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Abstract Our method is inspired by the Bayesian 
deep learning which improves image segmentation 
accuracy by modeling the uncertainty of the network 
output. In contrast to uncertainty, our method directly 
learns to predict the erroneous pixels of a segmentation 
network, which is modeled as a binary classification 
problem. It can speed up the training comparing 
to the Monte Carlo integration often used in the 
Bayesian deep learning. It also allows us to train a 
branch to correct the labels of erroneous pixels. Our 
method consists of three stages: 1) predict pixel-wise 
error probability of the initial result, 2) re-estimate 
new labels for the pixels with high error probability, 
3) fuse the initial result and the re-estimated result 
with respect to the error probability. We formulate 
the error-pixel prediction problem as a classification 
task and employ an error-prediction branch in the 
network to predict the pixel-wise error probabilities. 
We also introduce another network branch called 
detail branch. This branch is designed such that the 
training process is focused on the erroneous pixels. 
We experimentally validate our method on Cityscapes 
and ADE20K dataset. Our model can be easily 
attached to various advanced segmentation networks 
to improve performance. Taking the segmentation 
results from DeepLabv3+ as the initial segmentation 
result, our network can achieve 82.88% of mIoU on 
Cityscapes testing dataset and 45.73% on ADE20K 
validation dataset, which is 0.74% and 0.13% higher 
than DeepLabv3+.
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1 Introduction

The goal of semantic image segmentation is to obtain 
a high-level representation of an image by assigning 
each pixel in the image a semantic class label. Semantic 
image segmentation can be used in video surveillance, 
medical imaging, autonomous driving, etc. Recently, 
Deep Convolutional Neural Networks (DCNN) trained 
on large scale image segmentation datasets, such 
as PASCAL VOC 2012 [10], Cityscapes [8] and ADE20K 
[39], have significantly improved the accuracy of image 
segmentation.

While the end-to-end training of DCNN can 
effectively learn the multi-scale features for various 
vision tasks, the down-sampling operations in the 
encoder designed to enlarge the reception fields are 
likely to lose the detail information required in pixel-

level image segmentation [24]. Thus, the atrous 
convolution and skip-connections are proposed to 
balance between the down-sampling operations and the 
learning of multi-scale features [6, 28]. It has also been 
shown that the fusion of the global context and multi-

scale features is effective to improve the accuracy of 
image segmentation [18, 21, 38]. However, even with 
the state-of-the-art image segmentation algorithms, 
we can still notice a large number of pixels with 
wrong labels located at regions with in-distinctive RGB 
information, object boundaries and small-scale objects. 
These pixels are denoted as erroneous pixels hereafter. 
While there exist hard-mining methods that train the 
network according to the gradient information back-

propagated from the erroneous pixels, these methods 
rely on the ground-truth data to detect erroneous 
pixels, which is not available during the inference. The 
difficulty-aware method in [19] is a Layer-Cascading 
method (LC) that focuses on those pixels whose largest 
label probabilities are less than a threshold in a layer-

by-layer manner. However, the erroneous pixels whose 
largest label probabilities at one layer are greater than 
the threshold, also called “hard” erroneous pixels, are
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simply accepted as the result and overlooked in the

subsequent layers.

In this paper, we study how to learn to predict

the erroneous pixels for a segmentation network so

that a cascaded detailed branch can be used to handle

erroneous pixels to improve the segmentation accuracy.

It runs as a model cascading strategy in the inference:

with an existing image segmentation network as a front-

end semantic branch, we first predict error pixels in its

segmentation result, then re-estimates semantic labels

for those error pixels, and finally fuse them to obtain

the final segmentation result. The difference of our

strategy to [19] is that we add a branch into the network

to improve the accuracy of error pixel prediction,

denoted as error-prediction branch. Thus, it is possible,

in our method, to predict the overlooked hard erroneous

pixels as erroneous pixels to be corrected. The error-

pixel prediction is similar to uncertainty modeling in

Bayesian deep learning for computer vision tasks. Our

method can speed up the training by modeling the

error-pixel prediction as a binary classification problem,

while the Monte Carlo integration is used to evaluate

the objective function in [15]. It implicitly assumes

the aleatoric uncertainty can be learned through the

difference between the segmentation result and the

ground-truth labeling in the training. To correct

the detected erroneous pixels, we employ another

independent sub-network(called detail branch) trained

to focus on the segmentation of such pixels.

