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Fig. 1. A long dress example simulated by using four fabrics with different bending stiffness properties. Based on the Cusick drape test method, we develop
a novel learning-based system to estimate bending stiffness parameters from multi-view depth images defining the drape of a real-world fabric specimen.
Compared with traditional cantilever tests, our system is not only more reliable and effective, but also easier to use. On average, the use of our system reduces
the parameter acquisition time from 15 minutes to under 3 minutes, and helps our simulator achieve higher fidelity as shown in Section 7.

Real-world fabrics often possess complicated nonlinear, anisotropic bending
stiffness properties. Measuring the physical parameters of such properties
for physics-based simulation is difficult yet unnecessary, due to the persis-
tent existence of numerical errors in simulation technology. In this work,
we propose to adopt a simulation-in-the-loop strategy: instead of measuring
the physical parameters, we estimate the simulation parameters to minimize
the discrepancy between reality and simulation. This strategy offers good
flexibility in test setups, but the associated optimization problem is computa-
tionally expensive to solve by numerical methods. Our solution is to train a
regression-based neural network for inferring bending stiffness parameters,
directly from drape features captured in the real world. Specifically, we
choose the Cusick drape test method and treat multiple-view depth images
as the feature vector. To effectively and efficiently train our network, we
develop a highly expressive and physically validated bending stiffness model,
and we use the traditional cantilever test to collect the parameters of this
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model for 618 real-world fabrics. Given the whole parameter data set, we
then construct a parameter subspace, generate new samples within the sub-
space, and finally simulate and augment synthetic data for training purposes.
The experiment shows that our trained system can replace cantilever tests
for quick, reliable and effective estimation of simulation-ready parameters.
Thanks to the use of the system, our simulator can now faithfully simulate
bending effects comparable to those in the real world.
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1 INTRODUCTION
Performance and fidelity are the two key criteria judging the suc-
cess of physics-based cloth simulation engines. While graphics re-
searchers [Bouaziz et al. 2014; Wang and Yang 2016; Wu et al. 2020]
have accomplished substantial success on improving simulation
performance, their recent progress on simulation fidelity is rather
limited. This reality is particularly harsh to digital fashion design-
ers and developers, as they need high-fidelity simulators to create
virtual garments similar, if not identical, to real garments. While
many factors can affect the simulation fidelity, planar and bending
stiffness properties are the two undeniably critical ones. The planar
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(a) A curly fabric in the cantilever test (b) A curly fabric in the drape test

Fig. 2. A curly fabric tested by two methods. While bending stiffness of
a curly fabric becomes difficult to estimate in the cantilever test, it is still
doable in the drape test shown in (b).

stiffness property is more important to elastic fabrics, which are
typically used to make underwear and sportswear. In contrast, the
bending stiffness property is important to almost every fabric, due
to its high influence on wrinkle details. Since real-world bending
stiffness is nonlinear, anisotropic and varies dramatically across
different fabrics, how to estimate it with reliability and effectiveness
is a major challenge.
Over the past few decades, fabric engineers and scientists have

developed a variety of standard test methods [ASTM 2016, 2018;
ISO 2008] relevant to bending stiffness, including the cantilever
method, the heart-loop method, the drape method and the hanging
method. Compared with other methods, the cantilever method is
probably the most popular and intuitive one. Assuming that bending
behaviors in different material directions are isolated, a cantilever
tester [Kato Tech 2022; Taber Industries 2022] uses an overhang to
evaluate how much a fabric strip bends under its own weight as
shown in Fig. 2a. In computer graphics [CLO 2022; Romero et al.
2021], the cantilever method is also the leading method used in
research and development. Unfortunately, the cantilever method
suffers from several severe shortcomings.

• Time cost. Our experiment shows it takes at least 15 minutes
for an experienced user to test one fabric by a cantilever tester.
This includes the time spent on preparing strip specimens and
the time spent on the actual test. For a fabric manufacturer in
need of digitizing thousands of fabrics in stock, such a time
cost is unaffordable.

• Curly effects. As pointed out by Wang et al. [2011], many
fabric strips cannot be properly evaluated by a cantilever
tester, due to curly effects shown in Fig. 2a. Fundamentally, it
is physically incorrect to model bending stiffness separately
in multiple material directions.

• Simulation error. Many cantilever-based parameter estima-
tion approaches measure bending stiffness as an intrinsic
property of a fabric. However, a physics-based simulator has
its own error. Therefore, even if the measurement is perfect,
the simulated behavior can still be far from reality.

In this paper, we switch our focus to an alternative: the Cusick
drape method [1965]. Compared with other methods, the drape
method canmore naturally reveal wrinkles and folds similar to those
needed in simulation, by draping a fabric specimen onto a cylindrical
platform as Fig. 2b shows. Square or circular fabric specimens are
also more accessible from fabric swatch books, frequently used by
designers to find desired fabrics. Traditionally, the drape method
is not considered to be suitable for parameter estimation, but for
quantifying bending stiffness by various indicators [Carrera-Gallissa
et al. 2017]. We can overcome this issue by adopting a simulation-
in-the-loop parameter estimation strategy:

given the drape of a real-world fabric evaluated by the
drape method, we would like to find the optimal bend-
ing parameters for a specific simulator to reproduce the
identical drape in simulation.

Solving the optimization problem for simulation-in-the-loop pa-
rameter estimation by numerical methods [Clyde et al. 2017; Wang
et al. 2011] is not only difficult but also time consuming, due to the
complex relationship between parameters and shapes. Inspired by
recent research on learning-based fabric parameter estimation [Ju
and Choi 2020; Rasheed et al. 2020, 2021; Yang et al. 2017], we pro-
pose to solve this problem using deep neural networks. In particular,
we argue that the quasistatic shapes of real-world fabrics in drape
tests are much less diversified than those in other test environments.
Therefore we can build a reliable and effective learning-based pa-
rameter estimation system, while still keep the size of the needed
data set tractable. To achieve this goal, we make a series of technical
contributions.

• Nonlinear, anisotropic bending stiffness. We study how to gen-
eralize popular bending models into nonlinear, anisotropic
ones. This is crucial to the existence of suitable parameters for
a simulator to reproduce bending behaviors. For comparison
and data collection purposes, we also present cantilever-based
techniques for estimating parameters of these models.

• Synthetic data generation. We apply a cantilever tester to
obtain rough parameters of hundreds of real-world fabrics
and use them to construct a subspace. Given the subspace
and the simulator, we generate a large synthetic data set, with
data augmentation addressing local minima, unknown fabric
orientation and sensing errors.

• Drape tester and neural network. We develop a novel drape
tester and we capture multi-view depth images as the feature
vector. Using the regression neural network trained by the
synthetic data set, we show how to quickly infer bending
parameters of a real fabric evaluated by our tester.

In addition, we provide a comprehensive study on the cost, the
reliability and the effectiveness of our system. The experiment
shows our system is reliable, easy to use, and more importantly,
effective in improving the fidelity of simulated bending behaviors.
In a user study, designers and artists concur that our system pro-
vides more plausible parameters than a cantilever tester for most
of the fabrics. Thanks to the system, the estimation process of
a fabric also becomes significantly shorter, typically under three
minutes from preparing a specimen to obtaining the parameters.
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(Supplemental code and datasets for this work is downloadable at:
https://github.com/DrapeTester/ClothDrapeTester.)

2 PREVIOUS WORK
Physics-based cloth simulation. Due to its key role in graphics

applications, physics-based cloth simulation has been an important
research topic since the seminal work by Baraff and Witkin [1998].
While early cloth simulators [Bridson et al. 2002, 2003; Selle et al.
2009] often choose to integrate cloth dynamics explicitly over time,
recent simulators [Liu et al. 2013; Narain et al. 2012; Volino et al.
2009] typically adopt implicit time integration for numerical stability
with large time steps. In general, cloth simulators treat planar and
bending deformations as two independent modes. Popular planar
stiffness models are the mass-spring model [Choi and Ko 2002] and
continuum-based models [Müller et al. 2005; Volino et al. 2009], and
popular bending stiffness models are the dihedral angle model [Brid-
son et al. 2003; Tamstorf and Grinspun 2013] and the quadratic
bending model [Bergou et al. 2006]. In recent years, researchers
have made substantial progress in speeding up cloth simulation
and their achievements include: position-based dynamics [Müller
et al. 2005], projective dynamics [Bouaziz et al. 2014] and real-time
dynamic solvers on GPUs [Fratarcangeli et al. 2016; Wang 2015;
Wang and Yang 2016]. Given their success, we believe it is now the
time to push the limit of the simulation fidelity further.
We would like to emphasize that there are many other cloth

simulation topics, such as yarn-based cloth simulation [Kaldor et al.
2008, 2010] and contact handling of cloth [Bridson et al. 2002; Tang
et al. 2018]. These topics are less relevant to this work, but how to
acquire simulation parameters involved in yarns and contacts is
also an important problem worthy of investigation.

Physical parameter estimation. Early graphics research on param-
eter estimation of fabrics [Bhat et al. 2003; Kunitomo et al. 2010]
often tried to acquire the parameters of multiple physical properties
simultaneously from unconstrained cloth movements. This turned
out to be a highly challenging problem, due to mutual influence
among the properties. Being aware of this, Wang et al. [2011] pro-
posed to estimate planar and bending stiffness by two separate tests.
Miguel et al. [2012] developed a more automatic device to acquire
fabric stiffness parameters. Using the same device, they [2013] mod-
eled and captured fabric internal friction for hysteresis later. Chen
et al. [2013] developed another device to measure friction between
fabrics and solids. Ly et al. [2018] studied inverse shape estimation
of cloth and shells with contact and friction. Recently, Clyde et
al. [2017] investigated hyperelastic models for planar stiffness of
woven fabrics and its parameter estimation by tensile tests. They
tried to approximate bending stiffness under the Kirchhoff-Love
hypotheses as well, but the resulting fidelity is limited.
Physical parameter estimation of deformable bodies, especially

human tissues, is also an important problem in computer graph-
ics [Bickel et al. 2009; Pai et al. 2001, 2018; Wang et al. 2015]. While
the stiffness properties of deformable bodies share many similarities
with those of fabrics, such as nonlinearity and anisotropy, their
estimation problems have their own features and challenges.
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Fig. 3. The pipeline. Our system uses a simulator to generate multi-view
depth images of draped specimens as synthetic training data, given the
parameters sampled in a VAE subspace. The trained network can then make
bending stiffness inferences from the depth images of a real fabric specimen
captured by a drape tester. The estimated parameters allow our simulator
to reproduce nonlinear, anisotropic bending effects in high fidelity.

