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A Two-part Transformer Network for Controllable
Motion Synthesis

Shuaiying Hou, Hongyu Tao, Hujun Bao, and Weiwei Xu

Abstract—Although part-based motion synthesis networks have been investigated to reduce the complexity of modeling heterogeneous
human motions, their computational cost remains prohibitive in interactive applications. To this end, we propose a novel two-part
transformer network that aims to achieve high-quality, controllable motion synthesis results in real-time. Our network separates the
skeleton into the upper and lower body parts, reducing the expensive cross-part fusion operations, and models the motions of each part
separately through two streams of auto-regressive modules formed by multi-head attention layers. However, such a design might not
sufficiently capture the correlations between the parts. We thus intentionally let the two parts share the features of the root joint and
design a consistency loss to penalize the difference in the estimated root features and motions by these two auto-regressive modules,
significantly improving the quality of synthesized motions. After training on our motion dataset, our network can synthesize a wide range
of heterogeneous motions, like cartwheels and twists. Experimental and user study results demonstrate that our network is superior to
state-of-the-art human motion synthesis networks in the quality of generated motions.

Index Terms—Human motion synthesis, transformer, deep learning, heterogeneous motion, body parts
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1 INTRODUCTION

Human motion synthesis has a wide range of applications
in computer graphics and virtual reality, including video
games, movie production, and crowd simulation. An ap-
pealing human motion synthesis method should scale up
well to a large scope of motion types and generate real-
istic motions for virtual characters. Recently, deep neural
networks (DNNs) have shown great potential to effectively
model nonlinear kinematic processes embodied in different
types of human motions, such as high-quality locomo-
tion [1], [2], contact-rich basketball motions [3], [4], martial
arts movements [5], [6], even motions with close multi-
character interactions [7], and rhythmic dances [8], [9].

Various neural network architectures have been devel-
oped to model the non-linearity in human motions [1],
[10], [11], [12]. The expert networks in the mixture-of-
experts (MoE) architecture are used to cope with different
subsets of input motions. Once trained, the experts become
locally specialized for some subsets assigned by the gating
networks, which helps MoE achieve satisfactory results on
motion synthesis tasks [2], [4], [7], [13]. Part-based motion
synthesis networks adopt a divide-and-conquer strategy by
breaking down the human body into parts based on its
inherent skeleton structure [14], [15], [16]. Such approaches
reduce the complexity of optimizing the entire human
pose manifold, enabling these models to capture spatial
variations better and avoid the over-smoothness of each
part’s motion, which can prevent generated motions from
converging to mean poses. Moreover, these models improve
the diversity of generated motions, such as frequent hand
swings embodied in dances. However, as noted by Ghosh
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et al. [16], the quality of motions generated by part-based
models still requires improvement in some aspects, such as
foot slidings, limb constraints, and biomechanical plausi-
bility. Another problem of existing part-based methods is
that they are unsuitable for interactive control applications
because of their high computational costs. Typically, the
average depth and width of each part’s network exceed
the depth and width of the whole body’s network divided
by the number of parts, like the network presented in [15],
resulting in increased computational complexity for part-
based approaches compared to entire-body-based models.
Furthermore, decomposing the entire body into more parts
leads to extensive feature fusion operations. For instance,
the methods presented in [14], [16] perform fusion and
part-division operations seven times in the encoder and
decoder, respectively. Unfortunately, modeling more parts
and corresponding feature fusion operations reduces the
network’s parallelism, thereby further hindering its run-
time performance.

In this paper, we propose a novel two-part transformer
network (TPTN) to synthesize various types of high-quality
motions conditioned on control signals in real-time. Such a
two-part design is based on the observation that the upper
body and lower body often move relatively independently
depending on the types of motions. For instance, the upper
body may perform different movements when the character
walks or runs. In light of this, our approach divides the hu-
man body into two parts, the upper and lower body parts,
and models them separately using two streams of auto-
regressive modules (ARMs). This reduces the complexity of
modeling the entire human pose manifold simultaneously
and enables the synthesis of various types of heterogeneous
motions. Compared to existing part-based motion synthesis
methods, our two-part division significantly reduces the
number of cross-part fusion operations, which benefits real-
time performance. To address the potential loss of informa-
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Fig. 1: A motion sequence generated by our network. From left to right: running, twist, side somersault, whirlwind kicking,
and ending with a cartwheel (from 0m27s to 0m37s in the accompanying video). Although the transitions between the last
four types of heterogeneous motions are not in the training dataset, our network can still successfully generate smooth
transitions between them, which demonstrates the diversity of motions that our network can synthesize. The inverse
kinematics algorithm is not applied in this experiment.

tion caused by dividing the human body into two parts,
we use a single linear layer for feature fusion to exchange
information between the two ARMs. To improve correla-
tions between the two body parts, we introduce consistency
modules (CMs) to estimate the root motion from the shared
root features and a consistency loss to penalize differences
in the estimated root features and motions. The CMs are
used to facilitate the consistency loss and are discarded after
training to avoid incurring high computational costs.

Our TPTN takes control signals and motion features as
inputs and outputs the conditioned probabilistic density
function (PDF) of the next frame’s motion. We also empiri-
cally keep relatively short frame buffers in the memory for
the auto-regressive networks, which reduces computational
costs in terms of time and space. The two-part and short
frame-buffer design enables our TPTN to synthesize high-
quality motions and respond to control signals in real-time.
The architecture of our TPTN is based on the Transformer
model [17], which has shown to be a powerful tool for
modeling various types of data across different domains.
We leverage multi-head attention layers in two ARMs to
model the correlations and variations for the upper and
lower body parts among a long-range temporal window.
To make the TPTN have a finite temporal receptive field
length and guarantee the temporal ordering of the motion
sequence, we use the local self-attention mechanism in [18].

In summary, the contributions of our paper are as fol-
lows:

• We propose a novel two-part auto-regressive neural
network by adopting attention mechanisms to model
the probability of human motion data. We demon-
strate that it achieves state-of-the-art results and
substantially improves the diversity of synthesized
motions.

• We design a lightweight feature fusion layer and
a consistency loss to help the network capture the
correlations between the two parts’ motions, which
is fast to compute and crucial to the quality of gener-
ated motions.

The TPTN is a compact model of size ˜3.59M bytes.
Experimental results show that it can generate high-quality
motions fast (˜75fps, ˜63fps if inverse kinematic algorithm
(IK) is applied) during inference. It can be easily applied to
real-time applications such as video games or virtual live

streaming. As shown in Fig. 1, our network can synthesize
smooth motion transitions between complex heterogeneous
motions. User studies also verify that the quality of motions
generated by our network is superior to the motions of state-
of-the-art human motion modeling and synthesis methods.

2 RELATED WORK

With the development of motion capture techniques, sta-
tistical motion synthesis methods [7], [19], [20], [21], [22]
have become mainstream in recent decades. Please refer
to [23] for a broad survey. We review deep learning-based
motion synthesis methods mostly related to our work in the
following.

An enormous number of deep learning-based methods
have shown their capability of extracting powerful motion
features to improve the motion synthesis results in recent
years, which include recurrent neural networks [3], [10],
[24], [25], [26], [27], fully connected networks [1], [28], [29],
graph networks [30], [31], [32], [33], and generative adver-
sarial networks (GAN) [15], [34], [35], [36]. Holden et al. [29]
learn a general motion manifold using a convolutional
autoencoder and use another feed-forward network to dis-
ambiguate different control parameters. Aberman et al. [21]
introduce a novel operation called skeletal convolution to
process the skeleton’s tree graph structure. Their system
enables retargeting motions not observed in training. Ling
et al. [2] and Starke et al. [7] decouple motion synthesis and
control signal synthesis into different modules to reduce the
difficulty of training with large datasets. Ling et al. [2] model
the motion manifold with a conditional variational auto-
encoder (VAE) constructed by the mixture of experts (MoE)
while generating control signals by different controllers in
charge of different tasks using Reinforcement Learning.
Starke et al. [7] imitate animation layering in their control
interface by layering the motion trajectories for different
active behaviors generated by control modules, then gener-
ating motions from the edited motion trajectories employing
an MoE motion generator. In contrast, we simultaneously
predict future motions and control signals.