Since using an independent branch to learn to predict

the erroneous pixels does not affect the pixels that the

front-end segmentation network can well handle, the

error-prediction branch and detail branch can be used

to improve the accuracy of a variety of segmentation

networks due to its cascading design. Our network

trained on Cityscapes can achieve mIoU at 82.88% on

the testing dataset when using DeepLabv3+ as the

semantic branch [7], which is 0.74% higher than the

original network.

2 Related work

In the following, we mainly review the image

segmentation methods using deep neural networks,

which are mostly related to our work. Please also refer

to [12] for a comprehensive survey.

The encoder-decoder structure is the mostly used

fully convolutional neural network structure to generate

pixel-wise segmentation results for high-resolution

images [2, 24], and a common technique in DNN-

based image segmentation algorithms is to fuse multi-

scale features to improve the segmentation accuracy.

U-Net [28] exploits the skip connections to augment

the high-level features with low-level features in the

decoder so as to improve the accuracy of localization,

which is widely used in many following works [9,

11, 21, 27]. ParseNet [23] adopts a simple global

branch to add global context, while [13, 18] use the

global feature as a guidance for feature fusion. PSP-

Net [38] proposes Pyramid Pooling Module to aggregate

more representative context features. Atrous Spatial

Pyramid Pooling (ASPP) in [5] uses atrous convolution

filters [4, 6] at multiple dilation rates to capture multi-

scale image context. In order to handle small objects

in the image, EncNet [37] utilizes a context encoding

module to explicitly enforce the learning of global scene

context. A recent contribution [30] proposed HRNet

to improve the segmentation accuracy. The HRNet

gradually adds high-to-low resolution subnetworks and

fuse the learned multi-scale feature in parallel.

Neural Architecture Search (NAS) method is a new

method with the purpose for searching the optimal

neural architectures and weights simultaneously. [3]

explores the construction of meta-learning techniques

for recurrently searching. [25] introduces auxiliary

cells that provide an intermediate supervisory signal

for architecture parameterization. Auto-DeepLab [22]

proposes a hierarchical architecture search space, that

is, searching in cell level and network level.

Our work is also related to the popular cascading

structure used in computer vision. In object detection,

successive classifiers are combined in a cascading

structure, which allows the background regions of an

image to be quickly discarded while spending more

computation on promising regions [17, 20, 26, 33]. For

the segmentation task, the cascading structure can

also be applied. A Layer-Cascading (LC) method is

introduced in [19], while our network is possible to

capture hard erroneous pixels overlooked in LC to

further improve the segmentation accuracy.

3 Our approach

In the following, we firstly introduce the overall

framework of our method, then provide the details

about the error-prediction branch and the detail branch

of our network. The training strategies are also

elaborated.

3.1 Approach Overview

Fig. 1 illustrates an overview of our method,

which consists of three modules: 1) A pre-trained

segmentation network, namely semantic branch, is used

to obtain initial segmentation results and semantic
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Deeplabv3+
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Fig. 1 The architecture of our network. We directly use a pre-trained segmentation network (for example, DeepLabv3+ [7]) as the 
semantic branch. Then we exploit two branches: the error-prediction branch predicts an error probability map to find out error pixels; 
the detail branch predicts the correct labels for the mislabeled pixels.

features in Section 3.2. 2) Then, we exploit two

branches, error-prediction and detail branches to

find out erroneous pixels and predict new labels for

erroneous pixels respectively in Section 3.3 and 3.4.

After aggregating the initial segmentation result and

the newly predicted result from our method, we finally

achieve a more accurate segmentation result.

More concretely, given an input image I and a

segmentation network fsb(·), we can obtain the initial

segmentation probability map Psb = fsb(I). For the

i-th pixel, Pi
sb ∈ RC×1 indicates the probabilities

of this pixel belonging to C categories, respectively.

And then the error-prediction branch fep(·) yields a

probability map Pep = fep(·) with the same size as

the initial result Psb. A pixel with a high probability

in Pep is likely to be wrongly labelled in the initial

segmentation. After error prediction, it is expected that

those erroneous pixels should be relabelled. The detail

branch, denoted as fdb(·), is responsible to predict

new labels for erroneous pixels and predicts a new

probability map Pdb = fdb(·). In the end, the labels of

erroneous pixels in the initial label map will be replaced

by the new labels generated by the detail branch so that

we get a more reliable semantic segmentation result.

