sewing
edge pairs into the dihedral edge set E′, if the two sewing edges (in
blue) are topologically consistent. We incorporate each potential
into the total objective, if all of the relevant vertices exist in x. To
help reduce the local minima issue related to bending deformation,
we intentionally increase the magnitude of bending resistance. The
results of a selected sleeve after affine transformation and initial
alignment are shown in Fig. 5b and 5c, respectively.

P

i
j

k P

P0 P1

𝐧ሺ𝑡ሻ 𝐧ሺ𝑡ଵሻ

(a) The boundary between P and P̄

P

i
j

k P

P0 P1

𝐧ሺ𝑡ሻ 𝐧ሺ𝑡ଵሻ

(b) The boundary between leg pieces

Fig. 4. The sewing boundaries. To smooth the sewing boundary, we add the
vertices within the two-ring neighborhood on P̄ into the problem domain,
as depicted in (a). However, we cannot improve the smoothness near the
crotch, as the leg pieces are supposed to face against each other as (b) shows.

6.2 Body Intersection Removal
The body intersection removal step resembles the initial alignment
step, but with additional repulsion potentials:

𝐹body (x) = 1
2
𝑘body

∑︁
𝑖

(min (𝜙 (x𝑖 ) − 𝜖, 0))2 , (11)

where 𝜙 (x𝑖 ) is the signed distance function of the body, 𝑘body is
the body repulsion strength parameter, and 𝜖 is the repulsion buffer
distance. In our system, 𝜖 = 4mm.

If we activate the body repulsion potentials for all of the vertices
immediately, the simulation could easily be trapped in local min-
ima with body intersections, as evident in Fig. 5d, since the initial
alignment of P does not account for body collisions. To address this
issue, we recognize that the sewing boundary vertices connected to
P̄ do not experience the intersection issue. Therefore, we incremen-
tally activate the potentials of the piece vertices through a flood fill
process initiated from the sewing boundary. This method mimics
the real-world process of donning a garment: as the body extends,
the clothing untangles and covers the body, as Fig. 5e shows.

6.3 Shape Refinement
Our last aim is to resolve self-intersections of cloth and make further
refinements to the garment shape.
There are two types of self-intersections: intra-piece intersec-

tions and inter-piece intersections. Since existing untangling algo-
rithms [Baraff et al. 2003; Volino and Magnenat-Thalmann 2006]
are expensive and cannot guarantee the removal of inter-piece in-
tersections, we focus on addressing them exclusively. But instead of
developing new untangling algorithms as in [Buffet et al. 2019], we
take a simple approach. We assume that piece P is located outside
of the already arranged pieces, and we apply a repulsion potential
to every vertex 𝑖 ∈ P and its closest triangle 𝑡 = { 𝑗, 𝑘, 𝑙} within P̄:

𝐹 self (x) = 1
2
𝑘self

∑︁
𝑖∈P

(
min

(
(x𝑖 − x𝑗 ) · n(𝑡) − 𝜖, 0

) )2
, (12)

in which n(𝑡) is the constant normal of triangle 𝑡 , 𝑘self is the self
repulsion strength parameter, and 𝜖 is the same buffer distance used
in Eq. 11. One advantage of our approach is that we do not require
the complete elimination of intersections during the arrangement
process, which would necessitate a large 𝑘self and significant compu-
tational time. Instead, we can address any remaining intersection in
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(a) Immediate optimization (b) After transformation (c) After initial alignment

(d) After quick repulsion (e) After phased repulsion (f) After shape refinement

Fig. 5. The results of a sleeve in the puff-sleeve dress example. To arrange
selected piece(s), we adopt a phased approach that gradually adds new
potentials into the objective, as depicted in (b), (c), (e), and (f). Without this
approach, the optimization can lead to local minima, as in (a) and (d).

post-processing, as discussed in Section 3. This is possible because
the inside-outside relationship among pieces remains unchanged
once it is determined by the piece arrangement order.