Instead of solving parameter estimation as a numerical opti-
mization problem, researchers have also explored the use of ma-
chine learning to infer physical parameters, such as stiffness of
rock [Shahriari et al. 2010], fluid viscosity [Changdar et al. 2021;
Mohan M S and Menon 2021] and surface reflectiveness [Gao et al.
2019; Kang et al. 2021]. To estimate fabric stiffness from controlled
movements in hanging tests, Bouman et al. [2013] and Davis et
al. [2017] used linear regression without separating planar stiffness
from bending stiffness. To estimate bending stiffness from less con-
trolled experiments, Yang et al. [2017] developed a learning-based
system without considering nonlinearity nor anisotropy. Recently,
Rui et al. [2020] adopted learning techniques to predict fabric physi-
cal parameters solely from yarn composition and finishing features.
Rasheed et al. [2020; 2021] investigated learning-based parameter
estimation of both fabric material and friction from controlled move-
ments. Similar to our work, Ju and Choi [2020] applied deep neural
networks to estimate bending stiffness parameters of real-world
fabrics by drape tests. Their method ignores nonlinearity and local
minima, and it defines the feature vector as the boundary curve of
a specimen, which is difficult to acquire in practice and insufficient
to cover all of the shape details.

3 OVERVIEW
Fig. 3 shows an overview of our learning-based bending parameter
estimation system. The purpose of this system is to provide suitable
bending stiffness parameters to a physics-based cloth simulator, so
that it can simulate high-fidelity bending behaviors of a real-world
fabric. To do so, we capture the drape shape of a fabric specimen by
multi-view depth images using a drape tester, and treat them as the
feature vector for our deep neural network to make inferences.

The key question is how to train such a deep neural network. Build-
ing a large training data set from the real world would be too time
consuming and fail to consider the intrinsic errors involved in ac-
quisition and simulation. Instead we use our physics-based cloth
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Azure Kinect depth camera

Fabric specimen

Cylinder

Rotary table

Fig. 4. A drape tester. Our drape tester includes a cylinder placed on a
motorized rotary table and an Azure Kinect depth camera. Using the table
and the camera, we capture depth images of the draped fabric specimen in
four views, as the feature vector encoding bending stiffness.

simulator to generate a large number of multi-view depth images as
synthetic training data, given a set of stiffness parameter samples.
The follow-up question is: how to generate such parameter samples?
To model bending stiffness of a real-world fabric, we use nonlinear
anisotropic models with up to six parameters, which form a full
space too large to be directly sampled. Therefore, we train a parame-
ter subspace using the parameters roughly measured by a cantilever
tester, and then generate samples in that subspace. Our experiment
validates the effectiveness of the system and the accuracy of our
neural network.

3.1 A Drape Tester
Our drape tester is shown in Fig. 4. The key component of this tester
is a cylinder with a diameter of 100mm, placed on a motorized rotary
table. This table can rotate steadily with a maximum speed of 𝜋/10
radians per second with remote control. To test bending stiffness of
a real-world fabric, we prepare a 300mm×300mm fabric specimen in
alignment with the two basic weaving or knitting directions, known
as warp and weft, and drape it on top of the cylinder. We require that
the specimen center matches the cylinder center, but the specimen
orientation can be arbitrary. After we drape the specimen, we cap-
ture four depth images at the resolution of 240×180 with an equally
rotated gap of 𝜋/2 by an Azure Kinect depth camera [Microsoft
2022]. These four depth images form the feature vector describing
the bending properties of the fabric. We assume that the table and
the camera have been set to fixed positions and orientations for a
clear view of the drape. We calibrate the camera ahead of time.

4 SIMULATOR AND STIFFNESS MODELS
To beginwith, wewould like to discuss our simulator and its stiffness
models for data synthesis and result production. Our simulator is an
in-house GPU-based one, which runs a series of Newton-Raphson
iterations to solve dynamic simulation or quasistatic equilibrium
problems. Our simulator accepts a variety of stiffness models and our
parameter estimation system works with most of them. Having said
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Fig. 5. The correlations between the in-plane and bending stiffness parame-
ters (𝜎 and 𝛼 ) and the simulated mesh vertex positions in 3D. To calculate
such correlations, we run the simulation multiple times, with 50 𝜎 samples
uniformly chosen between 100kg·s−2 and 1, 000kg·s−2, and 50 𝛼 samples
logarithmically chosen between 100g·mm2 ·s−2 and 10kg·mm2 ·s−2. Com-
pared with the bending stiffness parameter, the in-plane stiffness parameter
has much less influence on the simulated drape mesh.

(a) The corotational model with 𝛼 =

6kg·mm2 ·s−2
(b) The mass-spring model with 𝛼 =

6kg·mm2 ·s−2

(c) The corotational model with 𝛼 =

150kg·mm2 ·s−2
(d) The mass-spring model with 𝛼 =

150kg·mm2 ·s−2

Fig. 6. The drapes simulated with different in-plane stiffness models and
different bending stiffness parameter values. This figure shows that the
influence of in-plane models on the drape shape is limited.

that, we still prefer the actual models to be plausible and expressive
enough so that our simulator can reproduce as many real-world
effects as possible given suitable parameters.

4.1 In-Plane Stiffness
To develop our system, we make a crucial assumption that a fabric
specimen barely stretches under its ownweight during the drape test.
This assumption suggests that in-plane stiffness models and their
parameter values do not matter to drape simulation. We justify this
assumption in Fig. 5, which reveals that the correlation between the
in-plane stiffness parameter 𝜎 and the simulated drape mesh is weak.
Meanwhile, Fig. 6 and 7 demonstrate that the choice of in-plane
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(a) 𝜎 = 200kg·s−2 , 𝛼 = 600g·mm2 ·s−2 (b) 𝜎 = 2, 000kg·s−2 , 𝛼 = 600g·mm2 ·s−2

(c) 𝜎 = 200kg·s−2 , 𝛼 = 60kg·mm2 ·s−2 (d) 𝜎 = 2, 000kg·s−2 , 𝛼 = 60kg·mm2 ·s−2

Fig. 7. The drapes simulated with different values of in-plane and bending
stiffness parameters. Unlike the bending parameter 𝛼 , the in-plane parame-
ter 𝜎 has significantly smaller influence on the drape shape.

stiffness models and the magnitude of 𝜎 hardly affect the simulated
drape mesh visually, as long as 𝜎 is sufficiently large. Based on this
assumption, we choose to use the corotational FEM model with a
uniform isotropic in-plane stiffness parameter 𝜎 = 200kg·s−2 by
default.
We note that many simulators suffer from the locking issue, i.e.,

large in-plane stiffness improperly stiffening bending behaviors, due
to a lack of degrees of freedom. To address this issue in our simulator,
we avoid very large in-plane stiffness parameters, and allow cloth to
deform freely within a ratio of [99%, 101%] by dynamically adjusting
the reference state during simulation. These practices are effective
as Fig. 9 shows. To further lessen the locking issue, our simulator
can adopt higher-order or non-conformal elements [English and
Bridson 2008] as well, which are not necessary yet.

4.2 Uniaxial Bending Stiffness

𝐻଴ 𝐻ଵ
𝑒

𝜋 െ 𝜃

𝑅

Fig. 8. A bending element made of
two adjacent triangles.

Let us consider bending resis-
tance in a single material direc-
tion first. Fig. 8 shows a bending
element made of two adjacent
triangles. Suppose that the ele-
ment is planar in the reference
state and the only bendingmode
is to rotate around the hinged
edge. Based on this element, we
will discuss two popular bend-
ing stiffness models: the dihe-
dral angle model [Bridson et al.
2003; Grinspun et al. 2003; Tamstorf and Grinspun 2013] and the

(a) Before fixing the locking issue (b) After fixing the locking issue

Fig. 9. The simulated drapes before and after fixing the locking issue. When
the in-plane stiffness parameter 𝜎 is large, i.e., 𝜎 = 5, 000kg·s−2, a simulator
can produce locking artifacts shown in (a). We must eliminate this issue
before we can apply the simulator in bending parameter estimation.

quadratic model [Bergou et al. 2006], and their parameter estimation
by a cantilever tester.

4.2.1 The dihedral angle model. Let 𝜏 (𝜅, 𝑒) be the torque as a func-
tion of the unsigned curvature 𝜅 and the hinged edge length 𝑒 , with
𝜏 (0, 𝑒) = 0 and 𝜏 (𝜅, 0) = 0. The energy of a bending element is:

𝐸 (𝜃 ) =
∫ 𝜃

0
𝜏 (𝜅 (𝜉), 𝑒)𝑑𝜉, (1)

where 𝜃 is the dihedral angle. In our system, we assume that 𝜏 (𝜅, 𝑒)
is in the form of (𝛼𝜅+𝛽𝜅2)𝑒 , as a linear function of 𝑒 and a quadratic
function of 𝜅. Here 𝛼 and 𝛽 are the linear and quadratic bending
moduli. From Eq. 1, we calculate the force at vertex 𝑖 as:

f𝑖 = −∇𝑖𝐸 = −𝜏 (𝜅, 𝑒)∇𝑖𝜃 (x) = −(𝛼𝜅 + 𝛽𝜅2)𝑒∇𝑖𝜃 (x) . (2)

To utilize Eq. 2, we need to calculate 𝜅 . Similar to [Narain et al. 2012],
we assume that cloth deformation is nearly isometric, the element
is small and 𝜃 ≈ 0. Therefore, we estimate 𝜅 from the radius 𝑅 of a
cylinder approximating the element as Fig. 8 shows:

𝜅 =
1
𝑅

=
2 sin𝜃(

𝐻2
0 + 𝐻2

1 − 2𝐻0𝐻1 cos (𝜋 − 𝜃 )
) 1

2
≈ 2𝜃
𝐻0 + 𝐻1

, (3)

in which 𝐻0 and 𝐻1 are two constant reference triangle heights.
Eq. 3 shows that 𝜅 is a linear function of 𝜃 .