3.2 Semantic Branch

We directly use a pre-trained segmentation network

as the semantic branch. More concretely, we mainly

choose DeepLabv3+ [7], PSP-Net [38] and DPC

network [3] as our semantic branch in the following

experiments. From the pre-trained segmentation

network, we can obtain the initial segmentation

probability map Psb and the corresponding low-level

and high-level features that will be used in the training

of the error-prediction branch and the detail branch.

3.3 Error-prediction Branch

The error-prediction branch aims to predict whether

the initial labels given by the semantic branch

are erroneous. Specifically, this branch predicts

a probability map Pep in which each pixel value

represents the probability that the semantic branch

prediction is mislabeled. The inputs of this branch

consist of (1) the probability map Psb generated by

the semantic branch; (2) the feature maps from the

direct convolution of the input RGB image; (3) the

feature maps from the semantic branch. We exploit

the Global Attention Upsampling (GAU) module from

[18], as illustrated in Fig. 2, to provide channel-wise

attention in this branch.

In detail, we firstly apply convolutions to Psb, the

probability map output by the semantic branch, and

the input RGB image I separately. The obtained

features are then concatenated as the input low-level

features. Afterwards, we use the high-level features

from the semantic branch as the input to GAU.

For example, the features generated by ASPP in

DeepLabv3+ and Pyramid Pooling Module in PSP-Net

are used as the high-level features input to the error-

prediction branch.

The loss function for this branch is formulated as

a pixel-wise cross-entropy loss to classify each pixel

as mislabelled or not, which is a binary classification

problem. The ground-truth error map Merr for

training is obtained by checking whether the initial

segmentation from the semantic branch is inconsistent

with ground-truth or not. We use 1 to denote a

mislabelled pixel and 0 for the rest. Specifically, the

loss function can be written into:

3
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Mi
err =

{
1, Si

sb 6= Si
gt.

0, otherwise.
(1)

where Si
sb and Si

gt are the predicted semantic label and

the ground-truth semantic label of pixel i, respectively.

Since the number of the erroneous pixels are usually

much smaller than the number of correct pixels, we

adopt a balanced version cross-entropy to deal with

the imbalance in training data. In addition, the

erroneous pixels are categorized into two types with

different weights counted into the cross-entropy loss:

(1) “easy” erroneous pixels. Inspired by [19], we define

the erroneous pixels with classification scores smaller

than a threshold ρ as the “easy” erroneous pixels (i.e.,

max(Pi
sb) ≤ ρ). These “easy” erroneous pixels are easy

to detect from the input of the initial prediction Psb;

(2) “hard” erroneous pixels. The rest erroneous pixels

with classification scores larger than ρ are defined as

“hard” erroneous pixels (i.e., max(Pi
sb) > ρ). These

pixels are misclassified with high confidence which are

hard to detect. Hence we add a larger loss weight to

the “hard” erroneous pixels. In summary, the balanced

cross-entropy loss is formulated as:

Lep =− w1

∑
i∈M+e

err

logPi
ep − w2

∑
i∈M+h

err

logPi
ep

− w3

∑
i∈M−

err

log(1−Pi
ep)

(2)

where M+e
err and M+h

err are the “easy” erroneous pixels

and “hard” erroneous pixels. M−err are the negatively

labelled pixels. We set w1 = 1.0 and w2 = 1.5. The

value of weight w3 is 0.04 on average, which can be

computed according to the proportion of the erroneous

pixels for an image.

3.4 Detail Branch

Once we know which pixel is likely to be mislabeled

by the semantic branch, we would like to correct the

error with the detail branch. Thus, the detail branch is

trained to predict the correct labels for the mislabeled

pixels. This branch is designed to be a decoder branch

to obtain a pixel-wise segmentation result using the

features from the semantic branch as input, where

the low-level features are fed into the corresponding

decoder stages using the skip connections. Specifically,

we use 3 successive decoder blocks as shown in Fig. 2

to build the decoder with GAU.

During the training, we require the detail branch to

achieve higher accuracy for the erroneous pixels so that

it can correct errors of the initial segmentation results

L
Conv 3×3

Global Pooling

Conv 1×1

×

+

Low-level 
Features

High-level
Features

Sperable

Conv 3×3

H

Repeat × 2

output

Decoder 

Stage-1

Conv 

3×3

Decoder 

Stage-2

Decoder 

Stage-3
H

L

prediction

L L

Decoder Block
GAU

Fig. 2 Detail branch decoder with GAU. “L” denotes the

low-level features and “H” denotes the high-level features.

