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Figure 1. (a) Our approach enables the high-fidelity generation and flexible editing of 3D faces from textual input. It facilitates sequential
editing for creating customized details in 3D faces. (b) The produced 3D faces can be seamlessly integrated into existing CG pipelines.

Abstract
Text-guided 3D face synthesis has achieved remarkable

results by leveraging text-to-image (T2I) diffusion models.
However, most existing works focus solely on the direct gen-
eration, ignoring the editing, restricting them from synthe-
sizing customized 3D faces through iterative adjustments.
In this paper, we propose a unified text-guided framework
from face generation to editing. In the generation stage, we
propose a geometry-texture decoupled generation to miti-
gate the loss of geometric details caused by coupling. Be-
sides, decoupling enables us to utilize the generated geom-
etry as a condition for texture generation, yielding highly
geometry-texture aligned results. We further employ a fine-
tuned texture diffusion model to enhance texture quality in
both RGB and YUV space. In the editing stage, we first em-
ploy a pre-trained diffusion model to update facial geometry
or texture based on the texts. To enable sequential editing,
we introduce a UV domain consistency preservation reg-
ularization, preventing unintentional changes to irrelevant
facial attributes. Besides, we propose a self-guided consis-
tency weight strategy to improve editing efficacy while pre-
serving consistency. Through comprehensive experiments,
we showcase our method’s superiority in face synthesis.
Project page: https://faceg2e.github.io/.

†Equal contribution
*Corresponding author

1. Introduction
Modeling 3D faces serves as a fundamental pillar for var-
ious emerging applications such as film making, video
games, and AR/VR. Traditionally, the creation of detailed
and intricate 3D human faces requires extensive time from
highly skilled artists. With the development of deep learn-
ing, existing works [7, 9, 46, 55] attempted to produce 3D
faces from photos or videos with generative models. How-
ever, the diversity of the generation remains constrained pri-
marily due to the limited scale of training data. Fortunately,
recent large-scale vision-language models (e.g., CLIP [32],
Stable Diffusion [34]) pave the way for generating diverse
3D content. Through the integration of these models, nu-
merous text-to-3D works [22, 27, 28, 49, 51] can create 3D
content in a zero-shot manner.

Many studies have been conducted on text-to-3D face
synthesis. They either utilize CLIP or employ score dis-
tillation sampling (SDS) on text-to-image (T2I) models to
guide the 3D face synthesis. Some methods [45, 52] employ
neural fields to generate visually appealing but low-quality
geometric 3D faces. Recently, Dreamface [53] has demon-
strated the potential for generating high-quality 3D face tex-
tures by leveraging SDS on facial textures, but their geom-
etry is not fidelitous enough and they overlooked the sub-
sequent face editing. A few works [1, 11, 26] enable text-
guided face editing, allowing coarse-grained editing (e.g.
overall style), but not fine-grained adjustments (e.g., lips
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color). Besides, the lack of design in precise editing control
leads to unintended changes in their editing, preventing the
synthesis of customized faces through sequential editing.

To address the aforementioned challenges, we present
text-guided 3D face synthesis - from generation to editing,
dubbed FaceG2E. We propose a progressive framework to
generate the facial geometry and textures, and then perform
accurate face editing sequentially controlled by text. To the
best of our knowledge, this is the first attempt to edit a 3D
face in a sequential manner. We propose two core compo-
nents: (1) Geometry-texture decoupled generation and (2)
Self-guided consistency preserved editing.

To be specific, our proposed Geometry-texture decou-
pled generation generates the facial geometry and texture
in two separate phases. By incorporating texture-less ren-
dering in conjunction with SDS, we induce the T2I model
to provide geometric-related priors, inciting details (e.g.,
wrinkles, lip shape) in the generated geometry. Building
upon the generated geometry, we leverage ControlNet to
force the SDS to be aware of the geometry, ensuring pre-
cise geometry-texture alignment. Additionally, we fine-tune
a texture diffusion model that incorporates both RGB and
YUV color spaces to compute SDS in the texture domain,
enhancing the quality of the generated textures.

