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Fast and Robust Non-Rigid Registration Using
Accelerated Majorization-Minimization
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Abstract—Non-rigid 3D registration, which deforms a source
3D shape in a non-rigid way to align with a target 3D shape,
is a classical problem in computer vision. Such problems can be
challenging because of imperfect data (noise, outliers and partial
overlap) and high degrees of freedom. Existing methods typically
adopt the �p type robust norm to measure the alignment error
and regularize the smoothness of deformation, and use a proximal
algorithm to solve the resulting non-smooth optimization problem.
However, the slow convergence of such algorithms limits their wide
applications. In this paper, we propose a formulation for robust
non-rigid registration based on a globally smooth robust norm for
alignment and regularization, which can effectively handle outliers
and partial overlaps. The problem is solved using the majorization-
minimization algorithm, which reduces each iteration to a convex
quadratic problem with a closed-form solution. We further apply
Anderson acceleration to speed up the convergence of the solver, en-
abling the solver to run efficiently on devices with limited compute
capability. Extensive experiments demonstrate the effectiveness
of our method for non-rigid alignment between two shapes with
outliers and partial overlaps, with quantitative evaluation showing
that it outperforms state-of-the-art methods in terms of registration
accuracy and computational speed. The source code is available at
https://github.com/yaoyx689/AMM_NRR.

Index Terms—Anderson acceleration, non-rigid registration,
robust estimator, welsch’s function.

I. INTRODUCTION

W ITH the popularity of depth acquisition devices such as
Kinect, PrimeSense and depth sensors on smartphones,

techniques for 3D object tracking and reconstruction from point
clouds have enabled various applications. Non-rigid registration
is a fundamental problem for such techniques, especially for
reconstructing dynamic objects. Since depth maps obtained from
structured light or time-of-flight cameras often contain outliers
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and holes, a robust non-rigid registration algorithm is needed to
handle such data. Moreover, real-time applications require high
computational efficiency for non-rigid registration.

Given a source surface and a target surface, each represented
as a point cloud or a mesh, non-rigid registration aims to find a
deformation field for the source surface to align it with the target
surface. This problem is typically solved via optimization. The
objective energy often includes alignment terms that measure
the deviation between the target surface and deformed source
surface, as well as regularization terms that enforce the smooth-
ness of the deformation field. Many existing methods formulate
these terms using the �2-norm, which penalizes alignment and
smoothness errors across the whole surface [1], [2], [3]. On the
other hand, the ground-truth alignment may induce large errors
for these terms in some local regions due to noise, outliers,
partial overlaps, or articulated motions. The �2 formulations
can inhibit such large localized errors and lead to erroneous
alignment. To improve the alignment accuracy, recent works
have utilized sparsity-promoting norms for these terms, such as
the �1-norm [4], [5], [6] and the �0-norm [7]. The sparsity opti-
mization enforces small error values on most parts of the surface
while allowing for large errors in some local regions, improving
the robustness of the registration process. However, the resulting
optimization problem can be non-smooth and more challenging
to solve. Existing methods often use proximal algorithms such as
the alternating direction method of multipliers (ADMM), which
can suffer from slow convergence to high-accuracy solutions [8].

In this paper, we propose a new approach to robust non-rigid
registration with fast convergence. The key idea is to enforce
sparsity using Welsch’s function [9], which has been utilized
for robust filtering of images [10] and meshes [11], as well as
robust rigid registration [12]. We formulate an optimization that
applies Welsch’s function to both the alignment term and the
regularization term. Unlike the �p-norms, Welsch’s function is
globally smooth and avoids non-smooth optimization. We solve
the optimization problem using the majorization-minimization
(MM) algorithm [13]. It iteratively constructs a surrogate func-
tion for the objective energy based on the current variable values
and minimizes the surrogate function to update the variables,
and is guaranteed to converge to a local minimum. This leads
to a convex quadratic problem in each iteration, which can be
solved efficiently in closed form. To speed up the convergence
of the MM algorithm, we regard it as a fixed-point iteration
and apply Anderson acceleration [14], [15], a well-established
technique to accelerate the convergence of fixed-point iterations.
Experimental results verify the robustness of our method as
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well as its superior performance compared to existing robust
registration approaches.

In summary, our main contributions include:
� We formulate an optimization problem for non-rigid reg-

istration, using Welsch’s function to induce sparsity for
alignment error and transformation smoothness. The pro-
posed formulation effectively improves the robustness and
accuracy of the results.

� We propose an MM algorithm to solve the optimiza-
tion problem, which only involves minimizing a convex
quadratic surrogate function in each iteration; we also
apply Anderson acceleration to speed up its convergence.
The simple form of the surrogate function, together with the
effectiveness of Anderson acceleration, helps to improve
the computational efficiency of robust non-rigid registra-
tion compared to existing approaches.

A preliminary version of this work appeared in [16]. The
main additions in the current version include: (1) a more robust
method for the deformation graph construction; (2) a more
efficient optimization solver that combines the MM algorithm
with Anderson acceleration; (3) a more extensive evaluation of
the performance.

II. RELATED WORK

Non-rigid registration has been extensively studied in com-
puter vision, medical image processing and computer graphics.
The reader can refer to the surveys in [17] and [18] for a more
complete overview of past research. In the following, we focus
on works that are closely related to our method.

Non-Rigid Registration Models Various optimization-based
methods perform non-rigid registration by minimizing the align-
ment error, often in conjunction with other constraints. Extend-
ing the classical iterative closest point (ICP) algorithm for rigid
registration, Amberg et al. [1] proposed a non-rigid ICP algo-
rithm that incrementally deforms the source model to align with
the target model. Li et al. [2] adopted an embedded deformation
approach [19] to express a non-rigid deformation using a defor-
mation graph, and simultaneously optimized the correspondence
between source and target scans, the confidence weights for
the correspondence, and a warping field that aligns the source
with the target. In addition, various geometric constraint terms
have been introduced to preserve the local shape of the source
model during deformation. Examples include preservation of
Laplacian operators [20], [21], [22], as-conformal-as-possible
deformations [23], and as-rigid-as-possible deformations [24].

Other methods tackle the registration problem from a statisti-
cal perspective. By treating point cloud alignment as a probabil-
ity density estimation problem, Myronenko et al. [25] proposed
the Coherent Point Drift (CPD) algorithm, which encourages
displacement vectors to point in similar directions to improve
the coherence of the transformation. Hirose [26] reformulated
CPD in a Bayesian setting to improve robustness with a better
guarantee of convergence. Hontani et al. [27] incorporated a
statistical shape model and a noise model into the non-rigid
ICP framework, and detected outliers based on their sparsity.
Jian et al. [28], [29] represented each point set as a mixture

of Gaussians and treated point set registration as a problem of
aligning two mixtures. Also with a statistical framework, Wand
et al. [30] used a meshless deformation model to perform the
pairwise alignment. Ma et al. [31] proposed an L2E estimator
to build more reliable sparse and dense correspondences. These
methods typically require calculations for each possible pair of
points from the source and the target, which is time-consuming
for problems with a large number of points.