“Repeat×2” means 2 convolution layers.

from the semantic branch. To this end, we design

the loss function to enforce the training to focus on

the erroneous pixels captured by the error-prediction

branch. Specifically, a pixel-wise weight Eep derived

from Pep is used in the loss function:

Ldb = −
∑
i

Ei
ep

C∑
c

Si,c
gt logPi,c

db (3)

where Pi,c
db is the probability of the i-th pixel belonging

to c-th category and Si,c
gt equals to 1 if the i-th pixel

belongs to c-th category, and equals to 0 otherwise. The

pixel-wise loss weight Eep is a binary map generated

from the probability map Pep which is predicted by the

error-prediction branch with a binarization threshold t:

Ei
ep =

{
1, Pi

ep > t

0, otherwise.
(4)

With this binary loss weight, the pixels that are

classified to be mislabeled, i.e., with probabilities larger

than t in Pep, will contribute to the loss. Thus, our

network is also designed as a cascading architecture:

the semantic branch is able to classify most of the easy

erroneous pixels correctly, and the rest hard erroneous

pixels which are highly likely to be mislabeled are

passed to the detail branch.

Fusion: In this stage, We need to combine the

segmentation results from the semantic branch and

the detail branch. The final segmentation result is

computed as a pixel-wise linear combination according

to the binary error mask Eep:

Pf = Eep ·Pdb + (1−Eep) ·Psb (5)

Since the hard erroneous pixels are also trained as

erroneous pixels in the error-prediction branch, they

can also be corrected in the detail branch if they are

correctly classified as erroneous pixels in the inference
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after the fusion step. It is superior to LC method in [19]

where the hard erroneous pixels are simply ignored.

4 Training Strategy

Branch training: Because our method aims

to improve a given segmentation network, we keep

the semantic branch fixed during the whole training

procedure, i.e., the parameters are frozen and both

Batch Normalization [14] layers and Dropout [29] layers

in the semantic branch are always in inference mode.

We first train the error-prediction branch with the loss

function defined in Eq. (2) for 60K iterations. After

the error-prediction branch is converged, we fix it and

update the detail branch according to Eq. (3) for 90K

iterations.

Optimizer and learning rate: We adopt a “poly”

learning rate policy similar to [4] where the initial

learning rate is multiplied by (1 − iter
max iter )power with

power = 0.9. And we employ Adam [16] as the

optimizer during training.

Group Normalization: In general, the performance

of Batch Normalization layer is related to the batch

size. However, in practice, the batch size is constrained

by the limited GPU memory. To improve the stability

in the optimization, we adopt Group Normalization [34]

in both the error-prediction and the detail branch, in

which the channels are divided into 32 groups in our

implementation.

Data augmentation: Following the training protocol

of [7, 38], we randomly crop patches from the image

during training and the crop size is set to 769

(DeepLabv3+ based model) or 713 (PSP-Net based

model) on Cityscapes dataset and 513 on ADE20K

dataset. For data augmentation, random scaling (from

0.5 to 2 with the step of 0.25), random left-right flipping

and random rotation between -10 and 10 degrees are

applied.

5 Experiment Results

We evaluate our network on the urban scene dataset

Cityscapes [8] and diverse scenes dataset ADE20K [39].

These two datasets provide densely annotated images,

which are important for the training of our method

to recover segmentation details. Cityscapes dataset

contains high-quality dense annotations of 5000 images

with 19 object classes(2975, 500 and 1525 for the

training set, the validation set, and the testing set,

respectively) and 20000 coarsely annotated images.

ADE20K is a more challenging dataset with 150 object

classes. There are 20210, 2000, and 3000 images for the

training set, validation set and testing set, respectively.