During shape refinement, our optimization occurs in two phases.
In the first phase, we introduce self-repulsion potentials into the
objective and reduce bending resistance to its normal value, allowing
cloth to bend more readily. In the second phase, we replace the
second term of 𝐹 ext by gravitational potential, so that cloth can drape
naturally. Furthermore, we expand the problem domain beyond the
two-ring sewing boundary neighborhood of P̄ and fix the vertices
on P̄ only if they are away from the boundary. This expansion helps
refine the garment shape near the sewing boundary, especially for
shirring as Fig. 5f shows. In our system, we define the expanded
domain as the 16-ring neighborhood from the sewing boundary.

6.4 Termination Conditions
After the completion of all three steps, we assess the quality of the
arrangement based on the following criteria:

𝜃in = min
{𝑡0,𝑡1 }∈N

n(𝑡0) · n(𝑡1), 𝜃out = min
{𝑡0,𝑡1 }∈B

n(𝑡0) · n(𝑡1),

𝑠max = max
{𝑖, 𝑗 }∈E

(x𝑖 − x𝑗  − 𝐿0
𝑖 𝑗

)
,

(13)

where n(𝑡) is the normal of triangle 𝑡 , N is the set of neighboring
triangles, and B is the set of boundary triangles adjacent to each
other after sewing. Intuitively, 𝜃in assesses whether a piece has
been excessively folded, 𝜃out examines if two adjacent pieces have
been excessively folded along their boundary, and 𝑠max checks for
significant stretching of any spring edge.When 𝜃in < 𝜃0

in, it suggests
a piece may be folded or intersected, and we simply reiterate the
entire arrangement process until the piece is flattened. However,
in the case of 𝜃out < 𝜃0

out, repetitions may not necessarily increase
𝜃out, as observed in scenarios such as the crotch formed by leg
pieces in Fig. 4b. Therefore, we redo the arrangement process only
once when 𝜃out < 𝜃0

out. Finally, if 𝑠max > 𝑠0
max, it implies a piece

has been overly stretched due to cloth-body intersections as Fig. 2b
shows. This issue may result from insufficient piece selection or the
arrangement process itself. As we cannot immediately determine the
primary cause, we include the neighboring pieces of the currently
selected one into the set once, and then repeat the arrangement
process. The system concludes the arrangement process when no
further repetition is necessary, according to the criteria.

The computational cost of the arrangement process relies on the
number of iterations spent by the solver at each step, and the initial
alignment step is of particular importance to the final arrangement
quality. Since most pieces can be arranged during the first arrange-
ment with a few initial alignment iterations, we intentionally reduce
the number of initial alignment iterations for less cost. The numbers
of iterations spent at each step are listed in Fig. 8.

7 RESULTS AND DISCUSSIONS
We implement our system exclusively on the CPU to ensure com-
patibility across multiple hardware platforms. The implementation
of our system is solver-independent for optimization and simula-
tion tasks. In practice, we employ a solver based on the parallelized
gradient descent method with Jacobi preconditioning and Cheby-
shev acceleration [Wang and Yang 2016], utilizing a fixed step size
(with 𝛼 = 0.4) and a fixed spectral radius (with 𝜌 = 0.9994). While
projective dynamics [Bouaziz et al. 2014] could also be used for
initial alignment, we have found it less capable of handling phased
intersection removal, as discussed in Section 6.2 and 6.3.

We assess the performance of our system using 21 sewing patterns
designed for six body types. These patterns encompass various
garment types, including pants, dresses, coats, and shirts. Depending
on the pattern design, the number of vertices (after resampling)
ranges from 1.5K to 23K, and the number of pieces varies from 7
to 358. On average, each piece contains 197 vertices, and about 52
percent of the pieces contains 100 vertices or fewer.