Some dynamic reconstruction and tracking frameworks in-
volve non-rigid registration between a template model and the
live frames. The registration is performed by alternately updating
the correspondences and solving the transformation on the GPU
to produce real-time results [32], [33], [34], [35], [36]. For
such applications, the non-rigid registration tasks are usually
less challenging due to the small deviation between the source
and target models, and real-time performance is favored over
high-precision solutions.

When the transformation between the source and target mod-
els is nearly isometric, some approaches utilize the geodesic
distance of the surface as an invariant metric to directly optimize
the global correspondences [37], [38], [39]. However, these
methods may not be suitable for noisy mesh surfaces, as the
noise can distort the geodesic distance and lead to erroneous
alignment.

With the growing popularity of deep learning in computer
graphics and vision tasks, it has also been adopted for non-rigid
registration problems. Shimada et al. [40] represented the source
and target models using regular voxel grids, and learned the
displacement field using datasets of deformable objects with
known correspondence. For non-rigid 3D reconstruction, Božič
et al. [41] extracted features from the input RGB-D frames and
matched them to obtain sparse correspondences, and used these
initial correspondences to improve the accuracy of registration.
For non-rigid tracking, Li et al. [42] proposed an alignment
term based on deep features learned through CNN to improve
the robustness of the optimization formulation, and introduced
a learning-based preconditioner to speed up the convergence of
the PCG method used in the optimization solver. Božič et al. [43]
combined a dense correspondences prediction module based on
an optical flow network of RGB images, and a differentiable
alignment module to achieve more accurate real-time non-rigid
tracking. These methods improve the robustness and/or speed
compared with optimization-based methods, by training on
carefully constructed datasets. Feng et al. [44] represented
the non-rigid transformation as a point-wise combination of
several rigid transformations. They proposed an unsupervised
framework to learn the alignment, using a differentiable loss that
measures similarity between 3D shapes via their depth images
from multiple views. However, this method cannot handle partial
overlaps.

Robust Metrics Since the data generated from a 3D acquisi-
tion process often contains noise, outliers and partial overlaps,
various robust metrics have been applied in optimization-based
approaches to better handle such cases. Unlike the classical �2
error metrics that require the error to be small across the whole
shape, such robust metrics promote the sparsity of the error and
allow for large errors in some local regions to accommodate
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data imperfections. Yang et al. [4] introduced an �1 term for
the smoothness of the transformation, which is suitable for
models with articulated motions. Li et al. [5] additionally
utilized an �1-norm for the alignment error, to improve ro-
bustness against noises and outliers. Guo et al. [7] proposed
an �0-based motion regularizer for robust motion tracking and
surface reconstruction. Zampogiannis et al. [45] applied the
Huber-L1 loss to the difference between the transformation
parameters at neighboring deformation graph nodes, to promote
piecewise smooth deformation fields. Other works used the
Geman-McClure function for the non-rigid alignment term [35],
[46], [47]. In this paper, we adopt Welsch’s function for robust
non-rigid registration, which results in a smooth optimization
problem that allows for an efficient numerical solver.

Anderson Acceleration Anderson acceleration [14] was ini-
tially designed for the iterative solution of nonlinear integral
equations. In recent years, it has been shown effective in ac-
celerating the convergence of fixed-point iterations [15], [48],
[49]. In each iteration, Anderson acceleration utilizesmprevious
iterates to construct a new iterate that converges faster, which
can be considered as a quasi-Newton method for finding a root
of the residual function [50]. It has been adopted to accelerate
first-order solvers in computer graphics [51], [52], [53], as well
as ICP-based methods for rigid registration [12], [54]. In this
paper, we apply Anderson acceleration to speed up the conver-
gence of our non-rigid registration solver.

III. MODEL

Given a source surface and a target surface, non-rigid registra-
tion computes a deformation field on the source surface to align it
with the target surface. We assume that the source surface is rep-
resented with a set of sample points V = {v1, . . . ,v|V| ∈ R3}
connected by a set of edges E that define their neighboring
relations, andU = {u1, . . . ,u|U| ∈ R3} is a set of sample points
on the target surface. In this paper, we focus on the case where
the source surface is a triangle mesh, so that V and E are the
mesh vertices and edges, respectively. However, the formulation
is also applicable when the input surface is a point cloud and V
are the points: in this case, the edge set E can be constructed by
connecting each point with its nearest neighbors. Following [19],
we define the deformation field using an embedded deformation
graph G = (VG , EG), where VG = {p1, . . . ,p|VG | ∈ R3} ⊂ V is
the set of graph nodes that lie on the source surface, and EG is
the set of edges. Each graph node is associated with an affine
transformation Xj = [Aj , tj ], where Aj ∈ R3×3 and tj ∈ R3.
In the following, we use

X = [X1,X2, . . . ,X|VG |] ∈ R4|VG |×3

to denote the concatenation of all Xj . Using the deformation
graph, each sample point vi on the source surface is influenced
by a set I(vi) of nearby deformation graph nodes:

I(vi) = {pj ∈ VG|D(vi,pj) < R}, (1)

where D(·, ·) denotes the geodesic distance on the source sur-
face, andR is a given radius parameter. The new position of the

sample point vi is computed as

v̂i =
∑

pj∈I(vi)

wij · (Aj(vi − pj) + pj + tj), (2)

where wij is a distance-dependent normalized weight [3]:

wij =
(1−D2(vi,pj)/R

2)3∑
pk∈I(vi)

(1−D2(vi,pk)/R2)3
. (3)

From the given source and target surfaces, we first construct
a deformation graph, and then optimize the transformations
associated with the graph nodes to deform the source surface and
align it with the target surface. Compared with existing non-rigid
registration methods that define the transformation field on each
source vertex such as [5], the use of a deformation graph can
effectively reduce the number of variables for the optimization
problem and significantly reduce the computational time. The
remainder of this section explains each step of our methods in
detail.

A. Construction of Deformation Graph

To avoid excessive degrees of freedom for the deformation,
we would like to reduce the number of deformation graph
nodes while ensuring that for each source point vi the set of
influencing nodes I(vi) (defined in (1)) is not empty. To this
end, we simultaneously construct the set VG of deformation
graph nodes and the set I(vi) of influencing nodes for each
point as follows. We first initialize VG and all I(vi) to empty
sets. Then we perform PCA on all source points {vi}, and sort
them based on their projections onto the axis corresponding to
the largest eigenvalue of the covariance matrix. We go through
all the points according to this order, and add a source point
vj to the deformation graph nodes VG if either VG or I(vj) is
empty. Once a point vj is added to the deformation graph nodes,
we also add vj to the influencing node set for any point vi that
is within geodesic distance R from vj (i.e., D(vi,vj) < R).
To locate all such points efficiently, we first start from vj and
perform a breadth-first search on the surface to identify the
largest neighborhood B(vj) of points whose euclidean distance
to vj is smaller thanR. Since the euclidean distance is no larger
than the geodesic distance, any point with a geodesic distance
smaller than R must belong to B(vj). Hence we compute the
geodesic distance from vj to each point q ∈ B(vj), and add vj

to I(q) ifD(vj ,q) < R. To compute the geodesic distance, we
construct a sub-mesh consisting of all faces on the source surface
mesh that are incident with the vertices from B(vj), and apply
the exact geodesic algorithm of [55] (VTP) on this sub-mesh.
We use VTP for the computation because it can produce accurate
results while being efficient on small meshes. After the set of
deformation graph nodes is constructed, we connect two nodes
with an edge if there exists a point that is influenced by both of
them. Algorithm 1 summarizes our method for constructing the
deformation graph. Note that in the preliminary version [16] of
this paper, the deformation graph construction method needs to
compute the geodesic distance from each graph node to all the
source points; in comparison, our new method only requires
the geodesic distance to the source points within the sphere

Authorized licensed use limited to: Zhejiang University. Downloaded on September 28,2023 at 07:58:44 UTC from IEEE Xplore.  Restrictions apply. 