The newly developed Self-guided consistency preserved
editing enables one to follow the texts, performing efficient
editing in specific facial attributes without causing other
unintended changes. Here, we first employ a pre-trained
image-edit diffusion model to update the facial geometry
or texture. Then we introduce a UV domain consistency
preservation regularization to prevent unexpected changes
in faces, enabling sequential editing. To avoid the degra-
dation of editing effects caused by the regularization, we
further propose a self-guided consistency weighting strat-
egy. It adaptively determines the regularization weight for
each facial region by projecting the cross-attention scores of
the T2I model to the UV domain. As shown in Fig. 1, our
method can generate high-fidelity 3D facial geometry and
textures while allowing fine-grained face editing. With the
proposed components, we achieve better visual and quanti-
tative results compared to other SOTA methods, as demon-
strated in Sec. 4. In summary, our contributions are:
• We propose FaceG2E, facilitating a full pipeline of text-

guided 3D face synthesis, from generation to editing.
User surveys confirm that our synthesized 3D faces are
significantly preferable than other SOTA methods.

• We propose the geometry-texture decoupled generation,
producing faces with high-fidelity geometry and texture.

• We design the self-guided consistency preservation, en-
abling the accurate editing of 3D faces. Leveraging pre-
cise editing control, our method showcases some novel
editing applications, such as sequential and geometry-
texture separate editing.

2. Related Work
Text-to-Image generation. Recent advancements in
visual-language models [32] and diffusion models [8, 13,
42] have greatly improved text-to-image generation [3, 33,
34, 37]. These methods, trained on large-scale image-text
datasets [40, 41], can synthesize realistic and complex im-
ages from text descriptions. Subsequent studies have made
further efforts to introduce additional generation process
controls [16, 48, 54], fine-tuning the pre-trained models for
specific scenarios [10, 15, 35], and enabling image editing
capabilities [5, 12, 23]. However, generating high-quality
and faithful 3D assets, such as 3D human faces, from tex-
tual input still poses an open and challenging problem.
Text-to-3D generation. With the success of text-to-image
generation in recent years, text-to-3D generation has at-
tracted significant attention from the community. Early ap-
proaches [14, 20, 30, 38, 50] utilize mesh or implicit neural
fields to represent 3D content, and optimized the CLIP met-
rics between the 2D rendering and text prompts. However,
the quality of generated 3D contents is relatively low.

Recently, DreamFusion [31] has achieved impressive re-
sults by using a score distillation sampling (SDS) within the
powerful text-to-image diffusion model [37]. Subsequent
works further enhance DreamFusion by reducing genera-
tion time [27], improving surface material representation
[6], and introducing refined sampling strategies [18]. How-
ever, the text-guided generation of high-fidelity and intri-
cate 3D faces remains challenging. Building upon Dream-
Fusion, we carefully design the form of score distillation by
exploiting various diffusion models at each stage, resulting
in high-fidelity and editable 3D faces.
Text-to-3D face synthesis. Recently, there have been at-
tempts to generate 3D faces from text. Describe3D [47]
and Rodin [45] propose to learn the mapping from text to
3D faces on pairs of text-face data. They solely employ
the mapping network trained on appearance descriptions to
generate faces, and thus fail to generalize to out-of-domain
texts (e.g., celebrities or characters). On the contrary, our
method can generalize well to these texts and synthesize
various 3D faces.

Other works [11, 17, 21, 26, 53] employ SDS on the pre-
trained T2I models. Dreamface [53] utilizes CLIP to select
facial geometry from candidates. Then they perform the
SDS with a texture diffusion network to generate facial tex-
tures. Headsculpt [11] employs Stable Diffusion [34] and
InstructPix2Pix [5] for computing the SDS, and relies on
the mixture of SDS gradients for constraining the editing
process. These approaches can perform not only generation
but also simple editing. However, they still lack the design
in precise editing control, and unintended changes in the
editing results often occur. This prevents them from synthe-
sizing highly customized 3D faces via sequential editing.
On the contrary, our approach facilitates accurate editing of
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Figure 2. Overview of FaceG2E. (a) Geometry-texture decoupled generation, including a geometry phase and a texture phase. (b) Self-
guided consistency preserved editing, in which we utilize the built-in cross-attention to obtain the editing-relevant regions and unwrap them
to UV space. Then we penalize inconsistencies in the irrelevant regions. (c) Our method exploits multiple score distillation sampling.

