
CF-Font: Content Fusion for Few-shot Font Generation

Chi Wang1,2*, Min Zhou2, Tiezheng Ge2, Yuning Jiang2, Hujun Bao1, Weiwei Xu1†

1 State Key Lab of CAD&CG, Zhejiang University 2 Alibaba Group
wangchi1995@zju.edu.cn, {yunqi.zm, tiezheng.gtz, mengzhu.jyn}@alibaba-inc.com

{bao, xww}@cad.zju.edu.cn

Weight
 (content)

Target
(style) The characters generated by our methodSource

(content)

（a） （b）
Ours

Figure 1. Characters generated by our method. (a) Source: source character images selected from ten basis fonts for content feature fusion.
Weights: different colors and their covered areas on the doughnut chart represent the weights used to blend content features adaptively. Ten
colors correspond to source images in colored boxes. Target: few-shot target reference character images. One of those is performed as an
example. Ours: images generated by our method with fused content features and style features. (b) Generated character images of the first
ten lines from a famous Chinese poem, each line with an extracted style, e.g. thin, thick, swollen, cuneiform, inscription, or cursive style.

Abstract

Content and style disentanglement is an effective way to
achieve few-shot font generation. It allows to transfer the
style of the font image in a source domain to the style de-
fined with a few reference images in a target domain. How-
ever, the content feature extracted using a representative
font might not be optimal. In light of this, we propose a con-
tent fusion module (CFM) to project the content feature into
a linear space defined by the content features of basis fonts,
which can take the variation of content features caused
by different fonts into consideration. Our method also al-
lows to optimize the style representation vector of reference
images through a lightweight iterative style-vector refine-
ment (ISR) strategy. Moreover, we treat the 1D projection of
a character image as a probability distribution and leverage
the distance between two distributions as the reconstruc-
tion loss (namely projected character loss, PCL). Compared
to L2 or L1 reconstruction loss, the distribution distance
pays more attention to the global shape of characters. We

*This work was done during an internship at Alibaba Group.
†Corresponding author.

have evaluated our method on a dataset of 300 fonts with
6.5k characters each. Experimental results verify that our
method outperforms existing state-of-the-art few-shot font
generation methods by a large margin. The source code
can be found at https://github.com/wangchi95/CF-Font.

1. Introduction
Few-shot font generation aims to produce characters of

a new font by transforming font images from a source do-
main to a target domain according to just a few reference
images. It can greatly reduce the labor of expert design-
ers to create a new style of fonts, especially for logographic
languages that contain multiple characters, such as Chinese
(over 60K characters), Japanese (over 50K characters), and
Korean (over 11K characters), since only several reference
images need to be manually designed. Therefore, font gen-
eration has wide applications in font completion for ancient
books and monuments, personal font generation, etc.

Recently, with the rapid development of convolu-
tional neural networks [22] and generative adversarial net-
works [9] (GAN), pioneers have made great progress in

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1858

generating gratifying logographic fonts. Zi2zi [38] intro-
duces pix2pix [14] method to generate complex charac-
ters of logographic languages with high quality, but it can-
not handle those fonts that do not appear in training (un-
seen fonts). For the few-shot font generation, many meth-
ods [3, 7, 31, 32, 34, 42, 47] verify that content and style dis-
entanglement is effective to convert the style of a character
in the source domain, denoted as source character, to the
target style embodied with reference images of seen or un-
seen fonts. The neural networks in these methods usually
have two branches to learn content and style features respec-
tively, and the content features are usually obtained with the
character image from a manually-chosen font, denoted as
source font. However, since it’s a difficult task to achieve
a complete disentanglement between content and style fea-
tures [17, 21], the choice of the font for content-feature en-
coding influences the font generation results substantially.
For instance, Song and Kai are commonly selected as the
source font [20, 28, 31, 42, 43, 47]. While such choices are
effective in many cases, the generated images sometimes
contain artifacts, such as incomplete and unwanted strokes.

The main contribution of this paper is a novel content
feature fusion scheme to mitigate the influence of incom-
plete disentanglement by exploring the synchronization of
content and style features, which significantly enhances the
quality of few-shot font generation. Specifically, we design
a content fusion module (CFM) to take the content features
of different fonts into consideration during training and in-
ference. It is realized by computing the content feature of
a character of a target font through linearly blending con-
tent features of the corresponding characters in the auto-
matically determined basis fonts, and the blending weights
are determined through a carefully designed font-level dis-
tance measure. In this way, we can form a linear cluster
for the content feature of a semantic character, and explore
how to leverage the font-level similarity to seek for an opti-
mized content feature in this cluster to improve the quality
of generated characters.

In addition, we introduce an iterative style-vector refine-
ment (ISR) strategy to find a better style feature vector for
font-level style representation. For each font, we average
the style vectors of reference images and treat it as a learn-
able parameter. Afterward, we fine-tune the style vector
with a reconstruction loss, which further improves the qual-
ity of the generated fonts.

Most font-generation algorithms [3, 20, 31, 32, 38, 42]
choose L1 loss as the character image reconstruction loss.
However, L1 or L2 loss mainly supervises per-pixel accu-
racy and is easily disturbed by the local misalignment of
details. Hence, we employ a distribution-based projected
character loss (PCL) to measure the shape difference be-
tween characters. Specifically, by treating the 1D projec-
tion of 2D character images as a 1D probability distribution,

PCL computes the distribution distance to pay more atten-
tion to the global properties of character shapes, resulting in
the large improvement of skeleton topology transfer results.