9684 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

Fig. 1. Comparison of deformation graph construction by [16] and our method
on “crane” (left) and “march2” (right) datasets of [57].

centered at the graph node and with a radius R, which involves
a significantly smaller number of geodesic distance values. This
allows us to compute the exact geodesic distance using VTP to
achieve more robust results, whereas the method in [16] needs to
use the fast marching method (FMM) to compute an approximate
geodesic distance to avoid excessive computational costs. Fig. 1
shows some examples of deformation graphs constructed using
our new method and the method from [16] and their computa-
tional time, where the FMM geodesic distance is computed using
an open-source implementation1. We can see that our method is
notably faster when using the same radius parameter.

Remark. An alternative way of constructing the deformation
graph nodes is to repeatedly sample the source points and add
them to the graph using farthest point sampling [56], until the
geodesic distance between graph nodes and the farthest point
is smaller than the radius parameter R or the number of graph
nodes reaches a certain threshold. However, this would require
computing geodesic distance between faraway points on the

1https://github.com/sywe1/geodesic-computation

Algorithm 1: Construction of the Deformation Graph and
the Influencing Node Sets.

surface, which tends to be much slower than our approach where
the geodesic distance is only evaluated between nearby points.

B. Problem Formulation

Similar to existing non-rigid registration methods, we would
like to align the source and target surfaces using a smooth
transformation field that is locally close to rigid deformation.
Therefore, we minimize the following target function to deter-
mine the transformation X that is defined over the deformation
graph nodes:

E(X) = Ealign(X) + αEreg(X) + βErot(X). (4)

Here Ealign measures the alignment error, Ereg is a smoothness
regularization term for the transformation field, and Erot penal-
izes the deviation between the transformation Xj on each node
and a rigid transformation. α and β are user-specified weights.
The definition for each term is explained below.
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Fig. 2. Left: function ψν with different values of the parameter ν. Right:
different surrogate functions for the function ψν with ν = 1.

Alignment Term For each transformed source point v̂i, we
find its closest point uρ(i) on the target surface as the corre-
sponding point:

uρ(i) := argmin
u∈U

‖u− v̂i‖.

Traditional methods such as [1] measure the alignment error
using the sum of squared distance from all the transformed
source points to their corresponding points. However, outliers
and partial overlaps can result in large distances between some
point pairs for the ground-truth transformation, which can lead
to a large value of such �2 alignment measures and prevent the
optimization from finding the ground-truth alignment. Recently,
robust metrics such as the �p-norm (p ≤ 1) [4], [5], [7], [58] have
been utilized instead for the alignment error. It is less sensitive
to noises and partial overlaps, since such �p-norm minimization
allows for large distances at some points. However, due to the
non-smoothness of such �p-norm formulations, their numerical
minimization can be much more expensive than the �2-norm.
For example, the problem is solved in [58] with an iterative
algorithm that alternately updates the point correspondence and
the transformation; the transformation update step minimizes a
target function that involves the �p-norm and is performed using
an ADMM solver, which is time-consuming and lacks a con-
vergence guarantee due to the non-convexity of the problem. In
this paper, inspired by recent works in robust image filtering [10]
and mesh processing [11], we adopt Welsch’s function [9] as a
robust metric and derive the following alignment error term:

Ealign(X) =
∑
vi∈V

ψνa
(‖v̂i − uρ(i)‖), (5)

where νa > 0 is a user-specified parameter, and

ψν(x) = 1− exp

(
− x2

2ν2

)
. (6)

As shown in Fig. 2, the function ψν is monotonically increasing
on [0,+∞) while being bounded from above by 1. In addition,
when νa → 0, the error measure in (5) approaches the �0-norm
of the distance values between the corresponding points. Thus
it penalizes the distance between corresponding points, without
being overly sensitive to large distances caused by outliers and
partial overlaps. Moreover, as shown later in Section III-C,
the use of Welsch’s function enables us to design an efficient
optimization solver with guaranteed convergence.

Regularization Term Ideally, the transformation induced by
two neighboring deformation graph nodes pi and pj should be
consistent on their overlapping influenced region. We measure
such consistency at pi using the following term:

Dij = rij(Aj(pi − pj) + pj + tj − (pi + ti)). (7)

Here the term Aj(pi − pj) + pj + tj − (pi + ti) is the dif-
ference between transformations induced by Xi and Xj at pi,
which is commonly used for the regularization of transformation
fields defined on a deformation graph [3], [19]. rij is a normal-
ization weight that accounts for the distance between pi and pj :

rij =
2|EG| · ‖pi − pj‖−1∑

pi∈VG

∑
pj∈N (pi)

‖pi − pj‖−1
, (8)

where N (pi) denotes the set of neighboring deformation graph
nodes for the node pi.

For non-rigid registration, the magnitude of ‖Dij‖ should
be small for most parts of the deformation graph. On the other
hand, the optimal transformation field may induce large mag-
nitudes of ‖Dij‖ in some local regions such as the joints of a
human body due to articulated motion. Therefore, we apply the
Welsch’s function to ‖Dij‖ to penalize its magnitude across the
deformation graph while allowing for large magnitudes in some
regions, resulting in the following regularization term:

Ereg =
∑
pi∈VG

∑
pj∈N (pi)

ψνr
(‖Dij‖), (9)

where νr > 0 is a user-specified parameter.
Rotation Matrix Term To preserve local surface shapes during

the deformation, we would like each transformation Xi to be
close to a rigid transformation. We enforce this property by
penalizing the difference between the affine transformation ma-
trix Ai and its closest projection onto the rotation matrix group
R = {R ∈ R3×3|RRT = I, det(R) > 0}, and define the term
Erot as

Erot =
∑
pi∈VG

‖Ai − projR(Ai)‖2F , (10)

where projR(·) is the projection operator:

projR(A) = argmin
R∈R

‖R−A‖.