However, many deep learning-based methods suffer
from over-smoothness or convergence towards mean poses
when generating motions. Stochastic models show a way
to avoid this problem by generating all possible motion se-
quences depending on the available information, like prior
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Fig. 2: The network architecture of the TPTN. (a) The upper and lower body parts are modeled by their own auto-regressive
modules (ARMs). The linear aggregation layer then combines the two parts and produces the outputs for future frames,
and the forward kinematics (FK) layer computes the foot positions of the output motion Ŝx. (b) The Foot-MLP predicts the
foot contact labels for future frames by taking the lower body features as input. The consistency modules (CMs) decode
the overlapped features of the root back to the overlapped data x̂root

n . Superscripts u and l: “upper body part” and “lower
body part”. Subscripts s and d: “shallow layer” and “deep layer”. Zu

s ,Z
l
s are feature sequences of the upper and lower

body parts extracted by shallow layers, and Zu
d ,Z

l
d by deep layers. Zu−o

s ,Zl−o
s are the overlapped feature sequences of
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l
s, and Zu−o

d ,Zl−o
d of Zu
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l
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motion sequences, control signals, and random sampling
noises. Fragkiadaki et al. [10] and Wang et al. [11] propose
to predict a conditional motion distribution represented
by Gaussian Mixture Model (GMM). Sampling from the
predicted GMM can avoid the freezing issue in the gen-
eration of long motion sequences. Scheduled sampling [37]
related techniques are also adopted [18], [27] for the same
purpose, while applying such techniques will significantly
slow down the training. Henter et al. [12] adopt normalizing
flow in LSTM to get powerful and implicit conditional mo-
tion distributions, which greatly improves the diversity of
synthesized motions. Introducing extra temporally-related
variables called “phase” provides another option to cope
with the over-smoothness problem. The phase variables can
be classified into three categories: the contact-based global
phase [1] for cyclic motions like running or walking, the
local phase [4] for acyclic motions like basketball motions,
and the phase measured in the frequency domain that is
automatically fitted in DeepPhase [38] by neural networks.
However, even with the DeepPhase method, different di-
mensions of phase manifolds still have to be fitted for
different motions. In this paper, we adopt the attention
strategy to model the motion as a Gaussian distribution
similar to [10].

The human skeleton is inherently tree-structured, and
different body parts may influence human motion dif-
ferently. Training in separate body parts and combining
them back is similar to matching curves with piece-wise
functions, making the fitting easier. Many methods [14],
[15], [16], [33], [39], [40] have applied this idea to differ-
ent motion synthesis tasks, such as motion prediction and
style transfer. Wang et al. [14] decompose the human body
into seven parts, which are encoded into a latent space
through four fully-connected layers. Then they decode the
motions of the seven body parts from the latent space and
concatenate them to form motions for the entire human
body. However, their method has a latency when controlling

the motion synthesis because the prediction and control
must be performed alternatively. Liu et al. [15] construct
five sub-GANs, each for one body part, and combine them
through an aggregation layer forming the global GAN.
Unfortunately, their AM-GAN has high computation cost in
space (˜490M bytes parameters, ˜5.5G GPU memory when
inference), which hinders their application to online motion
control. Ghosh et al. [16] propose a hierarchical two-stream
model to synthesize motions from textual descriptions. They
split the human body into five parts, embed the hierarchical
parts into an upper body and a lower body latent space
separately, and then fed the latent spaces into two different
GRUs. As they state in their paper, their model has a poor
generalization ability, and the quality of generated motions
can be improved further. These methods only perform the
feature fusion between different body parts while do not
constrain the correlations between them. In our work, the
human body is divided into the upper and lower body
parts to respond to control signals and better model hetero-
geneous motions effectively. The correlations between them
are modeled by the feature fusion layer and consistency loss.

Recently, Transformer [17] has bloomed in many tasks
related to languages [41], speeches [42], musics [43], time-
series sequences [44], images [45], [46], and videos [47] etc.
Transformer has also been successfully applied to modeling
human motions. Mao et al. [48] adopt attention mechanisms
to compute the attention between the current motion context
and the historical motion sub-sequences and achieve state-
of-the-art motion prediction results on public human motion
datasets. Researchers also used a cross-modal Transformer
to synthesize dance motions conditioned on music [9], [18],
[49], [50]. We also exploit the multi-head attention structure
of the Transformer to capture the temporal correlations and
variations contained in human motions.
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(a) Skeletons of the performers

(b) 3D characters used for the performers

Fig. 3: Skeletons and 3D characters in our dataset. The
skeletons of the male dancer, male gymnast, and female
dancer are from left to right. Their heights are 173cm, 181cm,
and 166cm, respectively. The 3D characters are downloaded
from Mixamo [51].

3 DATA PROCESSING AND REPRESENTATION

In this section, we first describe the settings of our motion
dataset and then briefly describe the motion and control
signal representations used in our network. Please refer
to the supplementary material for the details of these two
representations.
Motion Dataset. Using the motion capture (mocap) tech-
nique, we build a complex heterogeneous human motion
dataset of three performers. The performers consist of a
male gymnast, a male dancer, and a female dancer, as shown
in Fig. 3. The dataset includes 21 types of motions: idle,
walking, running, jumping with the left foot (jumping-L),
jumping with the right foot (jumping-R), jumping with both
feet (jumping-B), back walking (B-walking), kicking, punch-
ing, two kinds of whirlwind kicking (W-kicking and W-
kicking-2), side somersault (S-somersault), twist, cartwheel,
Chinese classical dance, modern dance, Xinjiang dance, Dai
dance, Mongolian dance, Miao dance, and ballet.

The mocap data is recorded in BVH format in 120fps,
and the skeleton for the character models is composed
of 23 joints in our system. Except for dancing motions,
some transitions between different types of motions are
also recorded. For some motion types, only one motion
sequence is recorded. As a result, we can only train our
model for these types of motions but cannot test the quality
of generated motions. Therefore, we mirror these sequences
and randomly put the original and mirrored ones into
the training and test data separately. We down-sample the
motion data to 60fps and obtain 172,956 and 37,390 frames
in the training and test dataset.
Motion Representation. Our motion representation is simi-
lar to that in [1]. The motion representation vector Xn ∈
R276 for the nth frame of motion consists of the root-
joint information (the root angular velocities around the
up axis, the root translational X and Z velocities, the root

positions of Y-axis in global coordinate system, and the root
rotations in the local root coordinate system), the non-root
joint rotations, the non-root angular velocities, the 3D joint
positions, and their linear velocities represented in the root’s
coordinate system. We use exponential maps [52] of the
quaternion to represent the joint rotations.
Control Signal Representation. Our system supports four
types of control signals, allowing the user to control how
to synthesize motions in future frames. The control signals
for the motion in the nth frame are denoted by Cn =
{csn, ctn, cpn, cdn}, where csn is the skeleton configuration rep-
resented by 3D joint positions at T-pose used to differentiate
characters, ctn is the one-hot motion type to control the
type of synthesized motions, cpn and cdn are the trajectory
positions and directions in the future one second to control
the forward path and direction of the synthesized motions.
Similar to [1], ctn, cpn and cdn are uniformly sampled six
frames within a one-second time window starting from the
nth frame. The control signals used in training are extracted
from the mocap data.

4 METHOD

We exploit the divide-and-conquer strategy by partitioning
the human body into two parts - the upper and lower body
parts- and structure our TPTN to learn features for different
body parts to ease modeling heterogeneous motion data. In
this section, we first describe the network structure of TPTN
and then proceed to its training details.

4.1 TPTN
Our TPTN ψ is a sequence-based auto-regressive model
that contains four auto-regressive modules, ARMu

s for the
upper body part, ARM l

s for the lower body part in shallow
layers, and ARMu

d , ARM l
d in deep layers. Each module

is a transformer network with multi-head attention layers.
An aggregation layer ψAgg is used to aggregate the two-
part features before the final pose prediction as shown in
Fig. 2a (detailed network parameters are reported in the
supplementary material). The network is trained to model
the Gaussian distribution of the predicted motion of the
nth frame conditioned on the poses of previous frames and
control signals with the following formula:

p(Xn|Xi, ...,Xn−1, Ci, ..., Cn−1) = ψ(Xi, ...,Xn−1, Ci, ..., Cn−1)
(1)

where i = max(n − TRL, 0), and TRL is the temporal
receptive field length of the TPTN. Each frame in the output
is conditioned on its previous TRL frames at most. We let
TPTN output the next frame for each input frame for the
motion sequences in a batch to speed up the training. While
during inference, TPTN predicts one future frame at each
time step.