3D faces, supporting sequential editing.

3. Methodology

FaceG2E is a progressive text-to-3D approach that first gen-
erates a high-fidelity 3D human face and then performs fine-
grained face editing. As illustrated in Fig. 2, our method
has two main stages: (a) Geometry-texture decoupled gen-
eration, and (b) Self-guided consistency preserved editing.
In Sec. 3.1, we introduce some preliminaries that form the
fundamental basis of our approach. In Sec. 3.2 and Sec.
3.3, we present the generation and editing stages.

3.1. Preliminaries

Score distillation sampling has been proposed in Dream-
Fusion [31] for text-to-3D generation. It utilizes a pre-
trained 2D diffusion model ϕ with a denoising function
ϵϕ (zt; y, t) to optimize 3D parameters θ. SDS renders an
image I = R(θ) and embeds I with an encoder E(·),
achieving image latent z. Then it injects a noise ϵ into z,
resulting in a noisy latent code zt. It takes the difference
between the predicted and added noise as the gradient:

∇θLSDS(I) = Et,ϵ

[
w(t) (ϵϕ (zt; y, t)− ϵ)

∂z

∂I

∂I

∂θ

]
, (1)

where w(t) is a time-dependent weight function and y is the
embedding of input text.

Facial Geometry and Texture is represented with param-
eters θ = (β, u) in FaceG2E. β denotes the identity coeffi-
cient from the parametric 3D face model HIFI3D [4], and u
denotes a image latent code for facial texture. The geometry
g can be achieved by the blendshape function M(·):

g = M(β) = T +
∑
i

βiSi, (2)

where T is the mean face and S is the vertices offset basis.
As to the texture, the facial texture map d is synthesized
with a decoder: d = D(u). We take the decoder from VAE
of Stable Diffusion [34] as D(·).

3.2. Geometry-Texture Decoupled Generation

The first stage of FaceG2E is the geometry-texture decou-
pled generation, which generates facial geometry and tex-
ture from the textual input. Many existing works have at-
tempted to generate geometry and texture simultaneously
in a single optimization process, while we instead decouple
the generation into two distinct phases: the geometry phase
and the texture phase. The decoupling provides two advan-
tages: 1) It helps enhance geometric details in the gener-
ated faces. 2) It improves geometry-texture alignment by
exploiting the generated geometry to guide the texture gen-
eration.
Geometry Phase. An ideal generated geometry should pos-
sess both high quality (e.g., no surface distortions) and a
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good alignment with the input text. The employed facial
3D morphable model provides strong priors to ensure the
quality of generated geometry. As to the alignment with
the input text, we utilize SDS on the network ϕsd of Stable
Diffusion [34] to guide the geometry generation.

Previous works [21, 26, 52] optimize geometry and tex-
ture simultaneously. We observe this could lead to the
loss of geometric details, as certain geometric informa-
tion may be encapsulated within the texture representation.
Therefore, we aim to enhance the SDS to provide more
geometry-centric information in the geometry phase. To
this end, we render the geometry g with texture-less ren-
dering Ĩ = R̃(g), e.g., surface normal shading or diffuse
shading with constant grey color. The texture-less shading
attributes all image details solely to geometry, thereby al-
lowing the SDS to focus on geometry-centric information.
The geometry-centric SDS loss is defined as:

∇βLgeo=Et,ϵ

[
w(t) (ϵϕsd

(zt; y, t)− ϵ)
∂zt

∂Ĩ

∂Ĩ

∂g

∂g

∂β

]
. (3)