C. Numerical Optimization

The target function of the optimization problem (4) is non-
linear and non-convex. Thanks to the use of Welsch’s function,
it can be solved efficiently using the majorization-minimization
(MM) algorithm [13]. Specifically, given the variable values
X(k) in the current iteration, the MM algorithm constructs a
surrogate function E(X|X(k)) for the target function E such
that

E(X(k)|X(k)) = E(X(k)),

E(X|X(k)) ≥ E(X) ∀X 
= X(k). (11)
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Then the variables are updated by minimizing the surrogate
function

X(k+1) = argmin
X

E(X|X(k)). (12)

This guarantees the decrease of the target function in each
iteration, since (11) and (12) imply that

E(X(k+1)) ≤ E(X(k+1)|X(k)) ≤ E(X(k)|X(k)) = E(X(k)).

As a result, the iterations are guaranteed to converge to a local
minimum [13]. In comparison, existing solvers for minimiz-
ing non-convex �p-norms such as ADMM [58] or iteratively
reweighted least squares [59] either lack a convergence guar-
antee or rely on additional strong assumptions to guarantee
convergence. In the following, we explain the construction of
the surrogate function and its numerical minimization.

1) Surrogate Function: To construct the surrogate function
E(X|X(k)), we note that there is a convex quadratic surrogate
function for the Welsch’s functionψν at y [10] (see Fig. 2 right):

ψν(x|y) = ψν(y) +
1− ψν(y)

2ν2
(
x2 − y2

)
. (13)

This function bounds the Welsch’s function from above, and the
two function graphs touch at x = y. Applying this toEreg in (9),
we obtain a convex quadratic surrogate function

Ereg(X|X(k))

=
1

2ν2r

∑
pi∈VG

∑
pj∈N (pi)

exp

(
−‖D(k)

ij ‖2
2ν2r

)
‖Dij‖2, (14)

where D
(k)
ij is evaluated using (7) at X(k). Note that in (14)

we have ignored some constant terms as they do not affect the
optimization. Similarly, we can apply (13) to Ealign and ignore
some constant terms, to obtain a surrogate function

1

2ν2a

∑
vi∈V

exp

⎛⎝−
‖v̂(k)

i − u
(k)
ρ(i)‖2

2ν2a

⎞⎠ ‖v̂i − uρ(i)‖2, (15)

where the point v̂(k)
i is calculated with (2) at X(k), and u

(k)
ρ(i) is

the closest point to v̂
(k)
i on the target surface. However, this is

not a quadratic function of the new position v̂i, since the point
uρ(i) depends non-linearly on v̂i. To obtain a more simple form,
we note that the term ‖v̂i − uρ(i)‖2 has a quadratic surrogate

function ‖v̂i − u
(k)
ρ(i)‖2 at X(k), since by definition the closest

point uρ(i) satisfies ‖v̂i − uρ(i)‖2 ≤ ‖v̂i − u‖ for all u ∈ R3.
Applying this to (15), we obtain the following convex quadratic
surrogate function forEalign atX(k) up to an additional constant:

Ealign(X|X(k))

=
1

2ν2a

∑
vi∈V

exp

⎛⎝−
‖v̂(k)

i − u
(k)
ρ(i)‖2

2ν2a

⎞⎠ ‖v̂i − u
(k)
ρ(i)‖2, (16)

For the rotation term Erot, we can similarly derive a quadratic
surrogate function as

Erot(X|X(k)) =
∑
pi∈VG

‖Ai − projR(A
(k)
i )‖. (17)

In total, the surrogate function of E(X) can be written as

E(X|X(k))

= Ealign(X|X(k)) + αEreg(X|X(k)) + βErot(X|X(k)). (18)

This surrogate function is minimized to obtain the updated
variables X(k+1).

2) Numerical Minimization: Since E(X|X(k)) is a convex
quadratic function, we can minimize it by solving a linear
system. To derive the system, we first rewrite E(X|X(k)) in
a matrix form. The term Ealign(X|X(k)) can be written as

Ealign(X|X(k)) = ‖Wa(FX−Q)‖2F , (19)

where Wa = diag(
√
wa

1 , . . . ,
√
wa

|V|) ∈ R|V|×|V| with

wa
i =

1

2ν2a
exp

⎛⎝−
‖v̂(k)

i − u
(k)
ρ(i)‖2

2ν2a

⎞⎠ ,

F is a block matrix {Fij} 1≤i≤|V|
1≤j≤|VG |

∈ R|V|×4|VG | with

Fij =

{
wij · [vT

i − pT
j , 1] if pj ∈ I(vi)

0 otherwise
,

and Q = [Q1,Q2, . . . ,Q|V|]T ∈ R|V|×3 with

Qi = u
(k)
ρ(i) −

∑
pj∈I(vi)

wijpj .

Similarly, the term Ereg(X|X(k)) can be written as

Ereg(X|X(k)) = ‖Wr(HX−Y)‖2F , (20)

where the matrices H ∈ R2|EG |×4|VG | and Y ∈ R2|EG |×3 encode
the computation of a term Dij in the same row: the row in H
has two non-zero blocks [rij(pT

i − pT
j ), rij ] and [0, 0, 0,−rij ]

corresponding to Xj and Xi respectively, whereas the row in
Y has elements [rij(p

T
i − pT

j )]. The diagonal matrix Wr ∈

R2|EG |×2|EG | has an element

√
1

2ν2
r
exp(−‖D(k)

ij ‖2
2ν2

r
) in the row

corresponding to Dij . Finally, the term Erot(X|X(k)) can be
written as

Erot(X|X(k)) = ‖JX− Z‖2F ,
where

J = diag(1, 1, 1, 0, 1, 1, 1, 0, . . . , 1, 1, 1, 0) ∈ R4|VG |×4|VG |,

Z = [projR(A1),0, . . . , projR(A|VG |),0]
T ∈ R4|VG |×3.

Using the matrix forms, the updated variable X(k+1) is com-
puted via the linear system

K(k)X(k+1) = B(k), (21)

Authorized licensed use limited to: Zhejiang University. Downloaded on September 28,2023 at 07:58:44 UTC from IEEE Xplore.  Restrictions apply. 



YAO et al.: FAST AND ROBUST NON-RIGID REGISTRATION USING ACCELERATED MAJORIZATION-MINIMIZATION 9687

where

K(k) = FTWT
a WaF+ αHTWT

r WrH+ βJTJ,

B(k) = FTWT
a WaQ+ αHTWT

r WrY + βJTJZ.