Given a sequence of T frames motion data, Sx =
{X0, ...,XT−1}, as input, the network ψ automatically splits
each Xn in Sx into X u

n for the upper body and X l
n for the

lower body, according to the joint indices. Note that we treat
the foot contact labels xf

n as part of X l
n. We intentionally

let both X u
n and X l

n contain the root-joint information and
call them the overlapped data xroot

n . The TPTN models
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(b) Auto-regressive module for the lower body part

Fig. 4: The detailed architecture of the auto-regressive mod-
ules for the upper and lower body parts in TPTN.

Su
x = {X u

0 , ...,X u
T−1} and Sl

x = {X l
0, ...,X l

T−1} separately
through ARMu

s , ARM
u
d and ARM l

s, ARM
l
d. The aggrega-

tion layer then combines the features output by ARMu
d

and ARM l
d as the body-level feature to predict the mo-

tion Gaussian distribution p(Xn) = N (µ̂n, σ̂n) in the next
frame, where Xn is the motion representation vector, µ̂n its
mean, and σ̂n indicates the standard deviation computed by
σ̂n = eσn , where σn is the direct output of the aggregation
layer ψAgg . This element-wise operation ensures that the
standard deviation values in σ̂n are always positive. After-
ward, we can obtain the poses at frame n by sampling from
the predicted PDF (default setting in our experiments) or
directly using the mean µ̂n.

To ease the interactive control, we also train the pro-
posed TPTN to output the next frame’s trajectory posi-
tions and trajectory directions. Therefore, the final out-
puts of TPTN are Ŝx = {(µ̂1, σ1), ..., (µ̂T , σT )} and Ŝc =
{(ĉp1, σ̂

p
1 , ĉ

d
1, σ̂

d
1), ..., (ĉ

p
T , σ̂

p
T , ĉ

d
T , σ̂

d
T )}, where σ̂p

n and σ̂d
n are

the predicted standard deviations of the trajectory positions
and directions computed the same way as σ̂n.
Auto-regressive Modules. The auto-regressive modules for
the upper and lower body parts are illustrated in Fig. 4, and
there are six multi-head attention layers in each ARM. The
positional encoding and structure of multi-head attention
layers are the same as that in [17]. It is beneficial to convert
the motion vectors into features before the multi-head at-
tention layers to make the training more stable. Therefore,
we use 1D causal convolutional layers, same as [53], to
embed the input before adding the positional encodings.
The 1D causal convolutions ensure the temporal ordering of

the motion data, the kernel size ks of them for ARMu
s and

ARM l
s is set to be three and kd for ARMu

d and ARM l
d be

1. We also add a dropout layer [54] after the input and a 1D
spatial dropout layer [55] before the multi-head attention
layers to resolve the possible over-fitting issue, and their
drop probabilities are set to be 0.5 and 0.1, respectively. The
control signals are concatenated to the input after dropout
layers in each ARM to make the character responsive to
user control signals. We set the local neighboring temporal
window before the current frame lm to be 8 in the local self-
attention mechanism. As a result, TRL of the TPTN is 87,
which the following formula can compute:

TRL = (ks − 1) + (kd − 1) + lm+
6+6∑
i=2

(lm− 1) (2)

Feature Fusion Layer and Consistency Modules. Different
body parts are inherently correlated when the character
performs motions, while independently modeling the body
parts will weaken or even eliminate their correlations. To
reserve the correlations, existing part-based models [14],
[15], [16] fuse features of different body parts. Nevertheless,
their methods are costly in time or space because of many
cross-part fusion operations. Therefore, we fuse the features
of the upper body part Zu

s extracted by shallow layers
ARMu

s and that of the lower body Zl
s by ARM l

s to each
other by the lightweight FFL shown in Fig. 2a only once
in the middle of two ARMs. It makes our TPTN exchange
information between the two body parts to extract more
representative features and helps preserve the correlations
better. Therefore, the features of high-level ARMs can be
computed as follows:

Zu
d = ARMu

d (Z
u
s + Linear(Zl

s)) (3a)

Zl
d = ARM l

d(Z
l
s + Linear(Zu

s )) (3b)

As described earlier in this section, we intentionally let
Su
x and Sl

x share the overlapped data. Hence, the latent
features for the two parts computed by the ARMs con-
tain encoded features of the root joint, termed overlapped
features hereafter. Thanks to the self-attention mechanism,
we can extract the overlapped features from the encoded
features at the same positions as the transformer’s input.
To ensure that the overlapped features do represent the
root joint, we then apply CMs to decode them back to the
overlapped data x̂root

n . A CM is a two-layer feed-forward
network with “ReLU” activation. CMs are inserted at both
the middle and final layers of the ARMs, and they will be
discarded after training to reduce the computational cost of
motion synthesis.
Aggregation Layer and FK Layer. The aggregation layer
Agg is a simple linear layer. It maps the concatenated
features of Zu

d and Zl
d to the PDF of the predicted motion

and outputs the trajectory position, and direction control
signals for it. The FK layer performs the forward kinematics
on the mean µ̂n of the output PDF and outputs the 3D foot
positions x̂foot

n in the root’s coordinate system. The FK layer
is only activated during training.
Foot-MLP. The Foot-MLP is a two-layer feed-forward net-
work with “ReLU” activation. It takes the lower body part’s
features Zl

s and Zl
d as input and predicts the binary foot

contact labels for the predicted motion.
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4.2 Training Losses
The training loss consists of six terms: the Gaussian loss LG,
the motion smoothness loss Ls, the foot contact loss Lf ,
the FK loss LFK , the root consistency loss Lcon, and the
trajectory control loss Lt. It can be formulated into:

L = LG + λ1Ls + λ2Lf + λ3LFK + λ4Lcon + λ5Lt (4)

where the weight values of λ1..5 are empirically set to 10.0,
5.0, 5.0, 1.0, and 1.0 respectively in all our experiments.
Gaussian loss. This term is inspired by the Gaussian mix-
ture loss in [10], while we only use one mode and set the
covariance matrix to be diagonal. It can be written into:

LG = − 1

T

T−1∑
n=0

ln(p(Xn|µ̂n, σ̂n)), (5)

where Xn is the motion representation vector extracted in
the nth frame. The Gaussian loss term enforces the network
to maximize the probability of the ground-truth mocap data
during training. It is computed by inputting the ground-
truth data into the predicted PDF. The covariance matrix is
set to be diagonal in our implementation since it effectively
reduces the number of parameters to speed up the training.
For the correlations between different joint motions, we
design an FK loss to implicitly capture them, which will
be explained shortly.

We add a constraint to our implementation to ensure
that the standard deviation σ̂n is greater than 1e-4 by a
clamping operation. After training, we observe that the
standard deviation output by the trained TPTN is usually
between 1e-3 and 1e-2. We hypothesize that the parameter
σ̂n can allow the network to adjust the accuracy of the
predicted future pose adaptively.
Smoothness loss. This term is a soft constraint to prevent
the sudden change of velocities at joints and make the
synthesized motion smoother, which can be formulated as:

Ls =
1

T − 2

T−2∑
n=1

∥ µ̂n−1 + µ̂n+1 − 2µ̂n ∥2, (6)

The smoothness loss is only optimized for the mean of the
predicted PDF since the motion generated by the network is
usually close to the mean in each frame.
Foot contact loss. We adopt the binary cross-entropy (BCE)
loss function to train the network to predict whether the foot
is in contact with the supporting plane in the nth frame:

Lf =
1

T

T−1∑
n=0

BCE(xf
n, x̂

f
n), (7)

where x̂f
n are the predicted foot contact labels, which can be

used to trigger IK algorithms to remove the foot slidings in
the synthesized motion.
FK loss. We add an FK layer to the network to use the mean
of predicted PDF to compute the 3D foot positions x̂f

n in the
root’s coordinate system, and then compute the FK loss to
alleviate the foot sliding in generated motions:

LFK =
1

T

T−1∑
n=0

∥ x̂foot
n − xfoot

n ∥2+

1

T − 1

T−1∑
n=1

x̂f
n−1 ∗ x̂f

n ∥ x̂foot
n−1 − µ̂foot

n ∥1,
(8)

where x̂f
n−1 and x̂f

n are the predicted foot contact labels by
Foot-MLP, x̂foot

n−1 and x̂foot
n are the predicted foot positions

by FK layer, and xfoot
n are the ground-truth foot positions

of the nth frame. Since this term computes the foot posi-
tions with related joint angles, it can implicitly encode the
correlation between joint angles on the leg.