The CFM can be embedded into the few-shot font gen-
eration task to enhance the quality of generated results. Ex-
tensive experiments verify that our method, referred to as
CF-Font, remarkably outperforms state-of-the-art methods
on both seen and unseen fonts. Fig. 1 reveals that our
method can generate high-quality fonts of various styles.

2. Related Works
2.1. Image-to-image Translation

Image-to-image translation is the task of converting a
source image to the target domain of reference images.
Early methods [6, 14, 33, 40, 48] utilize GAN [9] and yield
vivid images. But they could only convert the source im-
age to some specific domains (or categories), which is more
limited in practical applications. Recently, some few-shot
methods [1, 2, 5, 13, 18, 24] are proposed. These methods
disentangle the content and style, and can convert the source
image to arbitrary styles only if a few reference images are
provided. Further, RG-UNIT [10] proposes an image re-
trieval strategy to help domain transfer, i.e. it finds images
similar to the source in content but in the target domain, and
extracts their content features as assistance. Though the re-
trieval strategy helps to generate more realistic images, it
cannot be directly applied to font generation tasks. Because
the retrieved image may still differ significantly from the
target in content, as fonts are highly fine-grained. Thus, we
build basis fonts and use fused content features to narrow
the gap between the source and target domains.

2.2. Few-shot Font Generation

Few-shot font generation aims to generate a new font li-
brary in the required style with only a few reference im-
ages. Early methods [4, 15, 29, 35, 38] for font generation
train a cross-domain translation network to model mapping
from the source to the target domain. These structures limit
the model to generate unseen fonts. To address this issue,
SA-VAE [34] and EMD [47] disentangle the representations
of style and content, and can generate images of all style-
content combinations. RD-GAN [8], SCFont [16], Calli-
GAN [41], and LF-Font [31] follow this way and employ
component annotations to boost the style representation in
local regions. To be less dependent on explicit component
annotations, MX-Font [32] utilizes multiple experts and
bipartite matching, and XMP-Font [25] employs a cross-
modality encoder, which is conditioned jointly on character
images and stroke labels. CG-GAN [20] supervises a font
generator to decouple content and style on component level
through a component-aware module. But these three meth-
ods still require the labels of component categories. Fs-Font

1859

FDSC-2

FDSC-1

s

C

Style Encoder fse

Content Encoder fce Mixer fm

 ...

Iterative Refinement

Cb

 ...

 ...

 ...

Cluster Basis Fonts

W

Song
Wei

Li

Content Fusion Module

Base Model Iterative Style-vector Refinement

FDSC-2

FDSC-1

s

C

Weight
Calculation

(a) (c)

(b)

sInitialize

 ...

W

Reference Image

 ...

...
..

Reference Image

Basis Images

Reference Images (Seen Fonts)

Reference Images

Basis Images

Basis Images

Reference Image

Source Image

Cb

FDSC-2

FDSC-1

CW

Figure 2. The framework of our model. (a) We first train the DGN [42] and use PCL to enhance the supervision of character skeletons. (b)
After the model converges, content features of all training fonts are clustered and basis fonts are selected according to cluster centers. The
original content encoder is replaced by CFM, and original content features are changed to fused features of basis fonts. Then we continue
to train the model so that it adapts to fused content features. (c) In inference, we utilize ISR to polish the style of a font. The extracted
mean style vector is treated as the only trainable variable to be fine-tuned for a few iterations.

is proposed to learn fine-grained local styles from reference
images, and the spatial correspondence between the con-
tent and reference images. [36] However, it needs to select
reference characters carefully to achieve high-quality gener-
ated results. DG-Font [42] introduces a feature deformation
skip connection module and achieves excellent performance
without any extra labels. However, it is difficult for these
few-shot methods to generate new fonts if the source and
target domains are very different, especially when the target
font is unseen. Starting from this perspective, we propose
the CFM to reduce the difficulty of domain transfer, and the
PCL to enhance skeleton supervision.

3. Approach
Our method is illustrated in Fig. 2. The whole training

pipeline can be divided into two stages. Firstly, we train
the neural network in DG-Font [42] as our base network,
referred to as DGN. The network is used to learn basic, dis-
entangled content and style features of character images in
our dataset. Secondly, our content fusion module (CFM)
is plugged into the model after the content encoder. Af-
terward, we replace the original content feature with the
output of CFM, a linear content-feature interpolation of
automatically-selected basis fonts. Then, we fix the content
encoder and continue to train style encoder, feature defor-
mation skip connection [42] (FSDC) and mixer together for
a few epochs. The projected character loss (PCL) is used in
training to supervise character skeletons. In addition, to fur-
ther improve the generation quality, we utilize the iterative

style-vector refinement (ISR) strategy to polish the learned
font-level style vector alone in inference. The motivation
for ISR is seeking for a single and high-quality font-level
style vector to generate images for all characters of the font.
Specifically, for a font, we refine upon the average of the
character style vector of all the given 16 characters in our
few-shot setting.