We repeat this step until either the maximum number of itera-
tions Imax is reached, or the deformed source model converges
(indicated by the condition maxi ‖v̂(k+1)

i − v̂
(k)
i ‖ < ε where ε

is a user-specified threshold).
3) Choice of Parameters νa and νr: The parameters νa and

νr play an important role in the robustness of our method. The
surrogate functions in (14) and (16) show that our solver actually
minimizes a quadratic error function, where the weights for the
alignment error terms and the regularization terms are updated
dynamically as a Gaussian function of the current error norms
with variance ν2a and ν2r respectively. On one hand, we would
like νa and νr to be sufficiently small in the final stage of the
optimization, such that the Gaussian weights can effectively
filter out the influence of alignment and rotation terms with
large errors due to outliers, partial overlaps and articulated
motions. On the other hand, fixing ν2a and ν2r to small values
can reduce the effectiveness of the optimization, as many terms
would have large errors at the beginning of the optimization
and be excluded due to their small Gaussian weights. There-
fore, we gradually decrease the values of νa and νr during the
optimization. Specifically, we initialize νa and νr to values νa
and νr that are large enough to accommodate a large number
of terms, and use these values νa, νr to perform optimization
until convergence. Then we reduce νa and νr by half, and use
the previous optimized variables as initial values to continue the
optimization until convergence. We repeat this process until the
νa reaches a user-specified lower bound νa. We choose νa = d

and νa = l/
√
3 following [12], and set νr = 3l, where d is the

median value of the initial distance between each source point
and its closest point on the target surface, and l denotes the
average edge length of the source model.

4) Anderson Acceleration: The MM solver monotonically
decreases the target function and converges quickly to an ap-
proximate solution, but it can take a long time to converge to a
high-accuracy solution. To speed up the final convergence, we
adopt Anderson acceleration [15], a well-established approach
for accelerating fixed-point iterations. To do so, we consider our
MM solver as a fixed point iteration

X(k+1) = G(X(k)) (22)

with a residual function

F (X) = G(X)−X.

If the MM solver converges to a solution X∗, then X∗

is a fixed point of the iteration (22) and F (X∗) = 0. In
each iteration, Anderson acceleration uses the current iterate
X(k) and m previous iterates X(k−1), . . . ,X(k−m) to com-
pute an accelerated iterate XAA as an affine combination of

G(X(k)), G(X(k−1)), . . . , G(X(k−m)):

XAA = G(X(k))−
m∑
j=1

θ∗j(G(X
(k−j+1))−G(X(k−j))),

(23)
with the coefficients {θ∗j} computed by solving a linear least-
squares problem:

(θ∗1, . . ., θ
∗
m)=argmin

θ1,...,θm

‖F (k)−
m∑
j=1

θj(F
(k−j+1) − F (k−j))‖2,

where F (k) = F (G(k)). Since the accelerated iterate XAA may
suffer from instability and lead to stagnation, we follow the
stabilization approach from [51] and only accept it as the new
iterate X(k+1) if it decreases the target function; otherwise, we
revert to the original MM update G(X(k)) which is guaranteed
to decrease the target function, i.e.,

X(k+1) =

{
XAA if E(XAA) < E(X(k)),
G(X(k)) otherwise.

This approach guarantees a monotonic decrease of the target
function. Similar to [51], some intermediate results that are
computed during the evaluation ofE(XAA) — in particular the
closest points {uρ(i)} and the rotation matrices {projR(Ai)} —
can be reused for the MM step in the next iteration if XAA is ac-
cepted. This helps to alleviate the computational overhead of the
acceptance mechanism. Algorithm 2 summarizes our approach
that combines the MM update with Anderson acceleration.

Remark. In the preliminary version [16] of the current paper,
the same optimization problem is solved using a different ap-
proach, which iteratively constructs a non-quadratic surrogate
function and minimizes it using an inner L-BFGS solver. One
benefit of our new approach is that it involves fewer parameters
for the solver. In particular, the inner L-BFGS solver in [16]
requires a threshold parameter for the sufficient decrease con-
dition used in its line search, as well as two parameters for
its termination criteria. These parameters need to be chosen
properly to achieve the best performance of the solver. In com-
parison, our new solver does not involve a line search or an inner
solver, and hence does not require the tuning of such parameters.
More numerical comparisons between the two approaches can
be found in Section IV-C.

IV. RESULTS

We conduct extensive experiments to evaluate the effective-
ness of our method and compare its performance with existing
approaches.

A. Implementation and Metrics

We implement our method in C++, using Eigen [60] for lin-
ear algebra operations and OpenMP for parallelization. Unless
stated otherwise, the experiments are run on a PC with 16 GB of
RAM and a 6-code CPU at 3.60 GHz. Each pair of surfaces are
pre-processed by scaling them to achieve a unit-length diagonal
for their bounding box. By default we set ε = 10−5, Imax = 100,
and the sampling radius R = 5l where l is the average edge
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Algorithm 2: Robust Non-Rigid Registration Using
Welsch’s Function and Anderson Acceleration.

length of the source model. The source code of our method is
available at https://github.com/yaoyx689/AMM_NRR.

To evaluate the registration accuracy of a result, we first com-
pute the error for each source pointvi using the distance from its
transformed position v̂i to its ground-truth corresponding point
uρ∗(i) on the target surface:

Di = ‖v̂i − uρ∗(i)‖. (24)

The registration accuracy is then measured by the root mean
square error (RMSE):

r =

√∑
vi∈V D

2
i

|V| , (25)

where a lower value of r indicates higher accuracy. The error
metricsDi and r are measured in the original scale of the models,
and are in the unit of meters unless stated otherwise. In the
following, we use #S and #T to denote the number of sample

points on the source surface and the target surface, respectively.
We render the initial source model, the target model, and the
deformed source model in red, blue, and orange respectively,
and use color-coding to visualize the point-wise errorDi across
the surface.

B. Effectiveness of Our Method

Welsch’s Function and Parameters Update We first evaluate
the effectiveness of our formulation with Welsch’s function and
our dynamic update strategies for its parameter. To do so, we
consider the following variants of our algorithm:
� We replace the Welsch’s functions in the target function in

(4) with the squared �2-norm, such that the target function
becomes

E�2 =
∑
vi∈V

wd
i ‖v̂i − uρ(i)‖2

+ α
∑
pi∈VG

∑
pj∈N (pi)

‖Dij‖2 + βErot,

where {wd
i } are weights. We consider two variants with

different weighting schemes:
– All weights {wd

i } are set to 1. In the following examples,
we refer to this variant as �2-norm.

– The weight wd
i is set to 1 only if v̂i is close enough

to uρ(i). Otherwise, it is set to zero. To mimic the
exclusion mechanism of our Welsch formulation, we use
the empirical three-sigma rule for the Gaussian function
and set wd

i = 0 if ‖v̂i − uρ(i)‖ ≥ νa where νa is the
Welsch’s function parameter used in our alignment term,

i.e., the weight wd
i
(k)

at the k-th iteration is chosen as

wd
i

(k)
=

{
1 ‖v̂i − u

(k)
ρ(i)‖ < 3νa,

0 others,

We refer to this variant as �2-norm-r.
� Instead of dynamically updating νa and νr, we fix them

throughout the optimization. We consider two variants:
– Both parameters are fixed to their maximum values

during our dynamic update scheme. We refer to this
variant as Welsch-fmax.

– Both parameters are fixed to their minimum values
during our dynamic update scheme. We refer to this
as Welsch-fmin.

– Both parameters are fixed to their average values be-
tween the minimum values and the maximum values
during our dynamic update scheme. We refer to this as
Welsch-fmed.