The first term in LFK penalizes the differences between
the predicted and the ground-truth foot positions. The sec-
ond term makes the feet stick in the same position when
the predicted foot contact labels of two adjacent frames
are all ones to prevent foot sliding. In practice, the first
term plays a major role in the beginning since its value
is around 3˜10 times larger than the second term. As the
training proceeds, the second term contributes more to the
optimization until it exceeds the first term at around the 50th
epoch, while foot contact loss Lf has decreased from around
2.4 to around 0.3. Consequently, we observe that the second
term tends to penalize the foot sliding to cooperate with
Lf , and the optimization still succeeds in our experiments
without disconnecting Lf .
Root consistency loss. We design this term to improve
the learning of correlations between two body parts. It is
formulated as follows:

Lcon = Lfeat + 2Lroot (9)

where the first term Lfeat penalizes the difference between
the overlapped features of the two body parts in the same
feature level as follows:

Lfeat =
1

T

T−1∑
n=0

(
∥ Zu−o

s − Zl−o
s ∥2 +

∥ Zu−o
d − Zl−o

d ∥2
) (10)

and the second term Lroot enforces that the overlapped
features can be decoded back to the overlapped data by
CMs. It penalizes the difference between the decoded and
ground-truth overlapped data using the following formula:

Lroot =
1

T

( T−1∑
n=0

∥ CM(Zu−o
s )− Sroot

x ∥2 +

T−1∑
n=0

∥ CM(Zl−o
s )− Sroot

x ∥2 +

T−1∑
n=0

∥ CM(Zu−o
d )− Sroot

x ∥2 +

T−1∑
n=0

∥ CM(Zl−o
d )− Sroot

x ∥2
)

(11)

where Zu−o
s and Zl−o

s are the overlapped features of Zu
s

and Zl
s, Zu−o

d and Zl−o
d are the overlapped features of Zu

d

and Zl
d, and Sroot

x = {xroot
1 , ...,xroot

n } are the ground-truth
overlapped data.
Trajectory control loss. For simplicity, we also represent this
term as a Gaussian loss and integrate it to LG. We only
use the mean of the predicted PDF, ĉpn and ĉdn, to generate
motions. This term is helpful in interactive motion control
when the user might occasionally input control signals. In
this case, the predicted control signal values will be fed into
the network to continue the motion synthesis.
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(a) Cartwheels, S-somersault and Wkicking- 2 (b) Ballet (c) Dai dance

Fig. 5: Synthesized motions for the characters by TPTN (from 0m38s to 0m45s and 2m19s to 3m0s in the accompanying
video). Note that the transitions of continuous side somersaults and cartwheels are also not in the training dataset.

4.3 Training Details

We train our TPTN using the AdamW optimizer [56].
The initial learning rate is 1e-4 and will be decayed by
multiplying it by 0.5 every 500 epochs. The batch size is set
to be 56, and each sample in the batch is a motion clip of 300
consecutive frames denoted by mc. Motion clips mc are
obtained as follows: we repeatedly sample 300 frames for
each motion sequence in the database from the first frame
using a frame intervalmvb = 4, i.e., the starting frame index,
fs+1, of the next 300 frames clip is equal to fs +mvb, where
fs is the starting frame index of the current 300 frames.

We exploit the oversampling technique [57] to compen-
sate for the imbalance of motion types in the dataset. We
also increase the ratios of types that are hard to model
for our TPTN. The oversampling is done in four steps:
1) Compute the ratio re for all the motion types as the
inverse of the number of motion types. In our case, re equals
1/20. 2) Compute the ratios rr for different types in the
training data, which is done by dividing the number of
motion frames for a motion type by the total number of
motion frames. 3) Compute the new frame interval mv as
mv = rr/re∗mvb, where mvb = 4 is the basic frame interval
in our experiments. 4) Repeatedly sample 300 frames using
the recomputed mv to generate mc for training. Finally,
we acquire a set of 60,962 mc samples for training, then
randomly select 56 clips from the set in each iteration.
Data augmentation. To handle accumulated pose errors in
the motion synthesis, we add additional independent iden-
tically distributed Gaussian noises to each sampled motion
representation vector of training data to simulate the pose
errors. The mean and standard deviation of the noise are
selected to be 0 and 0.05.

5 EXPERIMENTS

We have implemented our algorithm using Pytorch 1.8.0 on
a desktop PC with Intel(R) Xeon(R) E5-2678 CPU, 128 GB
RAM, and one GeForce RTX 3090 24GB graphics card. Note
that the performance we reported in the last paragraph of
Section 1 is computed by the reciprocal of the inference time
tested on this desktop. Although the network can generate
high-quality motions, slight foot slidings might still occur.
If not mentioned, the IK algorithm is adopted to remove
the foot slidings in generated motions according to the
predicted foot contact labels.

5.1 Metrics

In this paper, we utilize four metrics commonly used in
recent research on human motion synthesis to evaluate the
quality of generated motions quantitatively:
Body movement. Similar to [4], we compute the body
movement (BM) by the sum of the absolute angle updates
of all the joints per frame. Given the joint angles d, the BM
can be computed as:

BM =
1

T − 1

T−1∑
n=1

22∑
j=0

∥ dj
n − dj

n−1 ∥1 (12)

This metric indicates how agile and various the generated
motions appear. The smaller body movement indicates that
the synthesized motions may be over-smoothed, while the
bigger value means there may be more jitters in the gener-
ated motions.
Average foot sliding. The average foot sliding (AFS) is
adopted from the metric proposed in [58] to estimate the
amount of foot sliding in the generated motions. It can be
computed as:

AFS =
1

4(T − 1)

T−1∑
n=1

∑
j∈{lf,lt,rf,rt}

vjn(2− 2
h
j
n

Hj ) (13)

where lf, lt, rf, rt represent the left/right foot/toe, vjn is the
velocity of the foot or toe on the XOZ plane, hjn is its height
from the plane, Hj is a maximum threshold, which is the
mean height for the foot (10.85cm) or toe (1.55cm) when
they are in contact with the ground in our whole dataset,
and the exponent is clamped between 0 and 1.
Structural similarity index measure. The BM and AFS are
all local metrics because their computations do not include
the spatial and temporal correlations among different joints.
Therefore, we adapt the structural similarity index measure
(SSIM) [59] to measure the global similarity between gener-
ated motions and mocap data. We compute the SSIM of joint
rotations represented by exponential maps over the tem-
poral axis in sliding windows with sizes being 11 frames.
We first subtract the minimum value of the corresponding
mocap data sequence, computed using all joints’ axis-angle
values to ensure the computed SSIMs are non-negative.
Then we slide the window one frame each time and average
the SSIMs for all the windows as the final metric for the
sequence. It can be formulated as:

SSIM =
(2µ1µ2 + C1)(σ12 + C2)

(µ2
1 + µ2

2 + C1)(σ2
1 + σ2

2 + C2)
(14)
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Fig. 6: Trajectory-following result synthesized by TPTN
following a trajectory with large curvatures (from 1m57s to
2m15s in the accompanying video). The distance between
the synthesized trajectory (the green line) and the input
trajectory (the orange line) is 0.513cm/frame.

where µ1, µ2 are the average values of the mean of the
generated and the ground-truth sequence in sliding wid-
ows, σ1, σ2 are the corresponding standard variances and
σ12 is the covariance of two sequences. For the constants,
C1 = (K1L)

2 and C1 = (K2L)
2, where L is computed

as the difference between the maximum and minimum in
the ground-truth sequence, K1 = 0.01 and K2 = 0.03 by
default. SSIM will be close to 1 if two motion sequences are
spatially and temporally similar.
Mean per joint position error. Given the joint positions p
that are relative to the root joint position, the mean per joint
position error (MPJPE) in [60] can be formulated as:

MPJPE =
1

23T

T−1∑
n=0

22∑
j=0

∥ p̂j
n − pj

n ∥2 (15)

where p̂j
n,p

j
n are the nth frame’s jth joint’s generated and

ground-truth positions, respectively.
Since the motions are generated according to constraints

defined by the user for controllable motion synthesis, it
is usually impractical to compute the difference between
synthesized motions and their corresponding ground-truth
motions. Therefore, MPJPE can not be directly applied to
evaluate the performance of generated motions. We manage
to compute MPJPE averaged over test sequences of different
motion types since we can extract the control signals from
the ground-truth mocap data of test sequences to guide the
TPTN to generate motions similar to the ground truth.