3.1. Base Network

As illustrated in Fig. 2 (a), given a content image Ic and
a style image Is, the DGN synthesizes an image with the
character of the content image and the font of the style im-
age. This generative network consists of four parts: a style
encoder fse to extract style latent vector s, a content en-
coder fce to obtain content feature map C, a mixer fm to
mix style and content representations with AdaIN [13], and
two FSDC modules. During training, a multi-task discrim-
inator, fed with generated characters and their ground-truth
images, is applied to conduct discrimination for each style
simultaneously.

Four losses are adopted: 1) image reconstruction loss
Limg for domain-invariant features maintaining; 2) content
consistent loss Lcnt to guarantee consistency between gen-
erated and input content images; 3) adversarial loss Ladv in
hinge version [23, 30, 45] for realistic image generation; 4)
deformation offset normalization Loffset to avoid excessive
offsets in FDSC. More details are in [42].

1860

Figure 3. Visualization of content fusion. The yellow and red
arrows are denoted for content features from the commonly used
source font Song [20, 31, 42, 47] and the nearest font of the target
respectively. The blue arrow represents the interpolation of content
features of basis fonts to approximate the target.

3.2. Content Fusion Module

The content fusion module aims to adaptively extract
content features by combining the content features of ba-
sis fonts. This network with CFM is constructed as in
Fig. 2 (b). Firstly, to find representative fonts for content
fusion, we cluster all training fonts through the concate-
nated content features of the given 16 few-shot characters
and pick those nearest to the cluster centers as basis fonts.
The basis fonts are fixed once selected. Then, for each tar-
get font, we calculate an L1-norm content fusion weight
according to its similarity to basis fonts. As a result, the
content features (input of the decoder) are replaced by the
weighted sum of those of basis fonts. In addition, the net-
work should be fine-tuned for a few epochs to adapt to fused
content features (represented as the blue circles in Fig. 3).

Basis selection. Suppose we need to choose M basis
fonts from N training fonts. It can be realized by cluster-
ing the content features {Ci}Ni=1 and selecting fonts lying
in the cluster centroids. In our practice, since the dimension
of Ci is too large while N is relatively small, we follow [37]
to map Ci to the vector of the distances between it and fea-
tures of all fonts ei ∈ RN . More specifically:

Ci = fce(Ii),
1

di = (di1, di2, ..., diN), dij = ∥Ci −Cj∥1,

ei = σ(di),

B = Cluster(M, {e1, e2, ..., eN}),

(1)

where σ(·) is the softmax operation, dij is the L1 distance
between two fonts, Cluster is the classical K-Medoids

1Ci is actually the concatenated content features extracted from several
characters of font i. For the sake of brevity, we omit the superscript for
characters here.

PCL_axis1

PCL_axis2

PCL_axis3

PCL_axis4

PCL_axis5

PCL_axis6

PCL

Figure 4. Illustration of PCL. We project the binary characters
into multi-direction 1D spaces (distinguished by color) and cal-
culate normalized histograms for each. It is obvious that for the
different fonts with the same character, the projected distributions
vary along with the skeletons and are less sensitive to textures or
colors.

cluster algorithm [39], and set B is the indices of selected
fonts.

Weight calculation. For the target font t and its content
feature Ct, we measure its similarity to the basis fonts
{Cm}Mm=1, namely d′

t ∈ RM . Then the content fusion
weight wt ∈ RM is calculated as follow:

d′
t = (dt1, dt2, ..., dtM), dtm = ∥Ct −Cm∥1,

wt = σ(−d′
t/τ),

(2)

where τ is the temperature of the softmax operation.

Content fusion. Once the basis fonts and content fusion
weights are obtained, the original content feature map C is
replaced with the fused one C ′

t, where the content fusion
weight of CFM is related to its target font t.

C ′
t =

∑
m∈B wtm ·Cm. (3)

3.3. Projected Character Loss

To better supervise the skeleton, we design a pro-
jected character loss, which measures image difference with
marginal distribution distances on multiple 1D projections ,
as shown in Fig. 4. Since the distribution is sensitive to the
relative relationship, PCL pays more attention to the global
shape of characters.

Lp(Y , Ŷ) =
1

P

P∑
p=1

L1d(ϕp(Y), ϕp(Ŷ)), (4)

where Y and Ŷ represent the generated and ground-truth
image respectively, P is the number of projections, and
ϕp(·) denotes a projection function with the p-th direction.

There are lots of metrics to measure the alignment be-
tween 1D distributions, such as the KL-divergence and

1861

PC-WDL

PC-KL

L1

Figure 5. L1 vs PCL. We retrieve the closest character of all train-
ing fonts to the top-left one by L1, PC-WDL, and PC-KL, respec-
tively. The top ten results of each loss are listed from left to right,
top to down. It can be seen that the skeletons vary greatly in the
column of L1 but are quite consistent in those of PCL.

Wasserstein distance. Thus, Lp can have various forms:

Lpc−wdl(Y , Ŷ) =
1

P

P∑
p=1

∥∥∥∥∥Λ(ϕp(Y))∑
ϕp(Y)

− Λ(ϕp(Ŷ))∑
ϕp(Ŷ)

∥∥∥∥∥
Lpc−kl(Y , Ŷ) =

1

P

P∑
p=1

KL(
ϕp(Y)∑
ϕp(Y)

− ϕp(Ŷ)∑
ϕp(Ŷ)

),

(5)
where KL means the KL-divergence and Λ denotes the
cumsum function, which turns probability density functions
to cumulative distribution functions.