In Fig. 3, we compare different variants on problems where
the source and target models overlap partially. To this end, we
choose two pairs of meshes from the “crane” dataset of [57],
each consisting of two consecutive frames from the sequence.
For each pair, we choose a view direction and one of the meshes,
and use the visible part of the mesh from the view direction as
the source model. For the other mesh, we choose three view
directions different from the source model, and use its visible
parts from these directions to create three target models that

Authorized licensed use limited to: Zhejiang University. Downloaded on September 28,2023 at 07:58:44 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/yaoyx689/AMM_NRR


YAO et al.: FAST AND ROBUST NON-RIGID REGISTRATION USING ACCELERATED MAJORIZATION-MINIMIZATION 9689

Fig. 3. Comparison on partially overlapping data constructed from the “crane” dataset [57]. We set kα = 100, kβ = 10 for all variants.

overlap partially with the source model. Fig. 3 presents the
registration results from different variants on these models.
To compute the RMSE (25) in this scenario, we note that the
point correspondence between the complete models is known
from the dataset; thus for each point on the source model
we find its corresponding point on the complete mesh of the
target model as the ground-truth correspondence for the RMSE
evaluation. For each target model, we also evaluate its overlap
ratio o with the source model as the percentage of source points
whose ground-truth correspondence lies on the target model.
Fig. 3 shows that the �2-based variants result in lower accuracy
than other variants, due to the sensitivity of �2-norm to large
errors, while the Welsch-based variants with fixed νa and νr
are less effective in distinguishing non-overlapping points. Our

Welsch-based formulation with a dynamic update of (νa, νr)
achieves better accuracy than these variants.

In Fig. 4, we further compare the variants on two pairs of
meshes from the “samba” dataset [57] with a relatively large
deformation between the source and the target. Our approach
also achieves better accuracy than the variants in this scenario,
thanks to its use of Welsch’s function which helps to atten-
uate the influence of incorrect correspondence obtained from
the closest point, as well as its dynamic parameter update
strategy that helps to avoid undesirable local minima of the
optimization.

Radius Parameter for Deformation Graph The radius parame-
terR for the deformation graph construction affects the number
of graph nodes. It can be used to trade off the degrees of freedom
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Fig. 4. Comparison on two pairs of meshes from the “samba” dataset [57]. We set kα = 10, kβ = 1 for all variants.

and computational efficiency. Fig. 5 shows results using different
values ofR on a pair of models from the MPI Faust dataset [61].
We can see that smaller R leads to more nodes in the defor-
mation graph, which provides more degrees of freedom for the
deformation and allow for more accurate alignment. On the other
hand, a larger number of nodes increase the number of variables
for the optimization, which requires a longer computational
time for the deformation graph construction and the numerical
solver. In addition, having too many variables may cause the
optimization to converge to a suboptimal solution, as it becomes
more difficult to maintain the local shape (e.g., see the right leg of
the result from R = 3l). In our experiments, our default choice
R = 5l usually achieves a good balance between accuracy and
efficiency.

C. Comparison With the Solver in [16]

A preliminary version of our method was presented in [16],
where the same optimization problem is solved using a quasi-
Newton approach instead. Similar to our solver, the solver in [16]
constructs a surrogate for the target function and minimizes it to
update the variables, with a dynamic update of the parameters
(νa, νr). However, their surrogate function is not quadratic and
requires an inner L-BFGS solver for its minimization. The two
solvers achieve similar results but differ in their efficiency, as
shown in Fig. 6. Here we choose two pairs of adjacent frame
data from the “jumping” dataset of [57], and perform registration
with fixed parameters (νa, νr) for a fair comparison between the
solvers for their speed of convergence. The plots of the target
function show that our solver converges faster than [16]. This
is partly because the surrogate function is only tight around
the current variable values; the L-BFGS inner solver in [16]
spends multiple iterations to minimize a loose upper bound

function away from the current variable values, which is less
efficient in reducing the target function. In comparison, our
solver immediately updates the surrogate after each iteration to
maintain a tight upper bound function for minimization, which
improves efficiency. Moreover, the use of Anderson acceleration
helps our solver to converge faster to the fixed point and avoid
the slow decrease of target function as seen in the final phase for
the solver of [16].

D. Comparison With Existing Methods

We compare our method with the �2-based approach from [1]
(N-ICP), the �1-based approach from [5] (RPTS), and the �0-
based approach from [7] (SVR-�0). We implement N-ICP and
RPTS by ourselves2, while the implementation of SVR-�0 is
provided by the authors. All these methods solve an optimization
problem for the transformation, where the target function is
a weighted sum of an alignment term, a regularization term,
and (for some methods) a local rotation/rigidity term. To unify
notation, for each method we set the weight for the alignment
term to 1 unless stated otherwise, and use α and β to denote
the weight for the regularization term and the rotation/rigidity
term, respectively. For a fair comparison, we choose the best
parameters for each method. For our method, to reduce sensitiv-
ity to the mesh resolution and the Welsch’s function parameters
νa, νr, we set the weights α, β as

α = kα · |V|
|EG| ·

ν2r
ν2a
, β = kβ · |V|

|VG| ·
1

2ν2a
, (26)

and control α, β using the parameters kα and kβ . For N-ICP,
we ignore the parameter adjustment for the stiffness and land-
mark terms for a fair comparison. For SVR-�0, we extract the

2https://github.com/Juyong/Fast_RNRR
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Fig. 5. Deformation graphs and registration results using our method with
different values of the radius parameter R, on a pair of models from the MPI
Faust dataset [61]. We set kα = 0.1, kβ = 0.001. Here #n denotes the number
of the deformation graph nodes, ti and to denote the computational time for the
deformation graph construction and the numerical optimization respectively,
and #i denotes the number of iterations required for the numerical optimization
solver to converge.

�0-optimization part and replace the corresponding points with
the closest points. For both N-ICP and RPTS, we terminate the
solver if it reaches 100 iterations or maxi ‖v̂(k+1)

i − v̂
(k)
i ‖ <

1× 10−3. RPTS also requires an inner ADMM solver to com-
pute all affine transformations X, and it is terminated when
reaching 20 iterations or ‖X(k+1) −X(k)‖F < 1× 10−3. For
SVR-�0, we terminate the solver when it reaches 100 iterations or
‖X(k+1) −X(k)‖F < 1× 10−3. We compare the methods on
the human motion datasets from [57], the MPI Faust dataset [61],
the TOSCA dataset [62], the DeepDeform dataset [41], and
real-world data acquired by a Kinect camera. The results are
presented in detail in the following paragraphs. The iterative
registration process of different optimization-based methods on
some problem instances is also demonstrated in the supplemen-
tary video, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2023.3247603.

Clean Data With Small Deformation In Figs. 7 and 8 and
Table I, we test the methods on the “handstand” and “march1”
datasets from [57]. Each dataset contains a sequence of meshes

Fig. 6. Comparisons between the solver from [16] and our solver for the same
optimization problem on the “jumping” dataset of [57]. We set kα = 10, kβ =
100 for both solvers.

Fig. 7. Visualization of the computational time and RMSE using different
methods on 50 pairs of models from the “handstand” and “march1” datasets [57].