We treat this nonlinear dihedral angle model as our default choice
in the system. Its linear version (when 𝛽 = 0) is mathematically
equivalent to the one used by ARCSim [Narain et al. 2012] or the
discrete shell model [Grinspun et al. 2003], except for a constant
factor of 4 or 1/3. Therefore, we can convert [𝛼 𝛽] under our model
to [4𝛼 16𝛽] for ARCSim, or [𝛼/3 𝛽/9] under the discrete shell
model, to achieve identical simulation outcomes. The reason we still
stick to our model is because it is the most plausible one, accord-
ing to the cantilever-based physical validation experiment [Romero
et al. 2021]. In this experiment, we simulate fabric strips of varying
lengths and plot out simulated strips based on the relationship be-
tween the aspect ratio of the deflection curve and the dimensionless
gravito-bending parameter Γ = 𝜌𝑔𝐿3/𝛼 , where 𝜌 is the fabric den-
sity, 𝑔 is the gravity acceleration and 𝐿 is the strip length. Fig. 10
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Fig. 10. Physical validation of three dihedral angle bending models. Accord-
ing to the cantilever-based experiment [Romero et al. 2021], we simulate
multiple fabric strips and illustrate them as dots, based on the relationship
between the aspect ratio of the deflection curve and the dimensionless
parameter Γ. This figure shows that the strips simulated by using our model
are the most consistent ones with the ground-truth master curve.

shows that a simulator using our model generates the most consis-
tent strips with the master curve1, i.e., the numerical solution to the
planar elastica [Romero et al. 2021].

4.2.2 The quadratic model. The quadratic model [Bergou et al.
2006] is another popular choice for modeling bending stiffness,
under the nearly isometric deformation assumption. Instead of us-
ing the dihedral angle, it defines the energy of a bending element
as a quadratic function of the four vertex positions x ∈ R12:

𝐸 (x) = 3𝛾
(𝐻0 + 𝐻1)𝑒

∥Kx∥2 , (4)

in which K ∈ R3×12 is a constant cotangent weight matrix and 𝛾
is its bending stiffness parameter. According to Eq. 4, the bending
force is a linear function of x.

4.3 Cantilever-Based Parameter Estimation
For comparison and data collection purposes, we would like to es-
timate the parameters of a bending stiffness model by a cantilever
tester as well. As Fig. 11a shows, our tester is made of an adjustable
ramp, a grid board and a DSLR camera with a telescopic lens shoot-
ing from a distance. The ramp is adjustable to reach different slopes.
The specimen of a real fabric is a 200mm×30mm strip. Let the deflec-
tion curve of one strip specimen be shown in Fig. 11b. We manually
select four control nodes over it and fit the nodes by a cubic Bezier
curve. We then uniformly sample the curve along the x-axis to ob-
tain 𝑁 sample points {r1, ..., r𝑁 }. In our system, 𝑁 = 256. Given
these sample points, we describe two parameter estimation methods
for bending models next.

4.3.1 Parameter estimation by regression. To estimate the bending
moduli under the dihedral angle model, we propose to solve a re-
gression problem. By definition, the torque magnitude at sample r𝑖

1Please check the supplemental MATLAB code to replicate this experiment. We do not
evaluate the early model based on the use of sin(𝜃/2) [Bridson et al. 2003], since it
should be much less consistent with the master curve as |𝜃 | increases.

(a) Our cantilever tester

𝑥௜ 𝑥௝

𝐫௝ାଵ

𝐫௝

𝑥௝ାଵ

𝑑𝑠

𝑑𝐟

𝑠௜

Initial boundary

(b) A deflection curve

Fig. 11. Our cantilever tester and the deflection curve of a strip specimen.
We build our cantilever tester shown in (a) to evaluate uniaxial bending
stiffness from the deflection curve of a fabric strip specimen under its own
weight, as shown in (b). To evaluate anisotropic bending stiffness, we need
to test multiple strip specimens.

can be calculated as:

𝜏𝑖 = 𝐸




 ∫ 𝑠𝑁

𝑠𝑖

(
r(𝑠) − r𝑖

)
× 𝑑f (𝑠)




 = 𝜌𝑔𝐸 ∫ 𝑠𝑁

𝑠𝑖

(
𝑥 (𝑠) − 𝑥𝑖

)
𝑑𝑠, (5)

in which 𝜌 is the fabric density, 𝑔 is the gravity acceleration, 𝐸 is
the strip width, 𝑠 is the arc length variable and 𝑠𝑖 and 𝑠𝑁 are the
arc lengths at r𝑖 and r𝑁 . By applying trapezoidal rule to Eq. 5, we
obtain 𝜏𝑖 at every sample:

𝜏𝑖 = 𝜌𝑔𝐸

𝑁−1∑︁
𝑗=𝑖

𝑥 𝑗 + 𝑥 𝑗+1 − 2𝑥𝑖
2



r𝑗+1 − r𝑗


 . (6)

Meanwhile, the model in Subsection 4.2.1 specifies 𝜏 = (𝛼𝜅 + 𝛽𝜅2)𝐸,
where 𝛼 and 𝛽 are the two unknown bending moduli. Given the
curvature 𝜅𝑖 and the torque 𝜏𝑖 estimated at every sample, we solve
a quadratic regression problem to obtain 𝛼 and 𝛽 .

4.3.2 Parameter estimation by classification. The regressionmethod
is unsuitable for the models not using bending moduli as their
parameters, such as the quadratic model. In that case, we propose
an alternative method based on classification. Specifically, we define
1,000 categories per bending parameter and 100 curve lengths (from
1mm to 100mm), and then run simulation to generate corresponding
deflection curves. In total, we obtain a data set containing 100,000
parameter-deflection pairs for a single-parameter bending model.
During parameter estimation, we then measure the curve length,
find the most similar curve to the real one by nearest neighbor
search, and finally output its associated parameter.

4.4 Anisotropic Bending Stiffness
Given the uniaxial models for a single bending element, including
both the dihedral angle model and the quadratic model, we would
like to generalize them into anisotropic ones next. A common way
is to simply assign different stiffness parameters to different bend-
ing elements, based on hinged edge orientations in the reference
state [Bergou et al. 2006; Wang et al. 2011]. But such an edge-based
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(a) Grid-structured mesh with edge-based
anisotropic bending stiffness

(b) Unstructured mesh with edge-based
anisotropic bending stiffness

(c) Grid-structured mesh with curvature-
based anisotropic bending stiffness

(d) Unstructured mesh with curvature-
based anisotropic bending stiffness

Fig. 12. The simulated drapes with anisotropic bending stiffness imple-
mented by two approaches. While the edge-based approach causes simula-
tion results to be mesh-dependent as shown in (a) and (b), the curvature-
based approach produces consistent results as shown in (c) and (d), even
when one mesh is structured while the other one is not.

approach fails to model bending anisotropy correctly, since the ori-
entation of an individual edge may not match the local bending
direction from a geometric perspective. In simulation, such an er-
ror can cause bending behaviors to be mesh-dependent as Fig. 12a
and 12b show.
Our solution is to calculate the principal curvatures and their

directions at all of the vertices [Meyer et al. 2003], and estimate
the bending direction of a dihedral element as the mean of the
greater principal directions at the two edge vertices. Let kwarp =

[𝛼warp 𝛽warp] and kweft = [𝛼weft 𝛽weft], or kwarp = [𝛾warp] and
kweft = [𝛾weft] under the quadratic model, be the parameter vectors
in warp and weft directions, respectively. Similar to the curvatures,
the parameter vector k(𝜑) in an arbitrary bending direction 𝜑 can
be approximated by:

k(𝜑) = cos2 𝜑 kwarp + sin2 𝜑 kweft, (7)

as demonstrated by our strip experiment shown in Fig. 13. To make
our anisotropic model evenmore expressive, we construct our model
by bending parameters in three sample directions: kwarp ≡ k(0),
kbias ≡ k(𝜋/4) and kweft ≡ k(𝜋/2). Let 𝜑 be a material direction
between any two sample directions 𝜑0 and 𝜑1. We calculate its
parameter vector as:

k(𝜑) =
[

cos2 𝜑
sin2 𝜑

]T [
cos2 𝜑0 sin2 𝜑0
cos2 𝜑1 sin2 𝜑1

]−1 [
k𝜑0

k𝜑1

]
, (8)

Intuitively, Eq. 8 estimates the bending parameters in warp and weft
directions first, and uses them to compute k(𝜑). Similar to [Wang
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300

1900

3500

5100

0 45 90 135 180

Strip orientation
𝜋/4 𝜋/2 𝜋3𝜋/4

300

3500

5100

B
en

di
ng

 m
od

ul
us

 𝛼
 

1900

0

1.弹力牛仔

(c) The moduli of medium-weight denim

1000

2500

4000

5500

0 45 90 135 180

Strip orientation
𝜋/4 𝜋/2 𝜋3𝜋/4

1000

4000

5500

B
en

di
ng

 m
od

ul
us

 𝛼
 

2500

0

81.涂层面料

(d) The moduli of a coated cotton fabric

Fig. 13. An anisotropic bending experiment. With the help of a paper tem-
plate in (a), we prepare 18 strip specimens for each fabric and measure
their bending moduli (in gray) by a cantilever tester (in Subsection 4.3). The
results from (b) to (d) indicate that our method (in blue) approximates the
moduli better than linear interpolation (in orange) does.

et al. 2011], we assume that bending behaviors are symmetrical
about warp and weft directions, i.e., k(𝜑) ≡ k(𝜋 + 𝜑) ≡ k(𝜋 −
𝜑) ≡ k(−𝜑), so we can calculate the parameter vector for 𝜑 ∉

[0, 𝜋/2] as well. The joint parameter vector describing nonlinear,
anisotropic bending stiffness of the whole fabric is six-dimensional:
k = [kwarp kbias kweft].
Fig. 12c and 12d show that our curvature-based approach effec-

tively lessens the mesh-dependency issue. It does have a side effect:
when cloth is nearly flat, the computed principal curvature direc-
tions are unreliable, leading to spatial oscillations in the bending
parameters. These oscillations are especially noticeable if the mate-
rial is extremely anisotropic. Fortunately, it is uncommon for real
fabrics to possess such properties, as shown in Subsection 5.1.3.