To simply verify the performance of PCL, we generate
images of the character “Tong” from 240 fonts and measure
their similarity by PCL and L1. The closest ten characters
to the top-left one found by different metrics are displayed
in Fig 5 respectively. It can be seen that the characters re-
trieved by L1 are quite different on the character skeleton,
which is important for fonts. While those selected by PCL
are relatively more consistent and it indicates that PCL is
more proper for measuring the skeleton.

Adding PCL to the image reconstruction loss term, we
have the following overall loss function for training:

L = Ladv + λimg(Limg + λpclLpcl)

+λcntLcnt + λoffsetLoffset,
(6)

where λadv , λimg , λpcl, and λoffset are hyperparameters to
adjust the weight of each loss function.

3.4. Iterative Style-vector Refinement

For target font t, a robust style information can be ex-
tracted as the latent style vector s′t by averaging the outputs
of fse with a set of character images [42].

s′t =
1

Q

Q∑
q=1

fse(I
q
t), (7)

where Iq
t is an image of character q of font t, and Q denotes

the reference character number.

Motivated by the ”iterative inference” strategy that op-
timizes input in the inference stage (e.g. [44]), we propose
iterative style-vector refinement for further optimizing the
style feature s′t. As in Fig. 2 (c), in the inference stage, s′t
is first initialized by Eq. 7. Then, using the provided few
reference characters of target fonts {Iq

t}
Q
q=1 as supervising

samples, we refine s′t for around ten epochs according to
the backpropagation of the reconstruction loss. Finally, the
optimized style vector is adopted for inference. Worth not-
ing this style vector can be stored as a signature of the tar-
get font and reused in referencing all characters of the same
font, which makes the proposed ISR efficient in the real sys-
tem.

4. Experiments

We have implemented the CF-Font method on a GPU
server with 8 Nvidia Tesla V100 GPUs. After training
with our dataset, our method outperforms the state-of-the-
art methods on unseen fonts by 5.7% and 5.0% with respect
to L1 and FID metrics, respectively. In the following, we re-
port the preparation of dataset, evaluation metrics, and var-
ious experimental results to verify the effectiveness of our
method.

4.1. Dataset and Evaluation Metrics

We collect 300 Chinese fonts to build a dataset (includ-
ing printed and handwriting fonts) to verify our method for
the Chinese font generation task. Our character set (6446
in total) covers almost the full standard Chinese character
set (6763 in total) of GB/T 2312 [27], and 317 characters
not supported by comparison methods are removed. The
training part contains 240 fonts, and each font has 800 char-
acters. The test part consists of (a) 229 seen fonts with 5646
unseen characters; (b) the remaining 60 unseen fonts with
5646 unseen characters, to verify the generalization abil-
ity of models. Note that we exclude 11 of the 240 train-
ing fonts when testing on seen fonts. They are basis fonts
(including Song) in CFM and a font Kai, in which Song
and Kai are commonly used as source fonts in font genera-
tion [20, 31, 42, 47]. Besides, for few-shot font generation,
reference images of target fonts in the test are with 16 ran-
domly picked characters from the training part.

We leverage pixel-level and perceptual metrics for eval-
uation, following [42]. Specifically, pixel-level metrics are
L1, root mean square error (RMSE), and structural simi-
larity index measure (SSIM). They focus on per-pixel con-
sistency between generated images and ground-truth ones.
Perceptual metrics include FID [11] and LPIPS [46], both
of which measure the similarity of features and are closer to
human vision.

1862

Table 1. Comparison with state-of-the-art methods on seen/unseen fonts. Bold and underlined numbers denote the best and the second best
respectively. The numbers in the last row represent our improvement over the second-best scores.

Methods Seen Fonts Unseen Fonts User Study %
L1↓ RMSE↓ SSIM ↑ LPIPS↓ FID↓ L1↓ RMSE↓ SSIM ↑ LPIPS↓ FID↓

FUNIT 0.08591 0.2529 0.6661 0.1169 11.66 0.09377 0.2686 0.6432 0.1427 28.10 11.74
LF-Font 0.08098 0.2435 0.6829 0.1226 27.73 0.09037 0.2620 0.6534 0.1448 38.46 13.01
MX-Font 0.07470 0.2319 0.7038 0.1034 18.75 0.08171 0.2468 0.6830 0.1193 27.91 10.86
Fs-Font 0.08214 0.2519 0.6657 0.1502 45.33 0.08917 0.2657 0.6467 0.1647 55.21 12.03
CG-GAN 0.07977 0.2409 0.6883 0.1117 23.93 0.08639 0.2549 0.6690 0.1303 37.22 16.67

DG-Font 0.06251 0.2105 0.7437 0.0846 17.10 0.07841 0.2442 0.6853 0.1198 27.98 14.11
CF-Font 0.05997

(4.1%)
0.2053
(2.5%)

0.7538
(1.4%)

0.0836
(1.1%)

13.13
(-)

0.07394
(5.7%)

0.2354
(3.6%)

0.7007
(2.3%)