TABLE I
MEAN/MEDIAN RMSE (×10−2) AND AVERAGE COMPUTATIONAL TIME (S)

USING DIFFERENT METHODS ON 50 PAIRS OF MODELS FROM THE

“HANDSTAND” AND “MARCH1” DATASETS [57]. WE SET α = 10 FOR N-ICP,
α = 100, β = 1 FOR RPTS, α = 1, β = 1 FOR SVR-�0, AND

kα = 100, kβ = 1 FOR OUR METHOD

for the motion of a human performer. We register the i-th frame
to the (i+2)-th frame for each dataset. In this setting, the defor-
mation between the source and the target models is relatively
small. Fig. 7 shows the computational time and RMSEs (25) of
50 pairs of such models, while Fig. 8 shows the results on one
example pair for each dataset. Table I further shows the mean and
median values of RMSE for each dataset. The results show that
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Fig. 8. Comparison on mesh pairs from the “handstand” dataset (top) and the
“march1” dataset (bottom) [57]. We set α = 10 for N-ICP, α = 10, β = 1 for
RPTS, α = 1, β = 1 for SVR-�0, and kα = 100, kβ = 1 for our method.

TABLE II
MEAN RMSE (×10−3) AND AVERAGE COMPUTATIONAL TIME (S) USING

DIFFERENT METHODS ON MODELS FROM THE MPI FAUST DATASET [61]. WE

SET α = 0.1 FOR N-ICP, α = 0.1, β = 0.001 FOR RPTS, α = 0.001, β = 1
FOR SVR-�0, AND kα = 0.1, kβ = 0.001 FOR OUR METHOD

overall our method can achieve higher accuracy with a shorter
computational time.

Clean Data With Large Deformation In Table II and Fig. 9, we
compare the methods on the MPI Faust dataset [61]. We select
10 subjects with nine poses, and use the first pose of each subject
as the source surface and the other poses of the same subject as
its targets. Due to the large difference between the source and
the target models, we use the SHOT feature [63] with diffusion
pruning [64] to obtain initial corresponding points. In Fig. 9, we
visualize the initial correspondences using blue lines connecting
the corresponding points. Fig. 9 shows a visualization of the
computational time and RMSE for each pose pair using different
methods, as well as the results for a particular pair on one subject.
Table II further shows the average RMSE and computational
time among all subjects for each pose pair. We can see that

Fig. 9. Comparisons on the MPI Faust dataset [61]. The plot in the upper right
visualizes the computational time and RMSE using different methods on 80
pairs of models from the dataset, while the rendered images show the results on
a particular pair.

Fig. 10. Visualization of computational time and RMSE resulting from differ-
ent methods on 50 pairs of models constructed from the “jumping” dataset [57]
with different profiles of added noise.

our method requires significantly less computational time while
achieving better accuracy. A major factor for the efficiency
of our method is the adoption of a deformation graph, which
only requires optimizing one affine transformation per graph
vertex. In comparison, N-ICP and RPTS require optimizing
one affine transformation per mesh vertex, which significantly

Authorized licensed use limited to: Zhejiang University. Downloaded on September 28,2023 at 07:58:44 UTC from IEEE Xplore.  Restrictions apply. 



YAO et al.: FAST AND ROBUST NON-RIGID REGISTRATION USING ACCELERATED MAJORIZATION-MINIMIZATION 9693

TABLE III
MEAN/MEDIAN RMSE (×10−2) AND AVERAGE COMPUTATIONAL TIME (S)

USING DIFFERENT METHODS ON 50 PAIRS OF MODELS CONSTRUCTED FROM

THE “JUMPING” DATASET [57] WITH DIFFERENT NOISE PROFILES. WE SET

α = 10 FOR N-ICP, α = 100, β = 1 FOR RPTS, α = 1, β = 1 FOR SVR-�0,
AND kα = 100, kβ = 1 FOR OUR METHOD

increases the number of variables as well as computational time.
In addition, the RMSE of SVR-�0 is notably higher than the other
methods, as it was originally designed for aligning nearby frames
for motion tracking and becomes less effective on models with
large deformation.

Noisy Data To evaluate the effectiveness of our method on
noisy data, we synthesize noisy models using the “jumping”
dataset from [57]. Specifically, we collect 50 pairs of models,
where each pair consists of the i-th frame from the dataset as
the source model, and the (i+2)-th frame with added Gaussian
noise as the target model. For each pair, we generate four noisy
variants of the target model as follows:
� Dense Noise (0.3l): we add noises with a standard deviation
σ = 0.3l to all vertices;

� Dense Noise (0.7l): we add noises with a standard deviation
σ = 0.7l to all vertices;

� Sparse Noise (5%): we add noises with a standard deviation
σ = l to 5% of the vertices.

� Sparse Noise (50%): we add noises with a standard devia-
tion σ = l to 50% of the vertices.

Fig. 10 visualizes the computational time and RMSE for each
method on the 50 pairs of models for each noise profile, while
Fig. 11 shows the results on a particular model pair. Table III
shows for each method the average RMSE and computational
time for all model pairs under each noise profile. We can see
that our method achieves better overall performance in terms of
both accuracy and efficiency.

Partial Overlaps We also evaluate different methods on mod-
els that overlap partially. We choose three pairs of models
from the “march2” dataset and three pairs of models from the
“squat1” dataset from [57], where the models in each pair are two
frames apart. Then for each pair, we construct two different view
directions for the two models respectively, and use their visible
parts from these directions to construct source and target models
that overlap partially when aligned. We also construct five pairs
of models from the TOSCA dataset [62] in a similar way. Figs. 12
and 13 show the results from different methods on these partially

Fig. 11. Comparison on a pair of models constructed from the “jumping”
dataset [57] using different profiles of added noise. We set α = 10 for N-ICP,
α = 100, β = 1 for RPTS,α = 1, β = 1 for SVR-�0, andα = 100, β = 1 for
our method.

overlapping models. N-ICP performs poorly on such models,
since its �2-based optimization can be sensitive to target function
terms with large residuals. The �1-based formulation in RTPS is
more robust than an �2 formulation, but it still attempts to reduce
large residual terms, which can lead to incorrect alignments.
SVR-�0 applies an �0-based regularization term but its alignment
term is still based on the �2-norm, which can affect its robustness.
In comparison, our use of the Welsch’s function on both the
alignment term and the regularization term helps to improve
robustness and achieve overall better results in these examples.
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Fig. 12. Comparison on partially overlapping data constructed from the
TOSCA dataset [62]. We set α = 100 for N-ICP, α = 1000, β = 1 for RPTS,
α = 1, β = 1 for SVR-�0, and α = 100, β = 10 for our method. We set
R = 8l because the mesh is uneven.