5 SYNTHETIC DATA GENERATION
Next we study the generation of synthetic depth image data by
simulation, for training our neural network later. The whole data
generation process can be divided into two steps: parameter sub-
space construction (in Subsection 5.1), and data synthesis by using
the parameters sampled in the subspace (in Subsection 5.2).

5.1 Parameter Subspace Construction
The very first challenge we face in data generation is a large param-
eter space. Even if we choose linear models with three parameters
only and sample each parameter by 32 values, we would still end up
with 32K data samples needed for simulation. Such a large data set
would be more unaffordable to simulate, given the nonlinearity of
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(a) Simulation with 𝜌 = 50g·m−2 (b) Simulation with 𝜌 = 500g·m−2

Fig. 14. The simulated drapes with different density values but the same
k/𝜌 . This example verifies that the simulator produces the identical outcome
in the drape test, as long as the ratio of k to 𝜌 stays the same.

the actual model and the need for data augmentation. Fortunately,
most of the real fabrics exhibit similar bending behaviors. This
implies that bending parameters reside in a small subspace.

The main problem is how to obtain the parameters of real fabrics
needed for constructing the subspace, when our parameter estima-
tion system is not ready in the first place. To address this problem,
we resort to the cantilevermethod described in Subsection 4.3, which
is not expected to be sufficiently reliable but can still provide rough
estimations for subspace construction. In Subsection 5.1.2, we show
how to reduce the amount of data needed for subspace construction,
by eliminating the influence of fabric density. In Subsection 5.1.3,
we evaluate different subspace models and their constructions.

5.1.1 Cantilever-based training data acquisition. We use the can-
tilever method in Subsection 4.3 to estimate the bending parameters
of a real fabric in the warp, bias and weft material directions. The
result is a six-dimensional parameter vector if the bending model is
nonlinear, or a three-dimensional parameter vector if the model is
linear. On average, it takes 15 man-minutes to measure one fabric,
which includes the time spent on specimen preparation, cantilever
tests and parameter estimation under various bending models. Over-
all, our data set contains the parameters of 618 real-world fabrics
commonly used for garments. The whole measurement process
takes more than 150 man-hours.
We would like to emphasize that when it estimates bending pa-

rameters for a specific fabric, the cantilever method suffers from
many issues outlined in Section 1, including curly effects, not always
being simulation-in-the-loop and hysteresis. But since the sole use of
the cantilever method is to reduce the burden of data generation in
a large parameter space, its effectiveness should have little impact
on our system, as long as the overall estimation provides a sufficient
coverage of the parameter subspace of real fabrics. As shown later
in Subsection 7.2, our system provides more effective parameter
estimation than the cantilever method.

5.1.2 Parameter normalization. In both cantilever and drape tests,
the shape of a fabric specimen depends on not only bending pa-
rameters, but also its self weight. The self weight is fundamentally
determined by the density 𝜌 , which varies from fabric to fabric. If
we define x ∈ R3𝑁 as the stacked vector of 𝑁 vertices describing

Table 1. The performances of the GMM model and the VAE model. Here 𝐾
is the number of Gaussian functions in the GMM model. The VAE-1 model
uses four fully connected (FC) layers with 2,048, 1,024, 512 and 128 units, and
a 64-dimensional latent space. The VAE-2 model uses four FC layers with
512, 256, 128 and 32 units, and a 32-dimensional latent space. The VAE-3
model uses three FC layers with 128, 32 and 16 units, and an 8-dimensional
latent space. Finally, the VAE-4 model uses three FC layers with 32, 16 and
8 units, and a 4-dimensional latent space.

Model Log likelihood Log likelihood Wasserstein
(training) (validation) distance

GMM (𝐾 = 3) -15.07 -14.86 98.9
GMM (𝐾 = 4) -14.45 -13.88 84.6
GMM (𝐾 = 5) -13.89 -13.61 72.6
GMM (𝐾 = 6) -15.63 -15.71 72.5
GMM (𝐾 = 7) -16.20 -15.79 97.6

VAE-1 -8.91 -8.68 14.3
VAE-2 -8.35 -7.92 13.9
VAE-3 -6.91 -6.42 11.1
VAE-4 -7.01 -6.59 12.4

the quasistatic state of a fabric specimen, then x satisfies:

0 = fstretch (x) + fbend (x) + fgravity (x)
= fstretch (x) +

[
· · · fbend𝑚 (x) · · ·

]
k + 𝜌fgravity0 (x),

(9)

in which fstretch, fbend and fgravity are the stretching, bending and
gravitational force vectors, and fbend𝑚 (x) and fgravity0 (x) are their
linear components. Since we assume that the deformation is nearly
isometric in cantilever and drape tests, fstretch (x) can be scaled arbi-
trarily without affecting the drape, as long as it remains sufficiently
large. As a result, k and 𝜌 form a linear relationship, and x depends
on k/𝜌 , rather than the magnitude of k. Intuitively, as the density 𝜌
increases, we can increase bending parameters k by the same factor,
to achieve the identical drape outcome as Fig. 14 shows.

Based on the aforementioned analysis, we assume that all of the
fabrics share the same standard density 𝜌 = 300g·m−2 in our system.
After we estimate the bending parameters of a specific fabric by
our system, we can easily convert them into actual parameters
by multiplying them with 𝜌/𝜌 , in which the actual density 𝜌 is
measured by a scale.

5.1.3 The VAE subspace model. Once we collect the (normalized)
parameter data set, our next job is to build a parameter subspace.
Here we consider two popular choices: the Gaussian mixture model
(GMM) [Duda and Hart 1973] and the variational autoencoder
(VAE) [Kingma and Welling 2019] model. The idea behind the GMM
model is to use a mixture of Gaussian functions to define probability
densities in a subspace. To generate parameter vector samples under
the GMM model, we just apply sampling to those mixed Gaussian
functions. Differently, the VAE model takes a parameter vector as
input and then tries to restore it in its output, through an encoder-
decoder process. The structure of the decoder is typically the reverse
of the structure of the encoder. Given the trained VAE model, we
generate parameter vector samples by using the decoder to convert
random latent space vectors to parameter sample outputs.
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(b) The VAE-3 model

Fig. 15. A visual comparison of the parameter subspace models. Here each
orange dot is the acquired parameter vector of a real-world fabric, and each
blue dot is a newly generated parameter vector sample. The VAE-3 model
covers the data in the dark box, but the GMM model fails to do so.

To evaluate these two models together with their parameter
choices, we treat 80% of the real fabric data acquired in Subsec-
tion 5.1.1 as the training data set and the rest as the validation data
set. We train the GMM model by the Expectation-Maximization
algorithm using 200 iterations; and we train the VAE model by an
Adam optimizer, with the weight decay set to 10−5, the learning rate
set to 10−4, and the batch size set to 16. Table 1 shows that the VAE-3
model with three fully connected layers and an 8-dimensional latent
space outperforms other choices, in terms of both log-likelihood and
Wasserstein distance metrics [Chizat et al. 2020]. Fig. 15 compares
the difference between the GMM model (𝐾 = 5) and the VAE-3
model visually, using 6,000 newly generated parameter vector sam-
ples (in blue). Overall, the VAE-3 model can more correctly represent
the underlying parameter subspace spanned by acquired bending
parameters. Therefore, we choose it to be our subspace model.

There is one unique issue we must consider before we can use the
learned subspace for sample generation: it may not be large enough
to cover all of the real-world fabrics, due to insufficient training data
and limited effectiveness of cantilever measurement. To address
this issue, instead of sampling each latent space variable from a
standard normal distribution 𝑁 (0, 1), we sample it from a Gaussian
distribution 𝑁 (𝜇, 𝜎), where 𝜇 ∈ [−0.5, 0.5] and 𝜎 ∈ [0.8, 1.2] are
two uniformly distributed random variables. Doing this effectively
enlarges the subspace covered by the generated vectors.

5.2 Data Synthesis
Given the bending parameter vectors randomly sampled from the
learned subspace, we need to produce their corresponding multi-
view depth images next. This can be divided into two steps: the
generation of simulation data from the parameters, and the synthesis
of multi-view depth images from simulation data. In both steps, we
need data augmentation to address uncertainties existing in the real
world.

5.2.1 Simulation data generation. To generate simulation data from
parameter vector samples, we should make our simulation environ-
ment identical to the drape tester shown in Fig. 4. This includes

(a) A type-I initial state (b) A type-II initial state

Fig. 16. Two types of initial states. For every parameter vector sample, we
run our simulator multiple times with different initial states, so as to address
the local minima issue in our simulation data set.

defining the virtual specimen and the virtual platform to be the
same sizes as the real ones, and specifying initial contact between
the specimen and the platform with adhesive boundary conditions
to account for static friction. But there exists an interesting question:
what is the initial shape of the specimen? The initial shape plays an
important role in determining the drape outcome, but human and
environmental factors make it difficult to be accurately captured.
From a mathematical perspective, the quasistatic simulation ob-
jective contains multiple local minima, and different initial shapes
can lead to different minima solutions2. To address this problem,
we enumerate all of the local minima by exploring different initial
states for every parameter vector sample. In our system, we use
three types of initial states.