0.1182
(0.92%)

26.51
(5.0%)

21.58
(29.5%)

Se
en

Fo
nt

s

Source

FUNIT

LF-Font

MX-Font

Fs-Font

CG-GAN

DG-Font

CF-Font

Target

U
ns

ee
n

Fo
nt

s

Source

FUNIT

LF-Font

MX-Font

Fs-Font

CG-GAN

DG-Font

CF-Font

Target

Figure 6. Qualitative comparison with state-of-the-art methods on Chinese poems. As mentioned earlier, we use multiple source fonts and
pick the best results for these comparison methods for fairness. Here we just plot font Song as an example of source fonts for convenience.
We mark erroneous skeletons with red boxes and other mismatch styles, such as stroke style, joined-up style, and body frame [26], with
blue boxes.

4.2. Implementation Details

We train our model using Adam [19] with β1 = 0.9 and
β2 = 0.99 for the style encoder, and RMSprop [12] with
α = 0.99 for the content encoder. The learning rate and
weight decay are both set as 10−4. The hyper-parameters
for loss are λimg = λcnt = 0.1, and λpcl = 0.01 (0.05 for
PC-KL). For PCL, we orthographically project a character
image onto 12 straight lines, which cross at the image center
and divide the 2D space evenly. We resize all images to 80
× 80 and train the model with a batch size of 32. The whole
training takes about 15 hours. We first train the DGN for
180k iterations to obtain the learned content features. Then
we cluster these content features into ten groups and select
basis fonts by the distance to cluster centers. After that, the
model with CFM is further trained for another 20k itera-

tions. For fairness, the models without CFM in ablations
are trained for 200k iterations.

4.3. Comparison with State-Of-The-Art Methods

We compare our model with six state-of-the-art methods,
including an image-to-image translation method (FUNIT
[24]), four component-related methods (LF-Font [31], MX-
Font [32], CG-GAN [20], FsFont [36]), and DG-Font [42].
We slightly modify the network of CG-GAN to fit the in-
put image size and the few-shot setting. To be fair, we try
each of our basis fonts and font Kai as the source font for
these comparison methods and report their best results in
the following part (see details in our supplementary).

As Tbl. 1 illustrates, our method outperforms other
methods, especially on unseen fonts. DG-Font leads other

1863

Table 2. Ablation studies on different components. The first row is the result of DGN. P, C and S represent PC-WDL, CFM and ISR
respectively. N means using retrieval strategy, i.e. picking the closet font from basis fonts (if marked with a star *, from the whole training
set expect the target font itself) as the source according to the similarity between content features.

Methods Seen Fonts Unseen Fonts

P C S N L1↓ RMSE↓ SSIM ↑ LPIPS↓ FID↓ L1↓ RMSE↓ SSIM ↑ LPIPS↓ FID↓
0.06251 0.2105 0.7437 0.0846 17.10 0.07841 0.2442 0.6853 0.1198 27.98

✓ 0.06261 0.2103 0.7434 0.0853 16.17 0.07803 0.2435 0.6868 0.1202 26.79
✓ ✓ 0.06727 0.2221 0.7240 0.0957 17.02 0.08009 0.2489 0.6786 0.1259 27.12
✓ ✓* 0.05952 0.2001 0.7552 0.0856 23.34 0.07519 0.2359 0.6984 0.1224 34.83
✓ ✓ 0.06056 0.2071 0.7506 0.0865 16.08 0.07574 0.2399 0.6940 0.1199 27.01
✓ ✓ ✓ 0.05997 0.2053 0.7538 0.0836 13.13 0.07394 0.2354 0.7007 0.1182 26.51

Seen Fonts Unseen Fonts

Source

Baseline

+P

+PC

+PCS

Target

Figure 7. Qualitative results in the ablation on different compo-
nents. P, C, and S are the same notations as Tbl. 2. We mark er-
roneous skeletons with red circles and other mismatch styles with
blue circles.

comparison methods except on perception metrics. But
when added our proposed modules, its LPIPS and FID
scores get a significant boost and catch up with others both
on seen and unseen fonts. Although FUNIT achieves the
best FID score on seen fonts, it performs worse on other
metrics. Fig. 6 displays the qualitative comparison. Char-
acters generated by ours are of high quality in terms of style
consistency and structural correctness. The results of FU-
NIT, LF-Font, MX-Font, Fs-Font, and CG-GAN often have
structural errors and incompleteness. Fs-Font select several
reference characters from a reference collection through a
content-reference mapping, the relationship between a char-
acter and its references with common conspicuous compo-
nents. The reference collection contains around 100 char-
acters and covers almost all components. However, our ref-
erence characters are randomly selected and fixed for all
source characters, with poor component coverage. Thus,
the performance of Fs-Font is not perfectly shown in our
few-shot setting. The outputs of DG-Font are great overall
but suffer from artifacts and incomplete style transfer.