7.1 Efficiency Evaluation
We evaluate the efficiency of our system on a workstation with an
Intel® Core™ i9-13900K 3.00 GHz CPU. Fig. 6a provides a breakdown
of the computational time dedicated to the puff-sleeve dress example.
Among the processes involved, the arrangement process is the most
expensive one. Further analysis within it reveals that the shape
refinement step contributes the most to the cost.
According to Subsection 6.4, if the first pass fails to meet the

criteria, we revisit the piece arrangement process and increase the
number of iterations. Figure 6a illustrates that this practice nearly
doubles the computational cost when the system revisits the process
twice in this example. Fortunately, our experiments, summarized in
Figure 6b, show that 52 percent of the examples require zero or one
revisit, and only 10 percent of the examples need more than two
revisits. Consequently, our system can process the majority of the
examples within 10 seconds as Figure 6c shows.
Seed selection is pivotal in determining the number of revisits.

In general, using better and more seeds can considerably reduce
the need for revisits, associated computational costs, and even the
occurrence of artifacts, as further discussed in Subsection 7.2. How-
ever, evaluating seed quality can be challenging without running

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2024.



685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

Automatic Digital Garment Initialization from Sewing Patterns • 7

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Seeding
Piece selection
initial alignment
Body intersection removal
Shape refinement
Initial alignment (extra)
Body intersection removal (extra)
Shape refinement (extra)
Others

(a) A computational breakdown of the puff-sleeve dress example

0.0

1.0

0

2

4

6

8

Pants Dresses Shirts Coats Others

0

5

10

15

20

-0.5 0.5 1.5 2.5 3.5 4.5
0

5

10

15

20

To
ta

l T
im

e 
(s

)

0

2

4

6

8

N
um

be
r o

f E
xa

m
pl

es

0 revisit
1 revisit

2 revisits
3+ revisits

F. pelvis

B. chest

F. chest

Waist

Neck

Pr
ed

ic
te

d 
C

at
eg

or
y

Actual Category

B. pelvis

0.97

0.95

0.89

0.88

0.89

0.92

0

2

4

6

8

Pants Dresses Shirts Coats Others

No artifact
Inter-piece intersection
Wrongly located piece
Intra-piece intersection

0

2

4

6

8

N
um

be
r o

f E
xa

m
pl

es

(b) The examples with revisits

0.0

1.0

0

2

4

6

8

Pants Dresses Shirts Coats Others

0

5

10

15

20

-0.5 0.5 1.5 2.5 3.5 4.5
0

5

10

15

20

To
ta

l T
im

e 
(s

)

0

2

4

6

8

N
um

be
r o

f E
xa

m
pl

es

0 revisit
1 revisit

2 revisits
3+ revisits

F. pelvis

B. chest

F. chest

Waist

Neck

Pr
ed

ic
te

d 
C

at
eg

or
y

Actual Category

B. pelvis

0.97

0.95

0.89

0.88

0.89

0.92

0

2

4

6

8

Pants Dresses Shirts Coats Others

No artifact
Inter-piece intersection
Wrongly located piece
Intra-piece intersection

0

2

4

6

8

N
um

be
r o

f E
xa

m
pl

es
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Fig. 6. The charts depicting the number of revisits and the time spent for
each example. These visuals establish a clear correlation between the num-
ber of revisits and the computational time. It also highlights the system’s
efficiency, showing high variability when processing dresses and coats.

the whole system at the first place. To ensure a fair assessment that
mirrors real-world usage cases, we report performance using the
very first effective seed in our experiments.

7.2 Failure Evaluation
The system successfully initializes a garment, if the whole process
involves no user intervention and the result contains no obvious
artifact. In this regard, the system can fail for two reasons.
First, the system can fail due to ineffective seeding. According

to our data set, 86 percent of the garments contain neck or waist
pieces; and according to Fig. 7a, the detection rate of a neck or waist
piece is about 96 percent, while the detection rate of a body piece
is 90 percent. Therefore, the likelihood of automatically finding a
neck, waist, or body piece for each garment is around 95 percent.
Even if such pieces are found, they may still be ineffective and

the initialization may run into major artifacts, especially if the gar-
ment is complex. Unfortunately we are unable to know this without
running the system. According to our experiment, two out of 21
garments, the quilted coat in Fig. 1 and the slip dress in Fig. 10i,
suffer from this issue and need manual seed re-selection.