5.2 Motion Synthesis Results
Synthesizing different types of motions. In this experi-
ment, we use the first 30 frames of each sequence in the
test dataset as initial frames and input them to the TPTN.
The control signals csn are extracted from the sequences in
the test dataset. The motion type information ctn is specified
by the user, while cpn and cdn are predicted by the network.
The control signals for initial frames are automatically com-
puted according to the motion data. Examples in Fig. 1& 5a
illustrate that the TPTN can generate natural and realistic
heterogeneous motions, such as running and cartwheels.
While the motion transitions in these two sequences be-
tween different types of motions do not exist in our training
dataset, the TPTN still successfully generates smooth tran-
sitions, demonstrating our network’s generalization ability.

(a) (b)

Fig. 7: Trajectory-following results (from 1m33s to 1m44s in
the accompanying video). The trajectories in the two pic-
tures are the same but assigned with different motion type
information. (a) A synthesized motion transitioning from
running to side somersault, then to cartwheel, and ending
with running. (b) A synthesized motion transitioning from
running to whirlwind kicking-2, then to side somersault and
ending with running. We use different colors to represent
different motion types at different parts of trajectories. De-
tails can be found in the supplementary material.

Fig. 8: Our TPTN can synthesize motions heading along
a complex trajectory transitioning from jumping-R to
jumping-L, to running, then to jumping-L, and ending with
jumping-R (from 1m21s to 1m32s in the accompanying
video).

Furthermore, TPTN can also generate dances for the two
dancers, as shown in Fig. 5b& 5c.
Following user-specified trajectories. It is desirable to syn-
thesize different types of motions along a specified trajec-
tory in many applications, for instance, motion planning in
video games. We allow users to specify a motion trajectory
J on the XOZ plane with additional motion types and
velocities and then map the trajectory information into the
control signals cpn, cdn and ctn. The trajectory J is defined
as J = {{Ji, ti, vi}, i = 1, .., k}, where Ji is the ith part
in the trajectory represented as densely sampled 2D points,
ti and vi are the motion types and a scalar velocity value
associated to it. For two adjacent parts of the trajectory with
different motion types, we set up 40 transitional frames and
interpolate motion type signals for these frames (see the
supplementary material for the details of the representation
and computation of J ).

Given some initial frames extracted from the test dataset
and user-specified trajectory J , TPTN can synthesize mo-
tions that accurately follow the user-specified trajectory as
pictured in Fig. 6. We compute the trajectory distance by
averaging the closest distance between a projected root
position and a target trajectory in each frame. The distance
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(a) (b)

Fig. 9: TPTN can synthesize sharp turns (from 1m44s to
1m57s in the accompanying video). (a) Running along a
pentagram corner. (b) A U-turn walking and jumping-L. IK
is disabled in this experiment.

between the synthesized trajectory (the green line) and the
input one (the orange line) in Fig. 6 is 0.513cm/frame. TPTN
can generate motions with different types while following
the same trajectories (Fig. 7), even for a trajectory with large
curvatures and frequent change of motion types (Fig. 8).
In all the figures, different trajectory colors indicate differ-
ent types of motions. Additionally, the trajectory distances
of three examples in Fig. 7 & Fig. 8 are 1.988cm/frame,
1.749cm/frame, and 0.454cm/frame respectively.

It is harder for a person to control their body trajectory
in the air than being on the ground, and so is our TPTN. For
example, the character is frequently in the air to perform the
cartwheel or whirlwind kicking motion, as shown in Fig. 7.
The trajectory distances of this example are larger than those
examples shown in Fig. 6 and Fig. 8.

We further test TPTN’s ability to synthesize motions
along trajectories with sharp turns. As shown in Fig. 9a, the
character turns around 144 degrees along a pentagram cor-
ner and turns nearly 180 degrees in Fig. 9b. It demonstrates
that TPTN can learn to generate turn motions in different
angles from our dataset with sharp turn motions.
Interactive control. We implement our interactive control
demo on a desktop PC with Intel(R) Core(TM) i7-7700K
CPU, 16GB RAM, and one GeForce GTX 1080 Ti 12GB
graphics card in the Unity3D engine, and the neural net-
work is queried through a TCP socket interface to input
the character motions into the engine. Our interactive demo
allows the user to control the motion types, forward direc-
tions, and velocities through a keyboard (refer to the supple-
mentary material for details). We generate ten frames using
the network before sending them to Unity3D for display,
resulting in a 0.17s delay or so. Besides, the response time of
our network to the user input is around 0.5s. Therefore, the
responsiveness introduced in [4] is around 0.7s for TPTN.
For comparisons, the average responsiveness is about 0.9s
for PFNN [1], 1.1s for MANN [58], and 0.7s for the method
in [4]. Note that these values are obtained by converting the
bars back to the numbers through meticulous measurements
from Fig.14 in [4]. This demo verifies that our method can
respond to user input fast. Please see the supplementary
material and accompanying video from 0m45s to 1m17s for
the demo.

5.3 Comparisons

5.3.1 Comparisons with Models Trained on Our Dataset

We compare our TPTN model with state-of-the-art baseline
models on the quality of generated motions measured by

Metrics GT MVAE HTSS TPTN

BM (deg/frame) 82.740 101.353 137.601 78.401

AFS (cm/frame) 0.208 0.534 0.529 0.331

SSIM 1.0 0.977 0.979 0.985

MPJPE 0.0 2.905 1.771 1.906

TABLE 1: Comparisons on the metrics for all test motions
containing dances. MVAE and HTSS are trained on the same
dataset as TPTN. GT: ground-truth mocap data. IK is dis-
abled in this experiment. Please refer to the supplementary
material for these metrics on different types of motions.

Metrics GT MVAE HTSS NeuralLayering TPTN

BM (deg/frame) 95.752 86.477 134.040 112.072 89.274

AFS (cm/frame) 0.234 0.480 0.363 0.351 0.302

SSIM 1.0 0.985 0.990 0.994 0.992

MPJPE 0.0 3.809 1.831 2.185 1.885

TABLE 2: Comparisons on the metrics for non-dance mo-
tions. MVAE, HTSS, and NeuralLayering are trained on the
dataset without dances. GT: ground-truth mocap data. IK is
disabled in this experiment. Please refer to the supplemen-
tary material for these metrics on different types of motions.

the metrics in Section 5.1. The metric statistics computed in
the comparisons are shown in Tab. 1&Tab.2.
Baseline Models:

• MVAE: the auto-regressive conditional VAE used
for reinforcement learning to produce desired goal-
directed locomotion movement in [2].

• HTSS: the hierarchical two-stream sequential model
generating pose sequences from input textural de-
scriptions in [16].

• NeuralLayering: the neural network imitating ani-
mation layering for synthesizing martial art move-
ments in [7].

We make some adaptations to the baseline models to better
test their ability to model heterogeneous motions. To adapt
MVAE such that it can be applied to control various motion
types in our dataset, we first train VAE by incorporating the
motion type to the input of the encoder, decoder and the
control policy network, as discussed in the MVAE paper.
However, experimental results show that the generated
motions’ quality is not as good as the authors reported
after training. The reason might be the simple kinematics
regularizer used in the reinforcement learning algorithm in
this method, which is not as direct as the reward function
in [61] that takes the pose similarity into consideration.
Another reason might be that the heterogeneous motions
are more difficult to model than locomotion, like walking
or running. Therefore, we obviate the policy and controller
networks but directly concatenate control signals to the past
pose that is input to the encoder and decoder; also, we
remove the current pose from the input to break the gap
between training and inference. For HTSS, we first map
the concatenation of control signals to features by a linear
layer, then add them with motions’ features both in the
encoder and decoder to keep the dimension of the first layer
unchanged. We only use the locomotion control module for
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(a) MVAE (b) HTSS

(c) NeuralLayering (d) TPTN

Fig. 10: The left foot’s trajectories of jumping-B motions
generated by (a) MVAE, (b) HTSS, (c) NeuralLayering, and
(d) TPTN. As indicated by the red rectangles, the motion
generated by MVAE has an apparent lower height, the
motion generated by HTSS has wrong feet poses and high-
frequency jitters, while the primary artifacts of motion gen-
erated by NeuralLayering are high-frequency jitters. In con-
trast, our TPTN can generate a smoother motion sequence
than baseline networks. IK is disabled in this experiment.