• The first type of an initial state is made by adding random
sine waves to a flat surface, as shown in Fig. 16a.

• The second type of an initial state is made by purposefully
folding the specimen along a randomly selected direction, as
Fig. 16b shows.

• Finally, we randomly choose a simulated drape mesh of an-
other parameter vector sample in the existing data set as an
initial state of the current sample.

For every parameter vector sample, we create eight initial states at
random. We then add a small drift to each initial state, to account for
imperfect alignment between the specimen center and the cylinder
center in the real world. Each initial state is represented by a 100×100
cloth mesh, with its triangulation slightly perturbed to make the
data set more robust against mesh topological changes [Yang et al.
2017]. Given themesh of each initial state, we run our simulator until
it reaches quasistatic equilibrium, typically under twenty seconds.
Once we obtain the eight drape mesh outcomes corresponding to
the eight initial states, we add them together with their common
parameter vector into the simulation data set.

5.2.2 Depth image synthesis. Next we need to convert simulation
data into multi-view depth images. When using the drape tester in
Subsection 3.1, we face three main sources of uncertainties in cap-
tured depth images: the unknown orientation of the fabric specimen,
the unknown exact camera configuration due to calibration errors,

2The local minima issue is not the only cause of multiple drape outcomes. Another
cause is hysteresis, mainly due to internal friction.
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(a) The front side (b) The left side (c) The back side (d) The right side

Fig. 17. Multi-view depth images. Each depth image encodes the shape of
the same drape in a different view. We treat these depth images in multiple
views together as the feature vector of one data point.

and depth sensor noise and errors. To counteract such uncertainties,
we use stratified sampling to obtain 12 random orientations for every
simulated drape model. We then use these 12 orientations, together
with random perturbations to camera position/orientation/field of
view, to synthesize 12 sets of multi-view depth images at the resolu-
tion of 240×180. Each set of multi-view depth images contains four
views as Fig. 17 shows. Finally, we apply Kinect-related noise [Bar-
ron and Malik 2013; Bohg et al. 2014] and affine transformation
perturbations to synthetic depth images, so they can be more sim-
ilar to real depth images with noise and errors. We treat each set
and the corresponding parameter vector as one data point in the
synthetic data set.

In total, we generate 6,000 parameter vector samples and simulate
48,000 drape models using the methodology in Subsection 5.2.1.
The whole simulation process takes approximately 12 hours on a
computer cluster with 22 CPUs. We then convert the simulated
drapes into the synthetic depth image data set, which contains
48, 000 × 12 × 4 = 2.3M depth images and takes approximately two
hours to synthesize. The total storage cost is 12GB.

6 NEURAL NETWORK DESIGN
As shown in Fig. 3, our neural network takes multi-view depth
images as input and infers bending stiffness parameters as output.
While the concept of this network is simple, there are many design
choices involved in it. In this section, we will focus our research on
the evaluation of these choices. Our evaluation metric, also acting
as the loss function for training, is the RMSE error between the
normalized ground truth

{
g𝑖

}
and the predictions

{
p𝑖

}
:

L =

(∑𝐼
𝑖=1 ∥g𝑖 − p𝑖 ∥2

𝐼

)1/2

, (10)

in which 𝐼 is the batch size. By default, we use 80% of the synthetic
data for training and keep the rest for validation.

6.1 The Choice of the Backbone Network
The first and foremost choice is the backbone of our neural network.
Table 2 compares the performances of multiple backbone choices,
including VGG16 [Rasheed et al. 2020; Simonyan and Zisserman
2015], AlexNet [Krizhevsky et al. 2012], ResNet-18 [He et al. 2016]
and EfficientNet B0 [Tan and Le 2019]. When training each network,
we make a good faith effort to tune its hyper-parameters for optimal
validation loss. According to Table 2, ResNet-18 is the best choice
with the shortest training time, so we choose to use it in the rest of
this paper.

Table 2. The performances of different backbone networks. This table shows
that ResNet-18 is an optimal choice in terms of both the training time and
the RMSE errors.

Name Training Number of RMSE RMSE
time (hrs) variables (training) (validation)

VGG16 100.8 105M 0.153 0.122
AlexNet 12.4 46M 0.252 0.224
ResNet-18 12.7 13M 0.147 0.127

EfficientNet B0 27.0 4M 0.187 0.142

0

0.2

0.4

0.6

0.8

0 50 100 150 200 250 300

8 classes
16 classes
32 classes
64 classes
Regression

categories

0.0

0.4

R
M

SE

0.2

0

0.8

0.6

150 300200100
Number of epochs

categories

categories
categories

50 250

Fig. 18. The learning curves of classification and regression neural networks.
When we define parameter estimation as a classification problem, we need
a large number of categories to reduce the discretization error. But doing so
requires a large amount of training data that we cannot afford. Overall, it is
more effective to use a regression neural network as in our system.

The training of our ResNet-18 backbone uses an Adam optimizer,
with the weight decay set to 10−4, the learning rate set to 10−4, the
batch size set to 128 and the learning rate decay set to 0.995. The
training process runs on a workstation with 96 Intel CPU cores and
four NVIDIA GeForce RTX 3090 GPUs.

6.2 The Choice of the Output
We can use either a regression neural network to output bending
stiffness parameters directly, or a classification neural network to
classify fabrics into predefined bending stiffness groups. To know
which one is better, we build both neural networks. Specifically,
we follow [Yang et al. 2017] to build a classification network, by
choosing one fabric as the basis and discretizing each continuous
parameter space into 8, 16, 32 or 64 categories. In our experiment,
the basis is the polar fleece fabric with moderate and nearly isotropic
bending stiffness.

Fig. 18 compares the validation RMSE errors of both classification
and regression networks, and it indicates that a regression network
is a better choice for our system. The main reason is because a
classification neural network needs a sufficiently large number of
categories to reduce the discretization error. But as the number of
categories grows beyond 32, the RMSE error actually increases due
to insufficient data for training a fine-grained classification network.
We note that the computational cost of training a classification
network is also typically higher.

6.3 The Number of Views
Our next question is: how many depth image views we should
incorporate into the feature vector input? Ideally, the number of
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Fig. 19. The learning curves when using different numbers of depth image
views in the feature vector input. They show that the validation RMSE
error drops as the number of views increases from one to four. But as the
number of views increases from four to eight, the error starts to grow, due
to increased difficulty of training a network.
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Fig. 20. The learning curves when using different feature vectors. By taking
multi-view depth images as input, our neural network more accurately
estimates bending parameters according to the validation RMSE error.

views should be large enough to cover all of the drape shape details.
On the other hand, too many views would increase the difficulty of
training a network and eventually undermine the estimation quality.
According to our experiment in Fig. 19, the optimal choice is to use
four depth image views with an even separation of 𝜋/2.

6.4 The Choice of the Feature Vector
Finally, we evaluate two options for the feature vector input: the
boundary curve of the drape as in [Ju and Choi 2020] and the multi-
view depth images of the drape as proposed in this paper. Compared
with the boundary curve, the depth images are not only more acces-
sible, but also more capable of expressing shape details, especially
the interior not covered by the boundary curve. In this experiment,
we train a network that takes the boundary curve as input, using
the same loss function and network parameters given in [Ju and
Choi 2020]. Fig. 20 shows the RMSE error of using the depth image
input is lower than that of using the boundary curve input.

7 RESULTS AND DISCUSSIONS
(Please refer to the supplemental video and documents for detailed
examples.) In this section, we would like to comprehensively study
the performance of our learning-based parameter estimation sys-
tem, using 32 woven and knitted fabrics newly selected from a
fabric inventory. These fabrics are commonly used for making func-
tional and fashionable garments in the real world, and they are
not the same ones used for constructing the parameter subspace in
Subsection 5.1.1. Their compositions include natural and synthetic
materials, and they exhibit a wide range of physical properties, from

(a) Fabric #9

Reconstruction

By a cantilever tester
By our system

(b) Fabric #27

Fig. 21. The top-view silhouettes of the simulated drapes. Compared with
the simulated drapes (in orange) using a cantilever tester, the simulated
drapes (in blue) using our system are more similar to the reconstructed
shapes (in gray).

light (with 𝜌 = 55g·m−2) to heavy (with 𝜌 = 480g·m−2), from soft
(with 𝛼 = 548g·mm2·s−2) to stiff (with 𝛼 = 137, 063g·mm2·s−2),
from isotropic to anisotropic, and from nearly linear to highly
nonlinear. According to the estimations, fabric #25 demonstrates
highly anisotropic bending stiffness, with𝛼warp = 98, 849g·mm2·s−2,
𝛼bias = 23, 468g·mm2·s−2 and 𝛼weft = 21, 192g·mm2·s−2. Mean-
while, fabric #21 demonstrates the highest nonlinearity, with𝛼warp =

136, 122g·mm2·s−2 and 𝛽warp = −4, 933, 507g·mm3·s−2. As men-
tioned before, we choose the nonlinear dihedral angle model by
default. Please check the supplemental catalog for more fabric prop-
erty details.
Next we will evaluate the performance of our system from four

perspectives: the cost, the simulation fidelity, the reliability, and
finally the applicability to different use cases.

7.1 Cost Analysis
After we train the neural network, there are two costs associated
with the use of our system: the time cost and the financial cost.

According to our experiment, it takes under three minutes for
an inexperienced user to complete the whole parameter estimation
process of one fabric using our system. In these three minutes, the
user needs approximately two minutes to prepare the square fabric
specimen, and another minute to capture depth images and make
bending parameter inferences. We note that without a special tool,
a square specimen is much easier to cut than a circular one used in
the original Cusick drape method.
Our drape tester is inexpensive and easy to build. Besides the

Azure Kinect depth camera, the rest of the device costs under 30
US dollars and it takes little time to assemble. In comparison, the
parts used by our cantilever tester are customized and the cantilever
tester (without the DSLR camera) costs at least 500 US dollars.