Tab. 1 Error prediction evaluation

Threshold Error-pixels mIoU(%) Our hard recall (%)

0.1 14.80 79.16

0.2 17.19 70.21

0.3 19.13 61.72

0.4 20.98 52.70

0.5 22.89 42.67

0.6 24.97 31.41

0.7 27.34 19.78

0.8 29.92 9.09

0.9 30.20 3.32

Tab. 2 Ablation study on binarization threshold t

t 0.5 0.6 0.7 0.8

mIoU(%) 79.60 79.61 79.90 79.66

5.1 Evaluation of Branches

In this section, we conduct experiments to analyze 
the performance of the proposed branches in our 
network. We employ DeepLabv3+ as our semantic 
branch and keep it fixed in the experiments for the 
purpose of clarity. The network is trained using the 
training set of Cityscapes and all the performance 
statistics are reported on the validation set. 
Error-prediction branch: The error-prediction 
branch is just a classifier to predict the pixel-wise 
error probability. We illustrate the predicted error 
probability map and ground-truth error map in Fig. 3. 
The ground-truth error map is computed by the 
difference between the semantic label map output by 
the semantic branch and the ground-truth.

Given the error probability map, we consider the 
pixels with the error probability larger than the 
threshold t as erroneous pixels, the same way as the Eep 

in Eq. (3).Thus, the mean intersection over union 
(mIoU) between the predicted error mask Eep and 
ground truth error mask Merr, defined as error-pixels 
mIoU, can be computed, as reported in the second 
column in Table 1 with different values of the threshold 
t. In order to show how many hard erroneous pixels 
are captured by the designed error-prediction branch, 
we also compute the recall values, the percentage of 
hard erroneous pixels classified to be the erroneous 
pixels, and report them in the third column in Tab. 1, 
named hard recall. The hard erroneous pixels are 
those mislabelled pixels whose largest class probability 
is larger than ρ = 0.95, which is consistent with the 
definition in LC.

It can be seen that with increasing value of the 
binarization threshold t, the mIoU of the erroneous 
pixels increases while the hard recall drops. Since a

5
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ignore road wall car sidewalk building vegetation

(a) Image (b) Ground-truth (c) Semantic branch prediction (d) Ground-truth error (e) Our Error-prediction

...

Fig. 3 (a) Input images. (b) The ground truth semantic label maps provided by Cityscapes dataset. (c) The semantic segmentation

results output by the semantic branch (DeepLabv3+ in this case). (d) The ground-truth error maps. (e) The error probability maps

generated by our error-prediction branch. The error probability with value 1 is colored in red, and 0 in black. White pixels indicate

the unlabeled pixels in the dataset.

Tab. 3 Quantitative results on Cityscapes validation set

method mIoU(%)

DeepLabv3+ [7] 78.79

DeepLabv3+ [7]-GAU-Decoder 78.89

DeepLabv3+-DUpsampling [31] 79.06

LC [19]-GAU-Decoder 79.73

DeepLabv3+ [7]-Hard-mining 79.37

DeepLabv3+ [7]-Bagging 79.38

Ours 79.90

small mIoU indicates that a large number of correct 
pixels are classified to be erroneous pixels which will 
lead the subsequent training of the detail branch to be 
distracted, we need to balance between the mIoU and 
hard recall so as to achieve high segmentation accuracy. 
The choice of different threshold values and its influence 
on the final segmentation accuracy on the Cityscapes 
validation set is reported in Tab. 2. According to the 
experiments, we set the binarization threshold to 0.7 to 
continue the training of detail branch.

Detail Branch: The detail branch is trained using 
the cross-entropy loss at the erroneous pixels predicted 
by the error-prediction branch. As reported in Tab. 3, 
the fusion of the segmentation results from the detail 
branch and the semantic branch can improve the mIoU 
of DeepLabv3+, used as the semantic branch, by 1.11%.

Since the designed detail branch has 3 decoder stages 
with additional 11.6 MB parameters, which is more 
complex than the lightweight decoder of DeepLabv3+, 
it is worthwhile to verify whether the gains of 
performance comes from the additional parameters or 
the cascading of the error-prediction and the detail 
branch. We thus conduct an experiment to directly 
replace the original 1-stage decoder in DeepLabv3+ 
with our detail branch. We train this network 
variant, called DeepLabv3+-GAU-Decoder, with the 
same training strategy as DeepLabv3+, where the

Decoder 

Stage-1

Conv 

3×3

Decoder 

Stage-2

Decoder 

Stage-3
H

L

Prediction-3

L L

Conv 3×3 Conv 3×3

Prediction-1 Prediction-2

×2 ×2

Fig. 4 Layer Cascading adapted from GAU decoder.

cross-entropy loss is equally weighted over all pixels.

Its mIoU is reported in the row of DeepLabv3+-GAU-

Decoder in Tab. 3, which is 78.89%. It is slightly

higher than the original DeepLabv3+ network, but still

inferior to our network.