NeuralLayering because our dataset has no multi-character
interactions. As a result, their parameters are 2.03M, 4.7M
and 25.21M, respectively. Note that Starke et al. [7] have not
released their codes; thus, we re-implement their algorithms
according to their paper and appendix. TPTN, MVAE, and
NeuralLayering are trained for 2000 epochs, and HTSS for
300 epochs with an initial learning rate being 5e-4. Except
for the modifications mentioned earlier, the rest hyper-
parameters and settings for baseline networks remain the
same as reported in their papers.
Metric Computation:The metrics introduced in Section 5.1
are used in comparisons. We thus leverage the motions in
the test dataset, 12 non-dance motions and two dances, as
ground truth and extract control signals from the ground-
truth motions as described in Section 3. Motion sequences
are then synthesized by the trained models using the first
87 frames of each sequence as initial frames with extracted
control signals. All the generated motions will be input to
the metric computation together with ground truth motions.
Training Strategies and Statistics: We first used the same
dataset as TPTN to train MVAE, HTSS, and NeuralLayering
for fair comparisons. Since the code of the NeuralLayering
method is not available, we implement this method by our-
selves. However, we found that NeuralLayering performed
not well on dancing motions with our implementation.
Since our implementation of NeuralLayering might need to
be fine-tuned to achieve the best performance, to avoid the
superficial conclusion, we thus only compare TPTN with
MVAE and HTSS using all the generated test motions that

(a) MVAE (b) HTSS (c) NL (d) TPTN

Fig. 11: The 273th frame of motions transitioning from
running to twist generated by (a) MVAE, (b) HTSS, (c) Neu-
ralLayering, and (d) TPTN. NL is short for NeuralLayering.
As pictured by the red rectangles, when the character is
twisting, the arms and feet are more natural in the motion
generated by TPTN than those generated by MVAE, HTSS
and NeuralLayering. IK is disabled in this experiment.

contain dances and report the metrics in Tab. 1. Moreover,
we re-trained NeuralLayering from scratch on our dataset
without dancing motions and obtained far better results.
To compare with baseline models on our dataset without
dancing motions, we also re-trained MVAE and HTSS on
the same dataset without dances and computed the metrics
using the generated test non-dance motions for all the
models in Tab. 2. Note that our TPTN is only trained with our
full dataset in all the comparisons in Tab. 1&Tab. 2.

As shown in Tab. 1&Tab. 2, TPTN outperforms the base-
line models on nearly all metrics and achieves the second-
best score on SSIM and MPJPE when comparing non-dance
motions. The larger values of BM and AFS for HTSS indicate
that there might be jitters in the motions generated by
HTSS, as depicted in Fig. 10b. Because HTSS is a designed
sequence-to-sequence model for text-to-motion translation,
the big discrepancy of control signals might be the reason
that it cannot generate high-quality motions; while its part-
based design might still help it synthesize heterogeneous
motions like dances as indicated in Tab. 1. Furthermore, the
HTSS inference speed is 12fps, slower than our network.
We can also see from Fig. 10 that the motion generated by
TPTN is smoother, and the motion generated by MVAE is
over-smoothed because the jumping height is apparently
lower than the mocap data. Fig. 11 illustrates that TPTN
can generate motions more similar to the mocap data; we
thus deem that they are more natural. Please refer to the
accompanying video from 3m08s to 4m21s for these results
for better visual quality.

A common problem with TPTN, MVAE, and HTSS is
that the dance quality generated for the female dancer is
lower. The reason is that her skeleton size is significantly
smaller than the other two characters, and her motions are
the least (35,615 frames for training, while 45,005 for the
male dancer and 92,336 for the gymnast).

5.3.2 Comparisons on PFNN Dataset

To verify our TPTN’s ability to generate locomotion, we
trained our model on the dataset released by PFNN [1]
and then compared TPTN’s performance with PFNN. Since
PFNN did not provide a test dataset, we thus randomly
selected five sequences from the PFNN dataset as our test
dataset, which are not included in the training. Moreover,
PFNN fitted the terrain for each frame separately, which
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(a) PFNN (b) TPTN

Fig. 12: Trajectory-following results for PFNN and TPTN
trained on PFNN’s dataset (from 4m38s to 4m58s in the
accompanying video). The input and synthesized trajecto-
ries are in red and green, respectively. IK is disabled in this
experiment.

GT PFNN TPTN

BM (deg/frame) 70.060 82.136 67.473

AFS (cm/frame) 0.184 0.354 0.215

SSIM 1.0 0.977 0.986

MPJPE 0.0 4.484 7.318

TABLE 3: Comparisons on the metrics for PFNN dataset.
GT: ground-truth mocap data. IK is disabled in this exper-
iment. Please refer to the supplementary material for these
metrics on different types of motions.

may result in noncontinuous terrain for the sequence, thus
is inappropriate for a sequence-based model like TPTN.
Hence, we adopt the fitting method in [62]. In addition, we
process the motion data and control signals as described in
Section 3 and use the same settings described in Section 4.3
to train our TPTN on this dataset.

To compare with PFNN, we exploit its released codes
and trained model weights to synthesize motions using the
input vectors extracted from the test dataset. Afterward,
we compute the metrics and report them in Tab. 3. As
illustrated in Tab. 3, TPTN outperforms PFNN on BM, AFS,
and SSIM with a larger margin, demonstrating that TPTN
can generalize to other datasets well.

We also use the two models to synthesize motions fol-
lowing user-specified trajectories. The trajectory distances
of results in Fig. 12 are 8.82cm/frame with PFNN and
0.441cm/frame with TPTN, respectively, which demon-
strates that TPTN can generate motion following the input
trajectory more accurately.

5.4 User study

To evaluate the visual quality of the generated motions of
TPTN, MVAE, HTSS, and NeuralLayering, we conducted
a user study to obtain subjective judgments. We first syn-
thesize 11 motion sequences for TPTN and baseline models
trained on the dataset without dances as described in Sec-
tion. 5.3, but at most 600 frames for each sequence. Con-
sequently, the average length of the generated sequences is
about 10 seconds.

First, we present 14 participants with 11 groups of mo-
tion videos. Each group contains five motion sequences: the
ground-truth mocap data as reference, and the rest four
sequences are generated by TPTN as well as the baseline
models. Second, we ask them to rank four videos rendered

VS
MVAE

(mean: 2.390
std: 0.507)

HTSS
(mean: 2.448

std: 0.403)

NeuralLayering
(mean: 3.545

std: 0.532)

TPTN
(mean: 3.922

std: 0.416)

P-value: 9.539e-8
t-value: 7.747

P-value: 2.508e-8
t-value: 8.443

P-value: 3.757e-2
t-value: 1.850

TABLE 4: T-test of user-study results for comparisons
on non-dance motions (confidence interval=0.95). MVAE,
HTSS, and NeuralLayering are trained on the dataset with-
out dances. VS: performing t-test between the results of
TPTN and all the results of baseline models in the second
row. Mean: the average scores of generated sequences rated
by all the participants compared to mocap sequences in the
same group. Std: the standard deviation of the rated scores.

VS
MVAE

(mean: 2.709
std: 0.592)

HTSS
(mean: 2.549

std: 0.427)

TPTN
(mean: 3.907

std: 0.407)

P-value: 1.634e-6
t-value: 6.017

P-value: 8.180e-9
t-value: 8.300

TABLE 5: T-test of user-study results for comparisons on all
test motions containing dances (confidence interval=0.95).
MVAE and HTSS are trained on the same dataset as TPTN.
VS: performing t-test between the results of TPTN and all
the results of baseline models in the second row. Mean:
the average scores of generated sequences rated by all the
participants compared to mocap sequences in the same
group. Std: the standard deviation of the rated scores.

with the generated motions with respect to the reference
motion from 5 aspects. We quantify the user study as a
preference score. It rates the overall quality of the generated
motions from 1 (least low quality) to 5 (most high quality).
The participants include four females and ten males. All of
them have experience with 3D animation or games. More
details of the user study are reported in the supplementary
material.