User study. We conduct a user study to further compare
our model with other methods. We randomly selected 40
font styles (30 seen fonts and 10 unseen fonts) from the test
set, and for each style, 5 test characters were randomly se-

Figure 8. Comparison between content fusion and retrieval strat-
egy. B represents the baseline (DG-Font), and other notations are
the same as Tbl. 2.

lected. Corresponding character images are generated with
our method and the other 6 comparison methods. 20 par-
ticipants who use Chinese characters every day are asked
to pick the best group (5 character images yielded by one
method) for one test style. Here, the order of these groups is
randomly shuffled and we allow multiple choices since the
participants might think several synthesized characters are
of comparable quality. The results of user study are shown
in the last column of Tbl. 1, which present that our CF-Font
gains the highest user preference 21.58%, surpassing the
second place CG-GAN 16.67% by a large margin.

4.4. Ablation Studies

This subsection shows the effects of all proposed compo-
nents and discusses how CFM and PCL work in font gener-
ation.

Effectiveness of different components. We separate the
proposed modules and sequentially add them to DGN to
observe the effects of each. The quantitative results can
be seen in Tbl. 2, verifying that PCL, CFM, and ISR all
can help improve the quality of generated images. These
modules bring not only a numerical improvement but also
a noticeable improvement in the visual aspect of geometric
structures and stylistic strokes, as displayed in Fig. 7. In the
fourth-to-last line, PCL shows its ability to improve char-
acter semantics and skeletons. Moreover, CFM makes the
generated results a big step closer to the target in human
perception. In the penultimate line, ISR further refines the
detail of results by enhancing the stylistic representation.

1864

Figure 9. Visualization of weights on basis fonts. We take the
character “Tong” for example. The left column represents the ba-
sis fonts, and the top row shows a part of training fonts. The weight
on basis fonts of one training font are displayed as a vertical his-
togram.

Comparison between content fusion and retrieval strat-
egy. Among these modules, CFM is the most efficient
one. We further analyze where the gain of CFM comes
from through a comparison with the retrieval strategy, i.e.
during the test, we select the closet font for every target
font as input from basis fonts and the whole training set
(except the target font itself, i.e. 239/240 fonts in total for
each seen/unseen target font) respectively. The quantitative
result is shown in the second to fourth row from the bot-
tom of Tbl. 2. It indicates that the result of inputting the
closet basis font is much worse than that of content fusion,
or even worse than the baseline (using a stand font Song all
the time). Meanwhile, retrieving the closest font from the
whole set gets a comparable results with CF-Font on seen
fonts, but not good as it on unseen fonts and FID metrics.
As Fig. 8 illustrates, the closet font may still be very dif-
ferent on the character skeleton from the target one and will
introduce some noises (parts mismatched to the target skele-
ton). With these observations, we claim that content fusion
matters rather than retrieving a close font in CFM.

Variations of PCL. We use two variations of PCL, PC-
WDL, and PC-KL, to train a model respectively. Tbl. 3
shows the result on unseen fonts and demonstrates that not
only PC-WDL, PC-KL can also improve the network per-
formance. PC-KL and PC-WDL have similar improve-
ments on pixel-level metrics, but PC-WDL has obvious ad-
vantages in FID while PC-KL performs better on LPIPS.
We attribute this to that benefit from character projection,
both of the distribution distance metrics can focus on the
global properties, such as skeleton topology.

4.5. Evaluation of Basis Selection.

We visualize the basis fonts and the corresponding
weights of content fusion here. Taking the character “Tong”
as an example, in Fig. 9, ten images of basis fonts are shown
in the left column, fifteen target images with randomly se-

Table 3. Quantitative evaluation using variations of PCL.

method L1 ↓ RMSE ↓ SSIM ↑ LPIPS ↓ FID ↓
Baseline 0.07841 0.2442 0.6853 0.1198 27.98
+PC-KL 0.07802 0.2434 0.6872 0.1191 27.72
+PC-WDL 0.07803 0.2435 0.6868 0.1202 26.79

Source FUNIT LF-Font MX-Font Fs-Font CG-GAN DG-Font CF-Font Target

Figure 10. Failure case.

lected fonts are listed in the top row, and the weights of con-
tent fusion are plotted in the form of a vertical histogram.
We can observe that (a) the basis fonts selected by cluster-
ing are indeed visually different from each other (they also
can be chosen manually), which means that they are capa-
ble of building a space for content fusion; (b) the greater
the weight value, the corresponding basis font is more sim-
ilar to the target font and this proves that content fusion is
physically meaningful; (c) the values of these weights are
scattered rather than concentrated in a particular basis font,
which can also be a reason why the retrieval strategy fails
as described in subsection 4.4.

4.6. Failure Cases and Limitations

Fig. 10 illustrates a case of generated images of complex
characters with many strokes and a tight layout. Although
our method works relatively well, many structural errors ap-
pear in the first row and some strokes are missed in the sec-
ond row.

5. Conclusion

In this paper, we design a content fusion module and a
projected character loss to improve the quality of skeleton
transfer in few-shot font generation. We also propose a iter-
ative style-vector refinement strategy to find a better font-
level style representation. Experiments demonstrate that
our method can outperform existing state-of-the-art meth-
ods, and each of the proposed novel modules is effective.

In the future, we may try vector font generation because
vector characters are scale-invariant and more convenient
for practical applications. It would be interesting to investi-
gate whether the content fusion strategy can help solve the
problem of complex vector font generation.

Acknowledgments

We thank the anonymous reviewers for their constructive
comments. This paper is supported by Information Tech-
nology Center and State Key Lab of CAD&CG, Zhejiang
University.