Texture Phase. Many works [26, 53] demonstrate that tex-
ture can be generated by minimizing the SDS loss. How-
ever, directly optimizing the standard SDS loss could lead to
geometry-texture misalignment issues, as shown in Fig .9.
To address this problem, we propose the geometry-aware
texture content SDS (GaSDS). We resort to the ControlNet
[54] to endow the SDS with awareness of generated geom-
etry, thereby inducing it to uphold geometry-texture align-
ment. Specifically, we render g into a depth map e. Then
we equip the SDS with the depth-ControlNet ϕdc, and take
e as a condition, formulating the GaSDS:

∇uLga
tex = Et,ϵ

[
w(t) (ϵϕdc

(zt; e, y, t)− ϵ)
∂zt
∂I

∂I

∂d

∂d

∂u

]
.

(4)
With the proposed GaSDS, the issue of geometric mis-

alignment is addressed. However, artifacts such as local
color distortion or uneven brightness persist in the textures.
This is because the T2I model lacks priors of textures,
which hinders the synthesis of high-quality texture details.

Hence we propose texture prior SDS to introduce such
priors of textures. Inspired by DreamFace [53], we train
a diffusion model ϕtd1 on texture data to estimate the tex-
ture distribution for providing the prior. Our training dataset
contains 500 textures, including processed scanning data
and selected synthesized data [2]. Different from Dream-
Face, which uses labeled text in training, we employ a fixed
text keyword (e.g., ‘facial texture’) for all textures. Because
the objective of ϕtd1 is to model the distribution of textures
as a prior, the texture-text alignment is not necessary. We
additionally train another ϕtd2 on the YUV color spaces to
promote uniform brightness, as shown in Fig 3. We fine-
tune both ϕtd1 and ϕtd2 on Stable Diffusion. The texture

texutre
diffusion1

a face UV texture
Face texture datasets

texutre
diffusion2

YUV color space

noise

noise

Figure 3. Training the texture diffusion model is performed on the
collected facial textures in both RGB and YUV color space.

prior SDS is formulated with the trained ϕtd1 and ϕtd2 as:

∇uLpr
tex = Lrgb

tex + λyuvLyuv
tex ,

Lrgb
tex = Et,ϵ

[
w(t)

(
ϵϕtd1

(
zdt ; y

∗, t
)
− ϵ

) ∂zdt
∂d

∂d

∂u

]
,

Lyuv
tex = Et,ϵ

[
w(t)

(
ϵϕtd2

(
zd

′

t ; y∗, t
)
− ϵ

) ∂zd
′

t

∂d

∂d

∂u

]
,

(5)

where zdt and zd
′

t denote the noisy latent codes of the texture
d and the converted YUV texture d′. The y∗ is the text
embedding of the fixed text keyword. We combine the Lga

tex

and Lpr
tex as our final texture generation loss:

Ltex = Lga
tex + λprLpr

tex, (6)

where λpr is a weight to balance the gradient from Lpr
tex.

3.3. Self-guided Consistency Preserved Editing

To attain the capability of following editing instructions in-
stead of generation prompts, a simple idea is to take the
text-guided image editing model InstructPix2Pix [5] ϕip2p

as a substitute for Stable Diffusion to form the SDS:

∇β,uLedit = Et,ϵ

[
w(t)

(
ϵϕip2p (z

′
t; zt, y

∗, t)− ϵ
) ∂z′t
∂β, ∂u

]
,

(7)
where z′t denotes the latent for the rendering of the edited
face, and the original face is embedded to zt as an extra
conditional input, following the setting of InstructPix2Pix.

Note that our geometry and texture are represented by
separate parameters β and u, so it is possible to indepen-
dently optimize one of them, enabling separate editing of
geometry and texture. Besides, when editing the texture,
we integrate the Lpr

tex to maintain the structural rationality
of textures.
Self-guided Consistency Weight. The editing SDS in Eq.
7 enables effective facial editing, while fine-grained edit-
ing control still remains challenging, e.g., unpredictable and
undesired variations may occur in the results, shown as Fig.
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Figure 4. Visualization of the edited face, the cross-attention score
for token “mask” and the consistency weight Ci during iterations
in editing. Note the viewpoints vary due to random sampling in
iterations.