We perform a t-test on the user study results to verify the
hypothesis that the TPTN can generate motions of better
quality than baseline models. The results are shown in
Tab. 4. The P-values of TPTN vs. other baseline models
are all less than the selected threshold (0.05). Therefore, the
motions generated by TPTN are significantly different from
those generated by baseline models. The average scores of
motion sequences rated by the participants (the mean values
in Tab. 4) for TPTN are higher than other baseline mod-
els. It verifies that the TPTN can generate better motions
than baseline models in this user study. Fig. 10& 11 show
examples of generated motion frames used in this study.
In Fig. 11, when the character twists, the arms and feet
in the MVAE-generated motion and the feet in the HTSS-
generated motion are in the wrong positions. The right arm
in the NeuralLayering-generated motion bends a bit more
unnaturally than that in the TPTN-generated motion.

We also conduct a similar user study for TPTN, MVAE
and HTSS trained on the same dataset as TPTN. The videos
presented to the participants contain 13 groups with two
test dance sequences. The t-test results in Tab. 5 verify that
the TPTN can generate motions, even for dances, of better
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GT EBTN FPTN-R FPTN-S 5PTN TPTN

Number of parts 1 1 4 4 5 2

Overlap joints - - root spines root root

BM (deg/frame) 88.975 79.207 78.350 80.408 79.672 82.162

AFS (cm/frame) 0.269 0.348 0.323 0.342 0.363 0.340

SSIM 1.0 0.991 0.990 0.989 0.991 0.991

TABLE 6: The three metrics on the test subset for body parts
evaluation (the full table can be found in the supplementary
material). GT: ground-truth mocap data. IK is disabled in
this experiment. BM and SSIM of motions generated by
TPTN are better than the other four models.

quality than baseline models.

5.5 Evaluations on different experiment settings
Considering the large number of evaluation experiments
and the limited computation resources available to us, it
is too expensive to evaluate various hyper-parameters by
re-training the model on the full training dataset. Without
loss of generality, we only use a subset and call it DL, to
conduct all the evaluation experiments. The training subset
of DL consists of 39 sequences randomly selected from the
full dataset, it contains all the first 15 types of motions and
transitions between any two kinds of motions, and the test
subset of it comprises nine sequences containing all the first
15 types of motions. As a result, the training and test subsets
consist of 40,712 and 8,641 frames. If not mentioned, all
models are trained and tested on DL hereafter.
Why two body parts. To verify the effectiveness of the two-
part based design, we conduct experiments as follows:

• We remove the two-part separation and use the same
ARMs to train a network on the motion data of the
entire human body and call this model EBTN.

• We partition the human body into four parts, i.e.,
two arms and two legs, and all four parts contain the
spine. We model the four parts using four streams
constructed by the same ARMs as TPTN and train
two different models: 1) the overlapped data is the
root-joint information same as TPTN, and we call this
model FPTN-R; 2) the overlapped data is the data
representation vectors of all the joints in the spine,
and we call this model FPTN-S.

• We partition the human body into five parts, i.e.,
two arms, two legs, and the spine. Similarly, we use
five streams to model these parts and call this model
5PTN.

The parameters of EBTN, FPTN-R, FPTN-S, and 5PTN are
˜3.1M, ˜3.37M, ˜3.38M and ˜3.4M respectively. For each body
part in FPTN-R, FPTN-S, and 5PTN, we fuse all the other
parts’ features using a similar design as TPTN’s FFL. We
can see, from Tab. 6, that TPTN outperforms other models
on the metrics, which demonstrates the superiority of the
TPTN. Moreover, their inference speed is far slower(˜37fps
for FPTN-R, ˜37fps for FPTN-S, and ˜29fps for 5PTN). We
hypothesize that decomposing the human body into four
or five parts makes it harder for our lightweight FFL and
consistency loss to capture the correlations among parts and
lose some global information about the entire body.

GT w/o-FFL CrossAttn w/o-CL TPTN

BM (deg/frame) 88.975 79.107 76.955 78.124 82.162

AFS (cm/frame) 0.269 0.345 0.384 0.330 0.340

SSIM 1.0 0.991 0.990 0.990 0.991

TABLE 7: The three metrics on the test subset for feature
fusion and consistency loss evaluation (the full table can
be found in the supplementary material). GT: ground-truth
mocap data. IK is disabled in this experiment. BM and SSIM
of motions generated by TPTN are better than the other
three models.

Although EBTN achieves decent results for some types
of motions, it fails to model motions like twists. With EBTN,
the character performs a wrong type of pose when given
a “twist” label (refer to the supplementary material for the
result and the accompanying video from 5m04s to 5m14s
for the motion). Therefore, it verifies the importance of
decomposing the human body into two parts for modeling
a broader scope of complex heterogeneous motions. For
FPTN-R, FPTN-S, and 5PTN, there are no wrong poses
like EBTN, which implies that decomposing the skeleton
into parts in motion modeling is beneficial to reducing
the complexity and difficulty of modeling heterogeneous
motions.
Feature fusion layer and consistency loss. In this exper-
iment, we first remove the FFL from TPTN and call this
model w/o-FFL. As shown in Tab. 7, all metrics worsen.
The arms and legs may move on the same side in the
generated motions of this model (refer to the supplementary
material and the accompanying video 5m54s to 6m05s for
the results). We also replace the FFL with the cross-attention
layer as in [17] to determine the influence of the FFL’s
structure and name this model as CrossAttn. When fusing
the upper body part with the lower body part, the features
of the lower body part are input to the cross-attention layer
as the query vectors, and the features of the upper body part
as the key and value vectors. Instead, when fusing the lower
body part with the upper body part, the query vectors are
the features of the upper body part, and the key and value
vectors are the features of the lower body parts. The metrics
of motions generated by this trained model downgrade as
illustrated in Tab. 7. Since our implementation of the cross-
attention mechanism mainly computes attention weights of
features at different frames rather than fuses the features of
these two body parts, it might be the reason that attention
only can not serve the purpose of feature fusion in our
model well.

We then discard the consistency loss (CL) from the train-
ing losses and denote this model by w/o-CL. The metrics
in Tab. 7 indicate a decline in performance. To figure out
why the BM values decrease with a large margin compared
to TPTN, we computed the body movement of upper and
lower body parts in the test dataset using ground-truth
data, TPTN-generated data, and w/o-CL-generated data.
The BM values of the upper body joints for ground-truth,
TPTN-generated and w/o-CL-generated motions are 64.692,
59.084, and 55.274, respectively. Similarly, the BM values
of lower body motions are 43.645, 38.165, and 37.234, re-
spectively. We observe a more significant decrease in BM
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GT TRL39 TRL135 TP-NLNN TP-LSTM4LR TPTN

BM (deg/frame) 88.975 81.952 77.476 81.467 106.122 82.162

AFS (cm/frame) 0.269 0.361 0.345 0.732 0.541 0.340

SSIM 1.0 0.990 0.991 0.983 0.979 0.991

TABLE 8: The three metrics on the test subset for temporal
receptive field length and auto-regressive module backbone
evaluation (the full table can be found in the supplementary
material). GT: ground-truth mocap data. IK is disabled in
this experiment. The metrics of motions generated by TPTN
are the best.

values in the upper body motions compared to the lower
body motions, which is the primary reason for the overall
BM decrease in this model. We hypothesize that the lower
body information can aid the prediction of the upper body
motion more effectively than the upper body information
aids the lower body motion. Therefore, without CL, it’s
challenging for the network to capture the details of the
upper body motions. In contrast, without the upper body
information passed in CL, the network can still generate
lower body motions of comparable quality, as the BM value
of the lower body part does not drop too much. In addition,
the accompanying video from 5m54s to 6m05s illustrates
that the character’s left arm swings more naturally when
CL is present during the transition from running back to
walking.