7.2 Simulation Fidelity Analysis
In Section 6, we use the synthetic data set to validate the effective-
ness of the trained network in finding suitable bending parameters.
In this subsection, we would like to further evaluate the effective-
ness of our network in handling real fabrics. Since their ground
truth parameters are unknown, we cannot calculate the RMSE error
directly. Instead we test if the estimated parameters can help the
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Table 3. Quantitative evaluation on the fidelity of our simulator when it uses the bending parameters estimated in different ways. Here the two metrics are:
the mean vertex displacement (in mm) between the captured shape and the simulated shape, and the mean of the relative mean curvature difference (in
parentheses). The table shows that the parameters estimated by our system with the nonlinear dihedral angle model are generally the optimal ones.

Fabric Cantilever Classification GMM VAE
index nonlinear dihedral [Yang et al. 2017] nonlinear dihedral linear quadratic linear dihedral nonlinear dihedral (ours)

#1 1.3 (8.0%) 1.8 (12.7%) 1.2 (8.0%) 1.3 (7.0%) 1.6 (7.6%) 1.3 (5.6%)
#5 1.9 (14.6%) 4.6 (8.8%) 1.9 (6.6%) 1.7 (5.8%) 1.4 (5.2%) 0.9 (3.3%)
#7 2.5 (14.5%) 2.7 (18.0%) 2.7 (13.7%) 1.9 (7.5%) 1.7 (12.0%) 1.7 (4.4%)
#9 1.4 (4.9%) 3.5 (8.9%) 1.1 (1.5%) 1.1 (1.1%) 0.8 (1.3%) 1.0 (1.2%)
#11 1.3 (11.0%) 4.6 (18.6%) 1.2 (14.3%) 1.6 (6.6%) 1.1 (6.5%) 1.0 (7.4%)
#12 2.6 (6.6%) 4.3 (6.6%) 2.3 (7.5%) 1.7 (6.8%) 1.1 (6.1%) 0.7 (5.9%)
#24 1.4 (6.9%) 2.9 (14.2%) 0.9 (5.5%) 0.9 (5.8%) 1.1 (6.6%) 0.7 (3.5%)
#27 2.8 (5.7%) 2.9 (10.6%) 1.9 (4.7%) 1.9 (3.1%) 2.0 (2.6%) 1.7 (2.7%)
#28 3.2 (6.8%) 3.3 (8.9%) 2.5 (6.9%) 2.7 (3.9%) 2.2 (3.5%) 2.6 (3.3%)
#29 2.8 (6.4%) 4.7 (7.2%) 2.3 (4.1%) 2.1 (3.3%) 2.5 (3.4%) 2.0 (2.8%)

simulator reproduce the captured drape shape closely. To do so, we
use a 3D surface scanner to reconstruct the drape of a real fabric
specimen as an initial state, run the simulator until the residual force
becomes sufficiently small, and then check how far the quasistatic
equilibrium state departs from the initial state. We note that this
practice also circumvents the local minima issue associated with
quasistatic simulation in Subsection 5.2.1.
Table 3 summarizes the difference between the reconstructed

initial state and the simulated quasistatic equilibrium state by two
metrics: the mean vertex displacement (in mm) and the mean of
the relative mean curvature difference. It evaluates the bending
parameters estimated by various approaches, including a cantilever
tester (as described in Subsection 4.3), the video-based classification
method implemented by [Yang et al. 2017], our system using the
GMM subspace and our system using the VAE subspace with multi-
ple anisotropic bending models. Regarding the simulation fidelity,
this experiment shows that our system outperforms a cantilever
tester and the video-based method in general. It also shows that
the use of a nonlinear dihedral angle model allows our simulator
to better reproduce the captured drape shape, as expected. Fig. 21
illustrates the difference between the reconstructed state and the
simulation state for two fabrics in a top view.

7.3 Sensitivity Analysis
In this subsection, we test if our system can make reliable parameter
estimation of the same real-world fabric, when the vector input
varies for various reasons.

7.3.1 Sensitivity to drape shape variation. In the real world, we can
manually pose the same fabric specimen into different drape shapes
as shown in Fig. 22a to 22d, due to the existence of local minima and
hysteresis effects. Fig. 22e shows that while the drape shape input
varies, our system is able to make reliable parameter estimation with
a low coefficient of variation. This reliability depends on the use
of multiple initial states during our data augmentation process, as
discussed in Subsection 5.2. Without it, the coefficient of variation
becomes approximately five percent greater. Having said that, the

(a) Pose 1 (b) Pose 2 (c) Pose 3 (d) Pose 4

Without initial state augmentation
With initial state augmentation
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Fig. 22. The reliability of our systemwith respect to drape shape variation. In
the real world, we can pose the same fabric specimen into different drapes as
shown from (a) to (d). In spite of that, our networkmakes reliable estimations
with low coefficients of variation, thanks to the data augmentation approach
by using multiple initial states.

variation of our estimation is still not negligible, especially for Fabric
#14. We believe this is because our approach addresses only the local
minima issue, but not hysteresis.

7.3.2 Sensitivity to fabric orientation. Unlike [Ju and Choi 2020],
our system does not require a fabric specimen to be placed on
the drape tester in any specific orientation. This is because we
augment our training data by synthetic depth images in random
initial orientations (as discussed in Subsection 5.2.2) and our network
should be able to make reliable inference with no restriction on
initial orientation. To verify this strength, we use our network to
estimate bending parameters of the same fabric specimen multiple
times, but in different initial orientations. Fig. 23b shows that our
network is indeed reliable regardless of initial orientation. Without
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Fig. 23. The reliability of our system with respect to initial orientation.
Thanks to data augmentation, our system reliably estimates bending param-
eters without requiring the specimen to be placed in any specific orientation.

(a) Our simulator (quadratic) (b) ARCSim (quadratic)

(c) Our simulator (nonlinear dihedral) (d) Argus (nonlinear dihedral)

Fig. 24. The drapes simulated by our simulator, ARCSim [Narain et al. 2012]
and Argus [Li et al. 2018]. This example shows that different simulators
can produce almost identical drape outcomes, as long as the underlying
bending models and their parameters are the same.

data augmentation, the estimation becomes unreliable as shown in
Fig. 23a.

7.4 Applicability Analysis
While we have demonstrated that the estimated parameters effec-
tively help our own simulator achieve high fidelity in drape tests
as Subsection 7.2 shows, we want to know if other simulators can
achieve such fidelity in other environments as well.

7.4.1 Applicability to other simulators. First we would like to evalu-
ate the applicability of our system to other cloth simulators, such as
ARCSim [Narain et al. 2012] and Argus [Li et al. 2018]. To make this
evaluation meaningful, we integrate the quadratic bending model

warp

(a) Photograph (b) Simulation
(cantilever)

(c) Simulation
(quadratic)

(d) Simulation
(ours)

weft

(e) Photograph (f) Simulation
(cantilever)

(g) Simulation
(quadratic)

(h) Simulation
(ours)

warp

(i) Photograph (j) Simulation
(cantilever)

(k) Simulation
(quadratic)

(l) Simulation
(ours)

weft

(m) Photograph (n) Simulation
(cantilever)

(o) Simulation
(quadratic)

(p) Simulation
(ours)

Fig. 25. Hanging test examples. We drape a large 600mm×600mm fabric
specimen by lifting up its corners, and we compare the drapes in photograph
and simulation. Being aware of the multiple shape issue, we iron each fabric,
hang them several times and choose the most relaxed one as the ground
truth. The figure shows that the parameters estimated by our system are
applicable to hanging cases as well. In this figure, we evaluate fabric #18
and fabric #19.

into ARCSim and the nonlinear dihedral angle model into Argus.
Fig. 24 shows that the drapes simulated by ARCSim and Argus are
indeed nearly identical to ours (with the maximal vertex displace-
ment under 0.1mm) when the bending models and their parameters
are the same. From this experiment, we can draw two conclusions:
the estimated parameters also improve the fidelity of other simula-
tors; and our system does not rely on our own simulator for data
generation and it can adopt other simulators as well.

7.4.2 Applicability to the hanging test. Similar to [Wang et al. 2011],
we use the hanging test to evaluate the usability of our param-
eters in a different draping environment. In this test, we lift a
600mm×600mm fabric specimen by its two corners, with a separa-
tion distance of 500mm as Fig. 25 shows. Meanwhile, we simulate a
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(a) Simulation (cantilever) (b) Photograph (c) Simulation (ours)

(d) Simulation (cantilever) (e) Photograph (f) Simulation (ours)

(g) Simulation (cantilever) (h) Photograph (i) Simulation (ours)
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Fig. 26. Skirt test examples. In the skirt test, we invite potential users to
assess our simulation results together with the photographs of real skirts
made by ten different fabrics, such as fabric #2, #4 and #17 in (b), (e) and (h).
In general, the users concur that the effectiveness of our system outperforms
that of a cantilever tester as shown in (j).

clothmeshwith 200×200 vertices, using the nonlinear dihedral bend-
ing parameters estimated by a cantilever tester and by our system.
Similar to the Cusick drape test, the hanging drape test also suffers
from the multiple shape issue. To eliminate its influence on evalua-
tion, we manually pose each fabric drape in a sufficiently unique
and relaxed way with minimal folds. Fig. 25 shows the simulation
using our parameters is more similar to the photograph.