10. This hinders sequential editing, as earlier edits can be
unintentionally disrupted by subsequent ones. Therefore,
consistency between the faces before and after the editing
should be encouraged.

However, the consistency between faces during editing
and the noticeability of editing effects, are somewhat con-
tradictory. Imagine a specific pixel in texture, encouraging
consistency inclines the pixel towards being the same as the
original pixel, while the editing may require it to take on a
completely different value to achieve the desired effect.

A key observation in addressing this issue is that the
weight of consistency should vary in different regions: For
regions associated with editing instructions, a lower level of
consistency should be maintained as we prioritize the edit-
ing effects. Conversely, for irrelevant regions, a higher level
of consistency should be ensured. For instance, given the
instruction “let her wear a Batman eyemask”, we desire the
eyemask effect near the eyes region while keeping the rest
of the face unchanged.

To locate the relevant region for editing instructions, we
propose a self-guided consistency weight strategy in the UV
domain. We utilize the built-in cross-attention of the In-
structPix2Pix model itself. The attention scores introduce
the association between different image regions and spe-
cific textual tokens. An example of the consistency weight
is shown in Fig 4. We first select a region-indicating token
T ∗ in the instruction, such as “mask”. At each iteration i,
we extract the attention scores between the rendered image
I of the editing and the token T ∗. The scores are normal-
ized and unwrapped to the UV domain based on the cur-
rent viewpoint, and then we compute temporal consistency
weight C̃i from the unwrapped scores:

C̃i = 1− (proj (norm (att (I ′, T ∗))))
2
, (8)

where att(·, ·) denotes the cross-attention operation to pre-

dict the attention scores, the norm(·) denotes the normal-
ization operation, and the proj denotes the unwrapping pro-
jection from image to UV domain. As C̃i is related to the
viewpoint, we establish a unified consistency weight Ci to
fuse C̃i from different viewpoints. The initial state of Ci is
a matrix of all ‘one’, indicating the highest level of consis-
tency applied to all regions. The updating of Ci at each step
is informed by the C̃i. Specifically, we select the regions
where the values in C̃i are lower than Ci to be updated.
Then we employ a moving average strategy to get the Ci:

Ci = Ci−1 ∗ w + C̃i ∗ (1− w), (9)

where w is a fixed moving average factor. We take the Ci

as a weight to perform region-specific consistency.
Consistency Preservation Regularization. With the con-
sistency weight Ci in hand, we propose a region-specific
consistency preservation regularization in the UV domain to
encourage consistency between faces before and after edit-
ing in both texture and geometry:

Ltex
reg = ∥(do − de)⊙ Ci∥22 ,

Lgeo
reg = ∥(po − pe)⊙ Ci∥22 ,

(10)

where do, de denote the texture before and after the editing,
po, pe denote the vertices position map unwrapped from the
facial geometry before and after the editing, and ⊙ denotes
the Hadamard product.

With the consistency preservation regularization, we
propose the final loss for our self-guided consistency pre-
served editing as:

LfinalEdit = Ledit + λregLreg, (11)

where λreg is the balance weight.

4. Experiments

4.1. Implementation Details

Our implementation is built upon Huggingface Diffusers
[44]. We use stable-diffusion [36] checkpoint for geom-
etry generation, and sd-controlnet-depth [29] for texture
generation. We utilize the official instruct-pix2pix [43] in
face editing. The RGB and YUV texture diffusion models
are both fine-tuned on the stable-diffusion checkpoint. We
utilize NVdiffrast [25] for differentiable rendering. Adam
[24] optimizer with a fixed learning rate of 0.05 is em-
ployed. The generation and editing for geometry/texture
require 200/400 iterations, respectively. It takes about 4
minutes to generate or edit a face on a single NVIDIA A30
GPU. We refer readers to the supplementary material for
more implementation details.
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Figure 5. FaceG2E enables the generation of highly realistic and diverse 3D faces (on the left), as well as provides flexible editing
capabilities for these faces (on the right). Through sequential editing, FaceG2E achieves the synthesis of highly customized 3D faces, such
as ‘A female child Hulk wearing a Batman mask’. Additionally, independent editing is available for geometry and texture modification.