1865

References

[1] Kyungjune Baek, Yunjey Choi, Youngjung Uh, Jaejun Yoo,
and Hyunjung Shim. Rethinking the truly unsupervised
image-to-image translation. In Int. Conf. Comput. Vis., pages
14134–14143. IEEE, 2021. 2

[2] Sagie Benaim and Lior Wolf. One-sided unsupervised do-
main mapping. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett, editors, Adv. Neural Inform.
Process. Syst., pages 752–762, 2017. 2

[3] Junbum Cha, Sanghyuk Chun, Gayoung Lee, Bado Lee,
Seonghyeon Kim, and Hwalsuk Lee. Few-shot composi-
tional font generation with dual memory. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, edi-
tors, Eur. Conf. Comput. Vis., volume 12364 of Lecture Notes
in Computer Science, pages 735–751. Springer, 2020. 2

[4] Jie Chang, Yujun Gu, Ya Zhang, and Yan-Feng Wang. Chi-
nese handwriting imitation with hierarchical generative ad-
versarial network. In Brit. Mach. Vis. Conf., page 290.
BMVA Press, 2018. 2

[5] Xinyuan Chen, Chang Xu, Xiaokang Yang, Li Song, and
Dacheng Tao. Gated-gan: Adversarial gated networks for
multi-collection style transfer. IEEE Trans. Image Process.,
28(2):546–560, 2019. 2

[6] Yunjey Choi, Min-Je Choi, Munyoung Kim, Jung-Woo
Ha, Sunghun Kim, and Jaegul Choo. Stargan: Unified
generative adversarial networks for multi-domain image-to-
image translation. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 8789–8797. Computer Vision Foundation /
IEEE Computer Society, 2018. 2

[7] Yiming Gao and Jiangqin Wu. Gan-based unpaired chinese
character image translation via skeleton transformation and
stroke rendering. In AAAI, volume 34, pages 646–653, 2020.
2

[8] Yiming Gao and Jiangqin Wu. Gan-based unpaired chinese
character image translation via skeleton transformation and
stroke rendering. In AAAI, pages 646–653. AAAI Press,
2020. 2

[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative adversarial nets. In
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D.
Lawrence, and Kilian Q. Weinberger, editors, Adv. Neural
Inform. Process. Syst., pages 2672–2680, 2014. 1, 2

[10] Zheng Gu, Wenbin Li, Jing Huo, Lei Wang, and Yang Gao.
Lofgan: Fusing local representations for few-shot image
generation. In Int. Conf. Comput. Vis., pages 8443–8451.
IEEE, 2021. 2

[11] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Adv. Neural Inform. Process. Syst.,
pages 6626–6637, 2017. 5

[12] Geoffrey Hinton. Neural networks for machine
learning. https://www.coursera.org/learn/neural-
networks/home/welcome. 6

[13] Xun Huang and Serge J. Belongie. Arbitrary style trans-
fer in real-time with adaptive instance normalization. In Int.
Conf. Comput. Vis., pages 1510–1519. IEEE Computer So-
ciety, 2017. 2, 3

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adver-
sarial networks. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 5967–5976. IEEE Computer Society, 2017. 2

[15] Yue Jiang, Zhouhui Lian, Yingmin Tang, and Jianguo Xiao.
Dcfont: an end-to-end deep chinese font generation system.
In Diego Gutierrez and Hui Huang, editors, SIGGRAPH Asia
2017 Technical Briefs, Bangkok, Thailand, November 27 -
30, 2017, pages 22:1–22:4. ACM, 2017. 2

[16] Yue Jiang, Zhouhui Lian, Yingmin Tang, and Jianguo Xiao.
Scfont: Structure-guided chinese font generation via deep
stacked networks. In AAAI, pages 4015–4022. AAAI Press,
2019. 2

[17] Hadi Kazemi, Seyed Mehdi Iranmanesh, and Nasser
Nasrabadi. Style and content disentanglement in generative
adversarial networks. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 848–856.
IEEE, 2019. 2

[18] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee,
and Jiwon Kim. Learning to discover cross-domain relations
with generative adversarial networks. In Doina Precup and
Yee Whye Teh, editors, Int. Conf. Mach. Learn., volume 70
of Proceedings of Machine Learning Research, pages 1857–
1865. PMLR, 2017. 2

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, Int. Conf. Learn. Represent., 2015. 6

[20] Yuxin Kong, Canjie Luo, Weihong Ma, Qiyuan Zhu, Sheng-
gao Zhu, Nicholas Yuan, and Lianwen Jin. Look closer to
supervise better: One-shot font generation via component-
based discriminator. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 13482–13491, 2022. 2, 4, 5, 6

[21] Gihyun Kwon and Jong Chul Ye. Diagonal attention and
style-based gan for content-style disentanglement in image
generation and translation. In IEEE Conf. Comput. Vis. Pat-
tern Recog., pages 13980–13989, 2021. 2

[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Compu-
tation, 1(4):541–551, 1989. 1

[23] Jae Hyun Lim and Jong Chul Ye. Geometric GAN. CoRR,
abs/1705.02894, 2017. 3

[24] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo
Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsuper-
vised image-to-image translation. In Int. Conf. Comput. Vis.,
pages 10550–10559. IEEE, 2019. 2, 6