The AFS metric is computed based on the motions of the
feet and toes, which are primarily influenced by the lower
body’s motion. Hence, if the generated lower body motions
are accurate, the AFS value will be low. We observe that the
ARMs for the lower body part work well to generate realis-
tic lower body motions. As a result, our experimental results
show that the lower body motions generated without FFL
and CL modules are accurate enough to achieve comparable
AFS performance to TPTN. However, these two modules
enhance the visual quality of the generated motions, as
illustrated in Fig. 3 in the supplementary material and the
accompanying video from 5m54s to 6m05s. Additionally,
as demonstrated in the previous two paragraphs, FFL and
CL significantly improve the BM metric. Therefore, we can
conclude that FFL and CL are necessary for TPTN.
Temporal receptive field (TRL) length. Choosing a suitable
TRL for the auto-regressive network is critical to synthe-
sizing realistic and diverse motions. To evaluate our TRL
selection, namely 87, we set the TRL to be 39 and 135 by
setting the temporal window length lm to be 4 and 12.
Then, we evaluate the two models (TRL39 and TRL135)
on the metrics after training them from scratch. Finally, all
scores are worse than that obtained when TRL = 87, as
illustrated in Tab. 8. If the TRL is too short, the network can
only observe limited context information and may generate
unnatural poses. While if the TRL is too long, the generated
motions may be over-smoothed and result in relatively
small body movement. Please refer to the accompanying
video from 6m35s to 6m46s for the results.
Why Transformer. To evaluate the transformer’s superiority
in modeling heterogeneous human motions, we replaced
the multi-head attention layers in each ARM with non-
local neural networks (NLNN) [63] and four-layer LSTMs

Metrics GT w/o-FK w/o-OS w/o-C L2 Loss w/o-F TPTN

BM (deg/frame) 88.975 79.075 80.826 80.426 55.328 89.086 82.162

AFS (cm/frame) 0.269 0.342 0.343 0.348 0.434 0.551 0.340

SSIM 1.0 0.991 0.990 0.990 0.991 0.989 0.991

TABLE 9: Ablation study results of the three metrics on the
test subset (the full table can be found in the supplementary
material). GT: ground-truth mocap data. IK is disabled in
this experiment. AFS and SSIM of motions generated by
TPTN are better than the other five models.

(LSTM4LR) similar to the student policy network in [5].
We selected ResNet50 to construct the NLNN based on the
experimental results of ResNets with different layers. We
named the resulting models TP-NLNN and TP-LSTM4LR,
respectively. Please refer to the supplementary material for
the detailed network architectures. We trained TP-NLNN
and TP-LSTM4LR using the same settings as TPTN and
evaluated their performance using the same test dataset and
metrics. The result values for TP-NLNN and TP-LSTM4LR
are reported in Tab. 8, and our TPTN performs the best in
all the scores.

We think the main reason that the transformer outper-
forms convolutional neural networks (CNN) and recurrent
neural networks (RNN) (including LSTM) is that the trans-
former can better capture the temporal dependencies among
human motions. It’s known that RNNs suffer from long
dependency issues, which are inherently related to their
recursion attribute. Although LSTM and bi-directional RNN
models can mitigate this problem in many time series-
related tasks, including locomotion modeling, we still en-
counter some cases where the generated motions tend to
converge to mean poses or fail to perform complex poses,
like whirlwind kicking, especially in our heterogeneous
human motion synthesis task. As for CNN, it employs ker-
nels of different sizes to capture local dependencies among
frames within various window sizes. Stacks of CNN layers
are used to expand the temporal receptive field length,
such as [64], [65]. However, determining appropriate win-
dow sizes to better capture local dependencies, particularly
for different types of complex human motions, is tricky.
Consequently, selecting optimal kernel sizes for CNN in
such tasks is a significant challenge. In contrast, the trans-
former processes the sequence as a whole through multi-
head attention layers and positional encodings, avoiding the
recursion in RNN and the determination of kernel sizes that
correspond to the local temporal dependencies in CNN. As
a result, the transformer can adaptively learn such depen-
dencies from the datasets during training. The statistics in
Tab. 8 verify the effectiveness of the transformer in modeling
heterogeneous human motions in these controllable motion
synthesis experiments. In addition, the trained TP-NLNN
and TP-LSTM4LR network may fail to generate complex
motions like whirlwind kicking and produce more jitters
in the generated motions (refer to the accompanying video
from 6m51s to 7m44s for the video comparisons).
Other ablation studies. We first conducted four additional
experiments to further investigate the impact of various
components on the performance of our model. The exper-
imental settings are: 1) discarding the FK layer and FK loss
(w/o-FK); 2) removing the oversampling technique (w/o-
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OS), 3) replacing the 1D causal convolutions before the
ARMs (w/o-C) with 1D convolutions (kernel size being
1); 4) replacing the Gaussian loss with L2 loss (L2 Loss);
Overall, TPTN outperforms its variants on the metrics,
which means that our TPTN can synthesize more agile and
smoother motions than its variants. It’s worth noting that
the L2 loss assigns the same weight to different elements in
the motion representation vector Xn, which fails to differ-
entiate the importance of different elements. In contrast, the
covariance matrix in the Gaussian loss effectively encodes
the importance of each element. Therefore, replacing Gaus-
sian loss with L2 loss over-smoothes the generated motions.
Please refer to the accompanying video from 7m49s to
8m11s for these results.

Additionally, we remove the foot contact loss (w/o-F)
as well as the second term in FK loss to investigate its
influence on the generated motion. We have to remove the
second term in FK loss in this experiment since it relies on
the foot contact label predicted by the foot contact loss.
The synthesized motion of the w/o-F variant has severe
foot sliding artifacts, resulting in a significantly worse AFS
value of 0.551 compared to 0.340, the AFS value of TPTN, as
shown in Tab. 9. This result verifies that the foot contact loss
is necessary to eliminate the foot sliding, which is consistent
with the ablation study result of the foot contact loss in
[66]. Note that the BM increase with the w/o-F variant is
primarily due to the jitters of the generated motions. Please
refer to the accompanying video from 8m17s to 8m39s for
the video comparisons.
Where and how to input the control signals. Our first
try was to concatenate features of control signals into the
input of the first multi-head attention layer in each auto-
regressive module. However, we found that the predicted
control signals cpn and cdn quickly exploded in a few frames.
We calculated the derivatives of the network’s output with
input control signals to find the reason. We found that the
derivatives were always around 150 and far bigger than
the derivatives of output over input motion features, which
were all around 1. We then removed motion types control
signal ctn from the concatenation each time and trained
the model from scratch. We noticed that the derivatives of
control signals drastically decreased from around 150 to
around 10. We hypothesize that it is because we do not
normalize one-hot motion-type vectors since their values
are already in the range [0,1], which is different from other
normalized control signals. We thus weaken the impact of
control signals on the network by removing them from the
first multi-head attention layer. Finally, as shown in Fig. 4,
we concatenate features of control signals with the motion
features before the multi-head attention layer. This way, the
derivatives decrease to around 4, making our network able
to synthesize natural motions from its own predicted control
signals cpn and cdn.

6 CONCLUSION

We have designed a novel two-part auto-regressive model,
i.e., TPTN, by exploiting attention mechanisms to synthesize
high-quality motions of different types like heterogeneous
gymnastic motions, locomotion, and dances. With the help
of the introduced consistency loss and feature fusion layer,

the TPTN can make the upper and lower body parts co-
ordinate well with each other in the generated motions.
Heterogeneous motions, like cartwheels, can be synthesized
in real-time after training the system with mocap data of
these types.
Limitation. As stated in Section 5.2, it is not easy to ac-
curately control the trajectories of motions in the air. Our
TPTN cannot control the spinning speed of the character in
the air and how long the character stays in the air. There-
fore, we plan to enrich the variations of such motions like
side somersault and whirlwind kicking by capturing more
motions of these types. We also plan to investigate data
augmentation to enhance the variations of such motions.
Another problem is that the TPTN trained on our dataset
performs poorly in motions comprising massive interactions
with environments like sitting or lying. For instance, if
the character frequently lies or rolls on the ground during
dance performances, our TPTN will generate motions with
apparent body-ground penetration (see the video named
tptn supplementary.mp4 for details). The penetration might
be mitigated by adding a loss to explicitly constrain all joints
to be above the support plane.
Future work. It is interesting to investigate how to realize
fine-grained control on key joints like [7]. Simply assigning a
general type label like “ballet” will bring ambiguities to the
dance poses. Therefore, we plan to consult with professional
artists to give more exact type labels to dance rhythm or
beats. We are also interested in controlling dance generation
by user input control signals and music simultaneously.
In addition, we plan to capture more dances of different
characters and exploit the oversampling technique on the
skeleton sizes to improve the quality of generated dances.
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