4.2. Synthesis Results

We showcase some synthesized 3D faces in Fig. 1 and Fig.
5. As depicted in the figures, FaceG2E demonstrates ex-
ceptional capabilities in generating a wide range of visu-
ally diverse and remarkably lifelike faces, including notable
celebrities and iconic film characters. Furthermore, it en-
ables flexible editing operations, such as independent ma-
nipulation of geometry and texture, as well as sequential
editing. Notably, our synthesized faces can be integrated
into existing CG pipelines, enabling animation and relight-
ing applications, as exemplified in Fig. 1. More animation
and relighting results are in the supplementary material.

4.3. Comparison with the state-of-the-art

We compare some state-of-the-art methods for text-guided
3D face generation and editing, including Describe3D [47],
DreamFace [53] and TADA [26]. Comparisons with some
other methods are contained in the supplementary material.

4.3.1 Qualitative Comparison
The qualitative results are presented in Fig. 6. We can ob-
serve that: (1) Describe3D struggles to generate 3D faces

“Emma Watson” “Will Smith” “Deadpool”“Let him wear a 
black glasses”

“Let her wear a 
Geisha makeup”

“Make his eyemask
made of gold”

D
es
cr
ib
e3
D

D
re
am
fa
ce

TA
D
A

O
ur
s

Figure 6. The comparison on text-guided 3D face synthesis. We
present both the generation and editing results of each method.

following provided texts due to its limited training data and
inability to generalize beyond the training set. (2) TADA
produces visually acceptable results but exhibits shortcom-
ings in (i) generating high-quality geometry (e.g., evident
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Figure 7. The comparison on sequential face editing.

Method Generation Editing
Score ↑ Ranking-1 ↑ Score ↑ Ranking-1 ↑

Describe3D [47] 29.81 0% 28.83 0%
Dreamface [53] 33.22 10% 33.14 10%

TADA [26] 34.85 10% 33.73 20%
Ours 36.95 80% 35.50 70%

Table 1. The CLIP evaluation results on the synthesized 3D faces.

geometric distortion in its outputs), and (ii) accurately
following editing instructions (e.g., erroneously changing
black glasses to blue in case 2). (3) Dreamface can generate
realistic faces but lacks editing capabilities. Moreover, its
geometry fidelity is insufficient, hindering the correlation
between the text and texture-less geometry. In comparison,
our method is superior in both generated geometry and tex-
ture and allows for accurate and flexible face editing.

We further provide a comparison of sequential editing
in Fig. 7. Clearly, the editing outcomes of Describe3D
and Dreamface in each round lack prominence. Although
TADA performs well with single-round editing instructions,
it struggles in sequence editing due to unintended changes
that impact the preceding editing effects influenced by sub-
sequent edits. For instance, in the last round, TADA mistak-
enly turns the skin purple. In contrast, our FaceG2E benefits
from the proposed self-guided consistency preservation, al-
lowing for precise sequence editing.

4.3.2 Quantitative Comparison

We quantitatively compare the fidelity of synthesized faces
to text descriptions using the CLIP evaluation. We provide
a total of 20 prompts, evenly split between generation and

Figure 8. Quantitative results of user study. Our results are more
favored by the participants compared to the other methods.

editing tasks, to all methods for face synthesis. All results
are rendered with the same pipeline, except DreamFace,
which takes its own rendering in the web demo [19]. A
fixed prefix ‘a realistic 3D face model of ’ is employed for
all methods when calculating the CLIP score. We report the
CLIP Score [39] and Ranking-1 in Tab. 1. CLIP Ranking-
1 calculates the ratio of a method’s created faces ranked as
top-1 among all methods. The results validate the superior
performance of our method over other SOTA methods.