Real Scanned Data Our method is also effective on real-world
data. To demonstrate this, we conduct experiments on the real
scanned data from the DeepDeform dataset [41]. This dataset
provides RGB-D frame pairs with estimated optical flows and
scene flows and manually annotated sparse corresponding point
pairs. To evaluate the accuracy of the result, we adopt the scene
flows provided by the dataset as the ground-truth deformation,
and compute an error measure as follows:

rs =

√
1

|S|
∑

tsi∈S
‖v̂i − (vi + tsi )‖2,

where S is the set of scene flows for the source surface points.
We use 349 pairs in the validation set for testing, as the vali-
dation set includes the scene flows required for computing rs.
Besides N-ICP, RPTS and SVR-�0, we also compare with four
recent deep learning methods, Lepard+NICP [65], NDP [66],
RMA-Net [44], and SyNoRiM [67] using their open-source

TABLE IV
MEAN/MEDIAN rs (×10−2) AND AVERAGE COMPUTATIONAL TIME (S) USING

DIFFERENT METHODS ON 349 PAIRS OF MODELS FROM DEEPDEFORM

DATASET [41]. FOR LEPARD+NICP, THERE ARE ONLY 219 VALID RESULTS. WE

SET α = 10 FOR N-ICP, α = 100, β = 1 FOR RPTS, α = 1, β = 1, r = 8l

FOR SVR-�0, AND kα = 10, kβ = 1, r = 8l FOR OUR METHOD

implementations3,4,5. For each frame, we first downsample
the depth map and obtain a point cloud according to the in-
trinsic camera parameters, then remove the background using
the ground-truth segmentation masks provided by the dataset.
Finally, we construct a triangular mesh from the point cloud
according to their adjacency in the depth map, and extract
the largest connected part. We then use either the resulting
mesh or its vertices as the input to a method depending on
its requirement. Since SyNoRiM requires 8192 points on each
input shape, when the number of points on an input shape is
different from 8192 we either downsample the points or add
repeated points to achieve the required number. To improve
the performance of RMA-Net, we fine-tune the model on the
2120 data pairs from the training set of the DeepDeform dataset.
For other learning-based methods, since they already test their
performance on the DeepDeform dataset, we directly evaluate
their performance using their pre-trained models. We perform
the same processing on the training data as mentioned above for
the testing data. The training and testing of the learning-based
methods are run on an NVIDIA GeForce RTX 3090 GPU. For
both SVR-�0 and our method, we set the sampling radiusR = 8l
for the deformation graph construction for better efficiency.
For the optimization-based methods, we first perform a coarse
alignment using the rigid registration method from [12] before
running each method for non-rigid registration. Table IV shows
the mean and median error measures and average computational
time for each method, while Fig. 14 shows some example
results from the methods. Overall, the optimization-based meth-
ods achieve lower registration errors than the learning-based
methods, which is likely due to the capability of optimization-
based methods to locally refine the alignment. RMA-Net has
worse accuracy than other learning-based methods, because its
training does not consider partial overlaps between the input
shapes. Our method achieves the lowest mean value of rs and
the third lowest median value of rs (and is only 3% higher
than the lowest median rs value), which shows the good ac-
curacy of our method. On the other hand, the learning-based
methods are overall faster than the optimization-based methods,

3https://github.com/rabbityl/DeformationPyramid
4https://github.com/WanquanF/RMA-Net
5https://github.com/huangjh-pub/synorim
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Fig. 13. Comparison on six pairs of partially overlapping models constructed from the “march2” (left) and “squat1” (right) datasets [57]. We set α = 10 for
N-ICP, α = 1000, β = 1 for RPTS, α = 1, β = 1 for SVR-�0, and α = 100, β = 10 for our method.

thanks to the efficiency of running a neural network model on
the GPU. Nevertheless, our method is only slower than SyN-
oRiM and is significantly faster than other optimization-based
methods.

Performance on Mobile Devices Furthermore, due to the use
of the deformation graph and our efficient solver, our method can
be deployed on devices with limited compute capabilities. To
this end, we compare our method and other optimization-based
methods on a Raspberry Pi 4B with 8 GB of RAM and a
quad-core Cortex-A72 at 1.5 GHz running Ubuntu 20.04. In
Fig. 15, we show the comparison on a problem instance from

the the DeepDeform dataset. In Fig. 16, we compare the methods
on data pairs obtained by scanning a self-rotating human subject
with a Kinect camera; the scans are converted to triangle meshes
for registration, by removing isolated points and connecting the
remaining points according to their adjacency in the depth map.
Due to the lower compute power of Raspberry Pi, we relax the
termination condition of our method to ε = 3× 10−4, which
causes no notable change to the result while still being tighter
than other methods. We can see that our method is signifi-
cantly faster than other methods and achieves similar or better
accuracy.
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Fig. 14. Comparison between different methods on the DeepDeform dataset [41]. We set α = 10 for N-ICP, α = 100, β = 1 for RPTS, α = 1, β = 1, R = 8l

for SVR-�0, and kα = 10, kβ = 1, R = 8l for ours. In the visualized error map, we show the points without ground-truth scene flows in gray.

Fig. 15. Comparison between different methods on a Raspberry Pi for Deep-
Deform dataset [41]. We set α = 10 for N-ICP, α = 100, β = 1 for RPTS,
α = 1, β = 1, R = 8l for SVR-�0, and kα = 10, kβ = 1, R = 8l for our
method. In the visualized error map, we mark the points without ground-truth
scene flows in gray.

Fig. 16. Comparison between different methods on a Raspberry Pi for real data
collected with Kinect. We set α = 100 for N-ICP, α = 10, β = 1 for RPTS,
α = 1, β = 1 for SVR-�0, and kα = 10, kβ = 100 for our method.

Fig. 17. A failure case of our method on a problem instance from the Deep-
Deform dataset [41], where the significant difference between the source and
target models leads to inaccurate alignment.

V. CONCLUSION

In this paper, we proposed a robust non-rigid registration
model based on Welsch’s function. Applying the Welsch’s func-
tion to the alignment term and the regularization term makes the
formulation robust to noises and partial overlaps. To efficiently
solve this problem, we apply majorization-minimization to
transform the nonlinear and non-convex problem into a sequence
of simple sub-problems. To speed up the convergence, we regard
the MM algorithm as a fixed-point iteration and use Anderson
acceleration to accelerate the solution. Extensive experiments
demonstrate the effectiveness of our method and its efficiency
compared to existing approaches.

Although our method achieves good results on many exam-
ples, it still has some limitations. First, although our use of the
robust metric helps to mitigate the impact of incorrect correspon-
dence, our non-convex formulation still requires proper initial-
ization to avoid converging to an undesirable local minimum.
In particular, when there is a significant difference between the
source and target shapes, the closest-point correspondence may
be erroneous on a large part of the surface and lead to inaccurate
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alignment (see Fig. 17 for an example of such failure cases).
The issue can potentially be addressed by adopting a more
sophisticated point correspondence method that also accounts
for the local shape features. Second, our deformation graph
construction method relies on a global radius parameter that
leads to an approximately uniform density of graph nodes.
Such a deformation graph may not be suitable for meshes with
highly non-uniform samples. This can be improved using an
adaptive radius parameter that depends on the local curvatures
and sampling densities, which we will leave as future work.
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