7.4.3 Applicability to the skirt test. Next we want to know how
the estimated bending parameters affect wrinkles on simulated
garments, rather than simulated drape specimens. To answer this
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Fig. 27. The prediction differences between trained networks. We train a
network using synthetic data from a full-space sample set and treat its
predictions as ground truths. We then train two other networks, using a
subspace sample set and a downsampled set, respectively. This figure shows
that the use of the parameter subspace effectively reduces the computational
time while preserves the prediction accuracy.

question, we design a skirt test shown in Fig. 26. Our skirt model
contains 40K vertices and 80K triangles, and its size parameters
are: 753mm waist, 2,629mm bottom and 310mm height. We craft
ten such skirts out of different fabrics and place them on a female
mannequin with a 731mm waist and a 899mm hip. We then run
our simulator to simulate these skirts, with the bending parameters
estimated by a cantilever tester and by our system respectively. With
IRB approval, we invite 40 future users of our system, including
fashion designers, pattern makers and technical artists, to assess
the fidelity of rendered skirt images in random order. We inform
the users that the goal is to evaluate if simulated bending effects
are similar to those in photographs, rather than to make a direct
comparison between wrinkle details. This user study indicates that
the difference between the use of a cantilever tester and the use of
our system is not so significant in the skirt test, and the users think
all of the results have space for improvement. But in general, the
users agree that our system is slightly more effective as illustrated
in Fig. 26j.

7.5 The Necessity of A Parameter Subspace
The parameter subspace in Subsection 5.1 plays an important role
in the affordability of our synthetic data acquisition process. In
the following experiment, we justify its necessity, by showing its
impact on the prediction accuracy of our network. To do so, we
directly sample every linear bending parameter 28 times and collect
283 = 22K parameter vector samples in the full three-dimensional
space. Since such a sample set is already large, we do not consider
nonlinearity or data augmentation.We generate synthetic data using
this sample set, train our network and use the network to make
predictions as ground truths. We then collect another set of 3,650
parameters but in the subspace this time, and train another network
without nonlinearity or data augmentation again. Fig. 27 shows that
the prediction difference between these two networks is small, while
the computational time after using the subspace is only one sixth.
Fig. 27 also shows that simply downsampling the full-space sample
set to a subset with 3,650 samples would significantly downgrade
the prediction accuracy.
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7.6 A Long Dress Example
Finally, we assess the use of our estimated bending parameters in
dynamic simulation of a complex garment with wrinkle details, as
Fig. 1 shows. In this experiment, we simulate the long dress model
multiple times, with the parameters estimated from fabric #1, #9,
#10, #17, #20 and #24 respectively. The mesh of the dress model
contains 116K vertices and 226K triangles, and our simulator can
simulate one frame approximately every 0.08 seconds at the time
step Δ𝑡 = 0.01s. The whole animation sequence contains 1,000 time
steps. Thanks to our bending stiffness parameters, the simulator
can animate the model with a variety of realistic wrinkle details.
We note that body movement can occasionally stretch the dress. To
simulate stretching behaviors of a fabric realistically as well, we
measure its planar stiffness parameters by a tensile tester, which is
beyond the scope of this research.

7.7 Limitations
The greatest limitations of our learning-based parameter estimation
system are from the inaccuracy of hardware and the limited capa-
bility of cloth simulation. Commodity depth cameras suffer from
many noise issues and the design of our system must find a balance
between affordability and accuracy. In fact, we have experimented
with nearly ten depth cameras and decided to use Azure Kinect in
the end. Meanwhile, there are many accuracy and expressiveness
issues involved in physics-based cloth simulation and we do not
expect to eliminate them soon. The problem is that if the capability
of a simulator is limited, then bending behaviors of certain fabrics
cannot be correctly simulated, no matter how we tune the param-
eters. In particular, our simulator and our system fail to consider
hysteresis, which is now a main source of errors in simulation, esti-
mation and evaluation. Our current system assumes that the same
simulator is used for both data generation and animation produc-
tion. This practice allows the system to take the inaccuracy of our
simulator into consideration, but it also means the estimated param-
eters are less suitable for other simulators, unless they use similar
bending models as Subsection 7.4.1 shows. Finally, the system does
not consider complex bending behaviors, such as those caused by
double-sided fabrics. The curly boundary issue also exists in the
drape test, but it is not so problematic as in the cantilever test.

8 CONCLUSIONS AND FUTURE WORK
Based on the Cusick drape test method, we justify the effective use
of deep neural networks in the development of a novel bending
stiffness parameter estimation system. Our experiment indicates
that the resulting drape test outperforms cantilever tests in terms of
reliability, effectiveness and usability. The experiment also reveals
that the bending behaviors of real-world fabrics are complex and
the estimation of bending stiffness needs further investigation.
As discussed in Subsection 7.7, we plan to address the effective-

ness of our system from both hardware and software perspectives.
We are committed to improving our hardware designs. We will also
study the importance of hysteresis effects (largely due to internal
friction) and how to address them in both estimation and simula-
tion. In the long term, we plan to develop a unified test method for
estimating planar and bending stiffness at the same time, using the

same fabric specimen. This will not only reduce the test time, but
also allow us to explore complex fabric behaviors not considered by
the current system, such as bending under large stretching.

ACKNOWLEDGMENTS
We wish to thank the digital content team at Style3D for helping
with data collection and animation production.We also would like to
thank NVIDIA for hardware support. This work is partially funded
by NSFC 61732016.

REFERENCES
ASTM. 2016. ASTM D4032: Standard Test Method for Stiffness of Fabric by the Circular

Bend Procedure. (Dec. 2016).
ASTM. 2018. ASTM D1388: Standard Test Method for Stiffness of Fabrics. (July 2018).
David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings

of SIGGRAPH 98 (Computer Graphics Proceedings, Annual Conference Series), Eugene
Fiume (Ed.). ACM, 43–54.

Jonathan T. Barron and Jitendra Malik. 2013. Intrinsic Scene Properties from a Single
RGB-D Image. In 2013 IEEE Conference on Computer Vision and Pattern Recognition.
17–24.

Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun.
2006. A Quadratic Bending Model for Inextensible Surfaces. In Proceedings of SGP
(Cagliari, Sardinia, Italy). 227–230.

Kiran S. Bhat, Christopher D. Twigg, Jessica K. Hodgins, Pradeep K. Khosla, Zoran
Popović, and Steven M. Seitz. 2003. Estimating Cloth Simulation Parameters from
Video. In Proceedings of SCA (San Diego, California). 37–51.

Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Wojciech Matusik, Hanspeter Pfister,
and Markus Gross. 2009. Capture and Modeling of Non-linear Heterogeneous Soft
Tissue. ACM Trans. Graph. (SIGGRAPH) 28, 3, Article 89 (July 2009), 9 pages.

Jeannette Bohg, Javier Romero, Alexander Herzog, and Stefan Schaal. 2014. Robot Arm
Pose Estimation through Pixel-Wise Part Classification. In 2014 IEEE International
Conference on Robotics and Automation (ICRA). 3143–3150.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. (SIGGRAPH) 33, 4, Article 154 (July 2014), 11 pages.

Katherine L. Bouman, Bei Xiao, Peter Battaglia, and William T. Freeman. 2013. Es-
timating the Material Properties of Fabric from Video. In 2013 IEEE International
Conference on Computer Vision. 1984–1991.

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Colli-
sions, Contact and Friction for Cloth Animation. ACM Trans. Graph. (SIGGRAPH)
21, 3 (July 2002), 594–603.

Robert Bridson, Sebastian Marino, and Ronald Fedkiw. 2003. Simulation of Clothing
with Folds and Wrinkles. In Proceedings of SCA (San Diego, California). 28–36.

Enric Carrera-Gallissa, Xavier Capdevila, and Josep Valldeperas. 2017. Evaluating Drape
Shape in Woven Fabrics. The Journal of the Textile Institute 108, 3 (2017), 325–336.

Satyasaran Changdar, Bivas Bhaumik, and Soumen De. 2021. Physics-Based Smart
Model for Prediction of Viscosity of Nanofluids Containing Nanoparticles Using
Deep Learning. Journal of Computational Design and Engineering 8, 2 (2021), 600–
614.

Zhili Chen, Renguo Feng, and Huamin Wang. 2013. Modeling Friction and Air Effects
between Cloth and Deformable Bodies. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July
2013), 8 pages.

Lénaïc Chizat, Pierre Roussillon, Flavien Léger, François-Xavier Vialard, and Gabriel
Peyré. 2020. Faster Wasserstein Distance Estimation with the Sinkhorn Divergence.
In Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada). Article 190, 13 pages.

Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but Responsive Cloth. ACM Trans.
Graph. (SIGGRAPH) 21, 3 (July 2002), 604–611.

CLO. 2022. Fabric Kit Manual. https://support.clo3d.com/hc/en-us/articles/
360041074334-Fabric-Kit-Manual.

David Clyde, Joseph Teran, and Rasmus Tamstorf. 2017. Modeling and Data-Driven
Parameter Estimation for Woven Fabrics. In Proceedings of SCA (Los Angeles, Cali-
fornia). Article 17, 11 pages.

Gordon E. Cusick. 1965. The Dependence of Fabric Drape on Bending and Shear
Stiffness. Journal of the Textile Institute 56, 11 (1965), 596–606.

Abe Davis, Katherine L. Bouman, Justin G. Chen, Michael Rubinstein, Oral Büyüköztürk,
Frédo Durand, and William T. Freeman. 2017. Visual Vibrometry: Estimating Mate-
rial Properties from Small Motions in Video. IEEE Transactions on Pattern Analysis
and Machine Intelligence 39, 4 (2017), 732–745.

Richard O. Duda and Peter E. Hart. 1973. Pattern Classification and Scene Analysis. A
Wiley-Interscience publication.

ACM Trans. Graph., Vol. 41, No. 6, Article 221. Publication date: December 2022.

https://support.clo3d.com/hc/en-us/articles/360041074334-Fabric-Kit-Manual
https://support.clo3d.com/hc/en-us/articles/360041074334-Fabric-Kit-Manual


221:16 • Xudong Feng, Wenchao Huang, Weiwei Xu, and Huamin Wang

Elliot English and Robert Bridson. 2008. Animating Developable Surfaces Using Non-
conforming Elements. ACM Trans. Graph. (SIGGRAPH) 27, 3 (Aug. 2008), 1–5.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A Practical
Gauss-Seidel Method for Stable Soft Body Dynamics. ACM Trans. Graph. (SIGGRAPH
Asia) 35, 6, Article 214 (Nov. 2016), 9 pages.

Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep Inverse
Rendering for High-Resolution SVBRDF Estimation from an Arbitrary Number of
Images. ACM Trans. Graph. (SIGGRAPH) 38, 4, Article 134 (July 2019), 15 pages.

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete
shells. In Proceedings of SCA (San Diego, California). 62–67.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 770–778.

ISO. 2008. ISO 9073-9: Textiles – Test methods for nonwovens – Part 9: Determination
of drapability including drape coefficient. (March 2008).

Eunjung Ju and Myung Geol Choi. 2020. Estimating Cloth Simulation Parameters from
a Static Drape Using Neural Networks. IEEE Access 8 (2020), 195113–195121.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating Knitted
Cloth at the Yarn Level. ACM Trans. Graph. (SIGGRAPH) 27, 3, Article 65 (Aug. 2008),
9 pages.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient Yarn-Based
Cloth with Adaptive Contact Linearization. ACM Trans. Graph. (SIGGRAPH) 29, 4,
Article 105 (July 2010), 10 pages.

Kaizhang Kang, Minyi Gu, Cihui Xie, Xuanda Yang, Hongzhi Wu, and Kun Zhou. 2021.
Neural Reflectance Capture in the View-Illumination Domain. IEEE Transactions on
Visualization and Computer Graphics 1 (2021), 1–1.

Kato Tech. 2022. KES-FB2-AUTO-A Pure Bending Tester. https://english.keskato.co.jp.
Diederik P. Kingma and Max Welling. 2019. An Introduction to Variational Autoen-

coders. Foundations and Trends in Machine Learning 12, 4 (2019), 307–392.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification

with Deep Convolutional Neural Networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1 (Lake Tahoe, Nevada).
1097–1105.

Shoji Kunitomo, Shinsuke Nakamura, and Shigeo Morishima. 2010. Optimization of
Cloth Simulation Parameters by Considering Static and Dynamic Features. In ACM
SIGGRAPH 2010 Posters. Article 15, 1 pages.

Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew Overby,
George E. Brown, and Laurence Boissieux. 2018. An Implicit Frictional Contact
Solver for Adaptive Cloth Simulation. ACM Trans. Graph. (SIGGRAPH) 37, 4, Article
52 (July 2018), 15 pages.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast
Simulation of Mass-Spring Systems. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6,
Article 214 (Nov. 2013), 7 pages.

Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence
Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. ACM Trans.
Graph. (SIGGRAPH Asia) 37, 6, Article 201 (Dec. 2018), 16 pages.

Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. 2003. Discrete
Differential-Geometry Operators for Triangulated 2-Manifolds. In Visualization
and mathematics III. Springer, 35–57.

Microsoft. 2022. Azure Kinect DK. https://azure.microsoft.com/en-us/services/kinect-
dk.

Eder Miguel, Derek Bradley, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik,
Miguel A. Otaduy, and Steve Marschner. 2012. Data-Driven Estimation of Cloth
Simulation Models. Comput. Graph. Forum (Eurographics) 31, 2 (May 2012), 519–528.

Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C. Schvartzman, Bernhard
Thomaszewski, Bernd Bickel, Wojciech Matusik, Steve Marschner, and Miguel A.
Otaduy. 2013. Modeling and Estimation of Internal Friction in Cloth. ACM Trans.
Graph. (SIGGRAPH Asia) 32, 6, Article 212 (Nov. 2013), 10 pages.

Vishnu Mohan M S and Vivek Menon. 2021. Measuring Viscosity of Fluids: A Deep
Learning Approach Using a CNN-RNN Architecture. In The First International
Conference on AI-ML-Systems (AIMLSystems 2021). Article 12, 5 pages.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless Deformations Based on Shape Matching. ACM Trans. Graph. (SIGGRAPH)
24, 3 (July 2005), 471–478.

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive Anisotropic Remesh-
ing for Cloth Simulation. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6, Article 152
(Nov. 2012), 10 pages.

Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E. Lloyd, Joshua L.
Richmond, and Som H. Yau. 2001. Scanning Physical Interaction Behavior of 3D
Objects. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques (SIGGRAPH 2001). 87–96.

Dinesh K. Pai, Austin Rothwell, Pearson Wyder-Hodge, Alistair Wick, Ye Fan, Egor
Larionov, Darcy Harrison, Debanga Raj Neog, and Cole Shing. 2018. The Human
Touch: Measuring Contact with Real Human Soft Tissues. ACM Trans. Graph.
(SIGGRAPH) 37, 4, Article 58 (July 2018), 12 pages.

Abdullah-Haroon Rasheed, Victor Romero, Florence Bertails-Descoubes, Stefanie
Wuhrer, Jean-Sébastien Franco, and Arnaud Lazarus. 2020. Learning to Measure the
Static Friction Coefficient in Cloth Contact. In IEEE Conference on Computer Vision
and Pattern Recognition (Seattle, United States). 9909–9918.

Abdullah Haroon Rasheed, Victor Romero, Florence Bertails-Descoubes, Stefanie
Wuhrer, Jean-Sebastien Franco, and Arnaud Lazarus. 2021. A Visual Approach
to Measure Cloth-Body and Cloth-Cloth Friction. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2021), 1–1.

Victor Romero, Mickaël Ly, Abdullah Haroon Rasheed, Raphaël Charrondière, Arnaud
Lazarus, Sébastien Neukirch, and Florence Bertails-Descoubes. 2021. Physical Vali-
dation of Simulators in Computer Graphics: A New Framework Dedicated to Slender
Elastic Structures and Frictional Contact. ACM Trans. Graph. (SIGGRAPH) 40, 4,
Article 66 (July 2021), 19 pages.

Ribeiro Rui, André Pilastri, CarlaMoura, Filipe Rodrigues, Rita Rocha,Morgado José, and
Cortez Paulo. 2020. Predicting Physical Properties of Woven Fabrics via Automated
Machine Learning and Textile Design and Finishing Features. InArtificial Intelligence
Applications and Innovations, Vol. 584. 244–255.

Andrew Selle, Jonathan Su, Geoffrey Irving, and Ronald Fedkiw. 2009. Robust High-
Resolution Cloth Using Parallelism, History-Based Collisions, and Accurate Friction.
IEEE Transactions on Visualization and Computer Graphics 15, 2 (March 2009), 339–
350.

Shirin Shahriari, Gholamreza Pazuki, and Bandar Duraya Al-Anazi. 2010. Neutral
Network Estimates Poisson’s Ratio, Young’s Modulus. Oil and Gas Journal 108, 19
(2010), 47–50.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In International Conference on Learning Representa-
tions, Yoshua Bengio and Yann LeCun (Eds.). 14 pages.

Taber Industries. 2022. Cantilever Tester - Model 145. http://www.ordertaber.com.
Rasmus Tamstorf and Eitan Grinspun. 2013. Discrete Bending Forces and Their Jaco-

bians. Graphical Models 75, 6 (2013), 362–370.
Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for Con-

volutional Neural Networks. In Proceedings of the 36th International Conference on
Machine Learning (ICML) 2019, Vol. 97. PMLR, 6105–6114.

Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018.
I-Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth Simulation.
ACM Trans. Graph. (SIGGRAPH Asia) 37, 6 (Dec. 2018), 10 pages.

Pascal Volino, NadiaMagnenat-Thalmann, and Francois Faure. 2009. A Simple Approach
to Nonlinear Tensile Stiffness for Accurate Cloth Simulation. ACM Trans. Graph. 28,
4, Article 105 (Sept. 2009), 16 pages.

Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015.
Deformation Capture and Modeling of Soft Objects. ACM Trans. Graph. (SIGGRAPH)
34, 4, Article 94 (July 2015), 12 pages.

Huamin Wang. 2015. A Chebyshev Semi-Iterative Approach for Accelerating Projective
and Position-Based Dynamics. ACM Trans. Graph. (SIGGRAPH Asia) 34, 6, Article
246 (Oct. 2015), 9 pages.

Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi. 2011. Data-Driven Elastic
Models for Cloth: Modeling and Measurement. ACM Trans. Graph. (SIGGRAPH) 30,
4, Article 71 (July 2011), 9 pages.

Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on the
GPU. ACM Trans. Graph. (SIGGRAPH Asia) 35, 6, Article 212 (Nov. 2016), 10 pages.

Longhua Wu, Botao Wu, Yin Yang, and Huamin Wang. 2020. A Safe and Fast Repulsion
Method for GPU-Based Cloth Self Collisions. ACM Trans. Graph. 40, 1, Article 5
(Dec. 2020), 18 pages.

Shan Yang, Junbang Liang, and Ming C. Lin. 2017. Learning-Based Cloth Material
Recovery from Video. In IEEE International Conference on Computer Vision. 4393–
4403.

ACM Trans. Graph., Vol. 41, No. 6, Article 221. Publication date: December 2022.

https://english.keskato.co.jp
https://azure.microsoft.com/en-us/services/kinect-dk
https://azure.microsoft.com/en-us/services/kinect-dk
http://www.ordertaber.com

	Abstract
	1 Introduction
	2 Previous Work
	3 Overview
	3.1 A Drape Tester

	4 Simulator and Stiffness Models
	4.1 In-Plane Stiffness
	4.2 Uniaxial Bending Stiffness
	4.3 Cantilever-Based Parameter Estimation
	4.4 Anisotropic Bending Stiffness

	5 Synthetic Data Generation
	5.1 Parameter Subspace Construction
	5.2 Data Synthesis

	6 Neural Network Design
	6.1 The Choice of the Backbone Network
	6.2 The Choice of the Output
	6.3 The Number of Views
	6.4 The Choice of the Feature Vector

	7 Results and Discussions
	7.1 Cost Analysis
	7.2 Simulation Fidelity Analysis
	7.3 Sensitivity Analysis
	7.4 Applicability Analysis
	7.5 The Necessity of A Parameter Subspace
	7.6 A Long Dress Example
	7.7 Limitations

	8 Conclusions and Future Work
	Acknowledgments
	References