4.3.3 User Study

We perform a comparative user study involving 100 partic-
ipants with Fuxi Youling Crowdsourcing1 to evaluate our
method against state-of-the-art (SOTA) approaches. Partic-
ipants are presented with 10 face generation examples and
10 face editing examples, and are asked to select the best
method for each example based on specific criteria. The
results, depicted in Fig. 8, unequivocally show that our
method surpasses all others in terms of user preference.

4.4. Ablation Study

Here we present some ablation studies. Extra studies based
on user surveys are provided in the supplementary material.

4.4.1 Effectiveness of GDG

To evaluate the effectiveness of geometry-texture decoupled
generation (GDG), we conduct the following studies.
Geometry-centric SDS (GcSDS). In Fig. 9(a), we con-
duct an ablation study to assess the impact of the proposed
GcSDS. We propose a variation that takes standard textured
rendering as input for SDS and simultaneously optimizes
both geometry and texture variables. The results reveal that
without employing the GcSDS, there is a tendency to gen-
erate relatively planar meshes, which lack geometric details
such as facial wrinkles. We attribute this deficiency to the
misrepresentation of geometric details by textures.
Geometry-aligned texture content SDS (GaSDS). In
Columns 3 and 4 of Fig. 9(b), we evaluate the effective-

1https://fuxi.163.com/solution/data
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Figure 9. The ablation study of our geometry-texture decoupled generation. The input texts are ‘Scarlett Johansson’ and ‘Will Smith’.

Original face w/o RegOurs full w/o SC-weight

Scarlett Johansson

Hulk

→ Make her lips purple

Let him wear Batman eyemask→
Figure 10. Analysis of the proposed self-guided consistency
preservation (SCP) in 3D face editing.

ness of GaSDS. We replace the depth-ControlNet in GaSDS
with the standard Stable-Diffusion model to compute Lga

tex.
The results demonstrate a significant problem of geometry-
texture misalignment. This issue arises because the stan-
dard Stable Diffusion model only utilizes text as a condi-
tional input and lacks perception of geometry.
Texture prior SDS. To assess the efficacy of our texture
prior SDS, we compared it with two variants: one that solely
relies on geometry-aware texture content SDS, denoted as
w/o Lpr

tex, and another that excludes the use of Lyuv
tex , de-

noted as w/o Lyuv
tex . As shown in Columns 1,2 and 3 of Fig.

9(b), the results demonstrate that the w/o Lpr
tex pipeline gen-

erates textures with significant noise and artifacts. The w/o
Lyuv

tex pipeline produces textures that generally adhere to
the distribution of facial textures, but may exhibit brightness

irregularities. The complete Lpr
tex yields the best results.

4.4.2 Effectiveness of SCP

To evaluate the effectiveness of the proposed self-guided
consistency preservation (SCP) in editing, we conduct the
following ablation study. We make two variants: One vari-
ant, denoted as w/o Reg, solely relies on Ledit for editing
without employing consistency regularization. The other
variant, denoted as w/o SC-weight, computes the consis-
tency preservation regularization without using the self-
guided consistency weight.

The results are shown in Fig. 10. While w/o Reg shows
noticeable editings following the instructions, unexpected
alterations occur, such as the skin and hair of Scarlett turn-
ing purple, and Hulk’s skin turning yellow. This inade-
quacy can be attributed to the absence of consistency con-
straints. On the other hand, w/o SC-weight prevents unde-
sirable changes in the results but hampers the effectiveness
of editing, making it difficult to observe significant editing
effects. In contrast, the full version of SCP achieves evident
editing effects while preserving consistency in unaffected
regions, thereby ensuring desirable editing outcomes.

5. Conclusion
We propose FaceG2E, a novel approach for generating di-
verse and high-quality 3D faces and performing facial edit-
ing using texts. With the proposed geometry-texture decou-
pled generation, high-fidelity facial geometry and texture
can be produced. Despite achieving new state-of-the-art re-
sults, we notice some limitations in FaceG2E. (1) The ge-
ometric representation restricts us from generating shapes
beyond the facial skin, such as hair and accessories. (2) Se-
quential editing enables the synthesis of customized faces,
but it also leads to a significant increase in time consump-
tion. Each round of editing requires additional time.
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