Second, although the initialized result contains no major artifact,
it may contain minor artifacts, including inter-piece intersection,
wrongly located piece, and intra-piece intersection shown in Fig. 9.
According to our experiments in Fig. 7b, 81 percent of the garments
can be initialized with no minor artifact. Among these artifacts,
inter-piece intersection is probably the simplest as it is due to an
incorrect arrangement order. For instance, suppose that P𝑎 and P𝑐
are two connected pieces and P𝑏 overlaps with them. When the
order is P𝑎 ← P𝑏 ← P𝑐 , P𝑏 would inevitably intersect with P𝑎 or
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(b) The examples with minor artifacts

Fig. 7. Failure statistics. Our system may fail to automatically initialize
garments with no obvious artifact. These charts visualize the likelihood for
the system to fail during seeding and selection-arrangement procedures.

P𝑐 . To resolve this artifact, users can rearrange the order and redo
simulation. The other artifacts can be more complex and require
extensive user intervention, which is beyond the scope of this work.

Overall, given automatically selected seeds, our system correctly
initializes 15 out of 21 garments with no user invention. Since the
seed detection rate is around 95 percent, we anticipate the success
rate of our system to be around 68 percent.

7.3 Limitations
According to Subsection 3, our system has specific requirements for
body and pattern inputs. When these requirements are not met, the
system may experience inefficiency or failures. Even with the re-
quirements met, ineffective seeding, especially if the pattern misses
neck, waist or body pieces, can cause the system to fail to work
automatically. After the system arranges the garment, the initialized
shape may still contain minor artifacts as shown in Subsection 7.2,
some of which can be resolved by simple user intervention. Our
system, using downsampled mesh resolution and signed distance
function, does not account for cloth intersections with detailed body
parts such as finger tips and hair strands. Finally, it is intriguing to
know if the system can handle garments designed for humanoid
and animal bodies, as we have not carried out such tests yet.

8 CONCLUSIONS AND FUTURE WORK
We present an automatic garment initialization system, which serves
as the basis for automatic digital garment creation. The effectiveness
of our system hinges on the assumption that the sewing relation-
ships provide sufficient guidance for phased initialization of each
pattern piece. But this assumption also implies that the system’s
automation relies on the choice of initial seeds and the arrangement
order, which is not guaranteed to be optimal in all cases.
In the future, we plan to validate our system with additional

garment cases and diverse human body avatars, with a primary
focus on improving its reliability and efficiency. We have a strong
interest in leveraging AI models to reduce the system’s dependency
on seed selection and arrangement order. Additionally, we aim to
refine the system to eliminate the requirement for sewing patterns to
include complete sewing relationships. This change is particularly
important as it eases the burden on digital pattern makers and
pattern generation algorithms.
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Fig. 8. The system pipeline. Our system consists of three key processes,
with its core being a selection-arrangement procedure that sequentially
arranges pattern pieces until none remains. During this procedure, the
system may visit its steps multiple times to achieve higher parallelization
and improved result quality. The numbers in the brackets are the numbers
of solver iterations allocated to each step in the first and subsequent visits.

(a) Inter-piece intersection (b) Wrongly located pieces (c) Intra-piece intersection

(d) Inter-piece intersection
fixed by user intervention

(e) Wrongly located pieces
fixed by user intervention

(f) Intra-piece intersection
fixed by user intervention

Fig. 9. Typical minor artifacts occurred to the garments initialized by our
system. While all of them can be fixed by user intervention as shown in (d),
(e), and (f), our implementation provides an option for users to fix inter-piece
intersection only.
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Fig. 10. The digital garments produced by a physics-based simulator following our initialization process. Note that our initialization excludes accessory details
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