We also report the mIoU of the network proposed

by Tian et al.. [31], which improves the decoder of

DeepLabv3+ with a data-dependent upsampling and

improve the mIoU by 0.27% (the third row in Tab. 3).

Thus, increasing the complexity of the decoder is not

as effective as our method to allocate resource on

erroneous pixels.

Running time: The average running time of our

full network is 0.71 second. For an input image of the

resolution 1025× 2049 (the output segmentation result

is 1/4 of the input resolution), it takes 0.38 second on

average at the semantic branch DeepLabv3+ network,

0.05 second at the error-prediction branch, and 0.28

second at the detail branch.

5.2 Comparison with Layer-cascading and

Hard-mining

Layer-cascading (LC): To compare with LC [19],

we adopt layer-wise cascading in the decoder of the

DeepLabv3+-GAU-Decoder network discussed above

and denote such variant model as LC-GAU-Decoder

as illustrated in Fig. 4. Similar to LC, the stage-

1 predicts a segmentation result, and the pixels with

the classification score smaller than a threshold ρ are

propagated to stage-2. The stage-2 follows the same

propagation procedure. We also set ρ = 0.95 to be

6



Erroneous Pixel Prediction for Semantic Image Segmentation 7

Tab. 4 Quantitative results of error-prediction and

segmentation with different semantic branches on Cityscapes

validation dataset.

Deeplabv3+ [7] PSP [38] DPC [3]

Our error-pixel mIoU(%) 27.34 27.10 27.84

Hard erroneous pixel ratio(%) 19.14 19.64 22.8

Our hard recall 19.79 31.04 21.36

Original mIoU(%) 78.79 79.70 80.31

Ours mIoU(%) 79.90 80.35 81.22

consistent with the definition of the hard erroneous 
pixels to test how the simply discarding of hard 
erroneous pixels in LC influences the segmentation 
results. As reported in Tab. 3, our method can 
outperform LC-GAU-Decoder at a 0.17% gain. 
Hard-mining: For a fair comparison, we employ the 
loss-rank mining in [36] as a hard-mining method to 
train the DeepLabv3+-GAU-Decoder network, where 
the decoder of the DeepLabv3+ is replaced by our 
proposed decoder in the detail branch. In this method, 
the cross-entropy loss is calculated for each pixel and 
then all the pixels are ranked in loss-descent order. 
Only a certain percentage of pixels with the highest 
loss (20% in our experiment) contribute to the training 
process. Although the hard-mining method enhances 
the training of hard examples, it is still inferior to our 
network in the statistics of mIoU. The performance of 
the hard-mining strategy is reported in the 5th row of 
Tab. 3.

Error-pixel induced fusion vs. Bagging: The 
bagging result is obtained by training the detail branch 
by setting every pixel as erroneous pixels and then 
average its result with the result from the initial 
DeepLabv3+ network, which leads to mIoU 79.38% ( 
the 6th row in Tab. 3). Instead of directly averaging the 
results of the semantic branch and the detail branch, we 
ensemble the two branch results under the guidance of 
error probability, it gets 0.52% gain with respect to 
the average bagging. Additional visual comparisons 
among the methods introduced above are shown in the 
supplemental materials.

5.3 Integration with Other Segmentation

Networks

In this section, we report how the error-prediction 
and detail branch can be cascaded with PSP-Net [38] 
and DPC network [3] to improve the segmentation 
accuracy. Specifically, for PSP-Net, we concatenate 
the features generated by the pyramid pooling as the 
high-level features to provide global attention for the 
error-prediction branch. For DPC, we use the features 
generated by the dense prediction cell as the input to

(a) PSP-based (b) DeepLabv3+-based (c) DPC-based

Im
a

g
e

B
a

se
li

n
e
 

O
u

r
s

G
ro

u
n

d
-t

r
u

th

Fig. 5 Visual improvements of our method using different

semantic branches on Cityscapes validation dataset. The dashed

rectangles highlight the regions where our method can effectively

correct the errors in the front end model results.

GAU. The error-pixel mIou, hard recall and the final

mIoU of the segmentation results are reported in Tab. 4.

The binarization threshold is again set to t = 0.7, and

the threshold for “hard” erroneous pixels is set to 0.95.