[25] Wei Liu, Fangyue Liu, Fei Ding, Qian He, and Zili Yi. Xmp-
font: Self-supervised cross-modality pre-training for few-
shot font generation. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 7905–7914, 2022. 2

1866

[26] Xiaoqing Lu and Ting Tang. Elements of chinese typeface
design. In Digital Fonts and Reading, pages 109–130. World
Scientific, 2016. 6

[27] Ken Lunde. CJKV Information Processing: Chinese,
Japanese, Korean & Vietnamese Computing. O’Reilly, 1999.
5

[28] Pengyuan Lyu, Xiang Bai, Cong Yao, Zhen Zhu, Tengteng
Huang, and Wenyu Liu. Auto-encoder guided gan for chi-
nese calligraphy synthesis. In 2017 14th IAPR Interna-
tional Conference on Document Analysis and Recognition
(ICDAR), volume 1, pages 1095–1100. IEEE, 2017. 2

[29] Pengyuan Lyu, Xiang Bai, Cong Yao, Zhen Zhu, Tengteng
Huang, and Wenyu Liu. Auto-encoder guided GAN for
chinese calligraphy synthesis. In 14th IAPR International
Conference on Document Analysis and Recognition, ICDAR
2017, Kyoto, Japan, November 9-15, 2017, pages 1095–
1100. IEEE, 2017. 2

[30] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In Int. Conf. Learn. Represent., 2018. 3

[31] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and
Hyunjung Shim. Few-shot font generation with localized
style representations and factorization. In AAAI, pages 2393–
2402. AAAI Press, 2021. 2, 4, 5, 6

[32] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and
Hyunjung Shim. Multiple heads are better than one: Few-
shot font generation with multiple localized experts. In Int.
Conf. Comput. Vis., pages 13880–13889. IEEE, 2021. 2, 6

[33] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua
Susskind, Wenda Wang, and Russell Webb. Learning
from simulated and unsupervised images through adversarial
training. In IEEE Conf. Comput. Vis. Pattern Recog., pages
2242–2251. IEEE Computer Society, 2017. 2

[34] Danyang Sun, Tongzheng Ren, Chongxuan Li, Hang Su, and
Jun Zhu. Learning to write stylized chinese characters by
reading a handful of examples. In Jérôme Lang, editor, IJ-
CAI, pages 920–927. ijcai.org, 2018. 2

[35] Donghui Sun, Qing Zhang, and Jun Yang. Pyramid embed-
ded generative adversarial network for automated font gen-
eration. In Int. Conf. Pattern Recog., pages 976–981. IEEE
Computer Society, 2018. 2

[36] Licheng Tang, Yiyang Cai, Jiaming Liu, Zhibin Hong, Ming-
ming Gong, Minhu Fan, Junyu Han, Jingtuo Liu, Errui Ding,
and Jingdong Wang. Few-shot font generation by learning
fine-grained local styles. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 7895–7904, June 2022. 3, 6

[37] Michael C Thrun. The exploitation of distance distributions
for clustering. International Journal of Computational Intel-
ligence and Applications, 20(03):2150016, 2021. 4

[38] Yuchen Tian. Zi2zi. https://github.com/kaonashi-tyc/zi2zi. 2
[39] Sergei Vassilvitskii and David Arthur. k-means++: The ad-

vantages of careful seeding. In Proceedings of the eigh-
teenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 1027–1035, 2006. 4

[40] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image
synthesis and semantic manipulation with conditional gans.

In IEEE Conf. Comput. Vis. Pattern Recog., pages 8798–
8807. Computer Vision Foundation / IEEE Computer Soci-
ety, 2018. 2

[41] Shan Jean Wu, Chih-Yuan Yang, and Jane Yung-jen Hsu.
Calligan: Style and structure-aware chinese calligraphy char-
acter generator. CoRR, abs/2005.12500, 2020. 2

[42] Yangchen Xie, Xinyuan Chen, Li Sun, and Yue Lu. Dg-font:
Deformable generative networks for unsupervised font gen-
eration. In IEEE Conf. Comput. Vis. Pattern Recog., pages
5130–5140. Computer Vision Foundation / IEEE, 2021. 2,
3, 4, 5, 6

[43] Songhua Xu, Hao Jiang, Tao Jin, Francis CM Lau, and
Yunhe Pan. Automatic generation of chinese calligraphic
writings with style imitation. IEEE Intelligent Systems,
24(02):44–53, 2009. 2

[44] Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G
Schwing, Mark Hasegawa-Johnson, and Minh N Do. Seman-
tic image inpainting with deep generative models. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 5485–5493, 2017.
5

[45] Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and
Augustus Odena. Self-attention generative adversarial net-
works. In Int. Conf. Mach. Learn., volume 97, pages 7354–
7363, 2019. 3

[46] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In IEEE Conf. Com-
put. Vis. Pattern Recog., pages 586–595. Computer Vision
Foundation / IEEE Computer Society, 2018. 5

[47] Yexun Zhang, Ya Zhang, and Wenbin Cai. Separating style
and content for generalized style transfer. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 8447–8455, 2018. 2, 4,
5

[48] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Int. Conf. Comput. Vis.,
pages 2242–2251. IEEE Computer Society, 2017. 2

1867