The results suggest that our approach can correct

errors and boost mIoU for various advanced

segmentation models. Some visual results are

shown in Fig. 5. Our method achieves more detailed

segmentation results for some “hard” classes like

“pole”.

5.4 Comparison with other state-of-the-art

methods

In this section, we further evaluate our method on

Cityscapes benchmark testing dataset (1525 images)

and ADE20K validation dataset (2000 images), which

have a larger number of testing images than Cityscapes

validation dataset (500 images) used in the experiments

reported in the last two sections. The binarization

threshold is set to 0.7 in all the following experiments.

Cityscapes benchmark testing dataset: We

exploit the state-of-the-art method Xception71-DPC as

the semantic branch, and train the detail branch on

trainval fine set because the finely annotated images in

this set can provide valid training data for segmentation

details. Our proposed method achieves the mIoU of

82.88% on the test set, as reported in Tab. 5. It

improves the DeepLabv3+ by 1.69% and the original

DPC network by 0.22%. More visual results are

illustrated in Fig. 6.

ADE20K: We select Xception65-DeepLabv3+ as the

semantic branch and train our network using ADE20K

training set. Our network can improve the accuracy of

Xception65-DeepLabv3+ as reported in Tab. 6. The

7
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Tab. 5 Per-class results on Cityscapes testing set.

road sidewalk build. wall fence pole t.light t.sigh veg. terrain sky person rider car truck bus train m.bike bicycle mIoU(%)

PSPNet [38] 98.68 86.92 93.47 58.39 63.68 67.67 76.12 80.47 93.64 72.20 95.30 86.83 71.91 96.21 77.70 91.51 83.64 70.80 77.54 81.19

DeepLabv3+ [7] 98.69 87.04 93.91 59.47 63.73 71.39 78.16 82.15 93.96 73.04 95.84 87.95 73.26 96.41 78.02 90.91 83.91 73.84 78.88 82.14

GFF-Net [1] 98.74 87.20 93.91 59.64 64.32 71.52 78.31 82.23 94.00 72.59 95.94 88.20 73.94 96.45 79.83 92.16 84.70 71.53 78.84 82.32

SSMA [32] 98.67 86.88 93.61 57.85 63.43 68.94 77.15 81.14 93.86 73.06 95.32 87.43 73.78 96.36 81.14 93.49 89.95 73.54 78.34 82.31

DPC [3] 98.69 87.12 93.78 57.72 63.53 71.04 78.04 82.09 94.00 73.31 95.44 88.22 74.46 96.47 81.17 93.30 89.03 74.13 78.99 82.66

DRN [41] 98.83 87.72 93.97 65.08 64.20 70.08 77.39 81.59 93.92 73.45 95.81 88.00 74.90 96.46 80.84 92.14 88.47 72.05 78.76 82.83

ours 98.71 87.27 93.81 57.91 64.78 72.06 78.83 82.29 94.07 73.82 95.45 88.54 74.83 96.41 81.36 92.85 88.34 74.69 79.46 82.88

ignore road wall car sidewalk building vegetation

(a) Image (b) DPC (c) DPC-Zoom (d) Ours (e) Ours-Zoom

truck

Fig. 6 Visual results selected from Cityscapes testing dataset. Semantic branch: DPC network[3].

Tab. 6 Quantitative results on ADE20K validation set. “MS”

means multi-scale inference.

Method mIoU(%)

43.06

45.65

41.68

42.78

32.31

DeepLabv3+ [7] 
DeepLabv3+ [7]-MS 
PSP-ResNet50 [38] 
PSP-ResNet50-MS 
DilatedNet [35] 
CascadeNet [40] 34.90

43.51Ours(DeepLabv3+) 
Ours(DeepLabv3+)-MS 45.73

qualitative comparisons of the segmentation results are

shown in Fig. 7.

6 Conclusions

We propose a method to improve semantic image

segmentation result by predicting erroneous pixels

and re-estimating semantic label for erroneous pixels.

Our method can improve the segmentation mIoU for

a given state-of-the-art segmentation network. The

experiments results have demonstrated the cascading

of error-prediction and detail branch can improve the

segmentation results. In the future, we would like to

investigate how to improve the mIoU of the erroneous

pixels with attention techniques and the layer-wise

(a) Image (b) Ground-truth (c) DeepLabv3+ (d) Ours

Fig. 7 Visual improvements on ADE20K validation set.

cascading of error-prediction and image segmentation.
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