
Automatic Quantization for Physics-Based Simulation – Supplementary
Materials

JIAFENG LIU∗, State Key Laboratory of CAD&CG, Zhejiang University, China
HAOYANG SHI∗, State Key Laboratory of CAD&CG, Zhejiang University, China
SIYUAN ZHANG, State Key Laboratory of CAD&CG, Zhejiang University, China
YIN YANG, Clemson University & University of Utah, USA
CHONGYANG MA, Kuaishou Technology, China
WEIWEI XU†, State Key Laboratory of CAD&CG, Zhejiang University, China

1 QUANTIZATION SCHEMES OF THE EXPERIMENTS
We show the quantization schemes used in each experiment. Note
that the ranges shown in the tables are the maximum distance to
zero for the signed fix-point numbers. In the tables that contain
the computed quantization schemes, We use 𝑋 , 𝑉 , 𝐶 , 𝐹 , and 𝐽 to
denote the position, velocity, local affine velocity field, deformation
gradient, and the determinant of 𝐹 , respectively.

Error-bound experiments. The quantization schemes of the error-
bound experiments in Section 8.1 of our main paper can be found
in Tables 1 and 2.

Memory-bound experiments. The quantization schemes of the
memory-bound experiments in Section 8.1 can be found in Table 4.

2 OPTIMALITY CHECK, DITHERING, AND
PERFORMANCE BENCHMARK ON MPM

The quantization schemes of the optimality check, dithering, and
performance benchmark on 2D MPM experiments in Sections 8.1
and 8.2 of our main text can be found in Table 6. For the optimality
check experiment, the quantization schemewe present in the table is
the base scheme from which all the other testing schemes originate.
Besides, the placement of custom data types using bit struct or bit
pack is demonstrated in the following code:
particles = ti.root.dense(ti.i, N) # N=8000
using bit struct
particles.bit_struct(num_bits=64).place(x(0),x(1),v(0))
particles.bit_struct(num_bits=64).place(v(1)),C(0, 0),C

(0, 1),C(1, 0), C(1, 1))
particles.bit_struct(num_bits=64).place(F(0, 0),F(0, 1),

F(1, 0))
particles.bit_struct(num_bits=32).place(F(1, 1))

using bit pack
particles.bit_pack().place(x, v, C, F)

As for the 3D MPM performance benchmark, we present the quanti-
zation scheme in Table 5 and demonstrate the layout of the custom
data types using the following code:
∗Joint first authors.
†Corresponding author: Weiwei Xu (xww@cad.zju.edu.cn)

Authors’ addresses: Jiafeng Liu, jiafengliu@zju.edu.cn, State Key Laboratory of
CAD&CG, Zhejiang University, China; Haoyang Shi, shay@zju.edu.cn, State Key Labo-
ratory of CAD&CG, Zhejiang University, China; Siyuan Zhang, zhang_sy@zju.edu.cn,
State Key Laboratory of CAD&CG, ZhejiangUniversity, China; Yin Yang, yin5@clemson.
edu, Clemson University & University of Utah, USA; Chongyang Ma, chongyangma@
kuaishou.com, Kuaishou Technology, China; Weiwei Xu, xww@cad.zju.edu.cn, State
Key Laboratory of CAD&CG, Zhejiang University, China.

Table 1. Quantization schemes for the error bound experiments of 2D MPM
elastic body.

Attributes Relative error tolerance Ranges0.1 0.01 0.001 0.0001

𝑋𝑥 23 26 29 32 1
𝑋𝑦 22 26 29 32 1
𝑉𝑥 17 20 23 27 9.398
𝑉𝑦 17 20 23 27 12.99
𝐶0,0 9 12 16 19 7.262 × 102

𝐶0,1 11 15 18 21 1.187 × 103

𝐶1,0 12 15 18 22 1.452 × 103

𝐶1,1 9 12 16 19 8.151 × 102
𝐹0,0 18 21 25 28 4.629
𝐹0,1 17 21 24 27 4.759
𝐹1,0 18 21 24 28 6.725
𝐹1,1 18 21 25 28 5.337

Table 2. Bit count and range derived in 2D error-bounded Eulerian fluid
simulation. v and p represent velocity and pressure, respetively.

Relative error
tolerance v Bits p Bits v Range p Range

0.1 7 5

2.03 1.070.01 11 8
0.001 14 12
0.0001 17 15

Table 3. Quantization schemes applied in 3D smoke simulation.

v Bits p Bits v Range p Range

17 13 34.05 4.63

particles = ti.root.dense(ti.i, N) # N=30,000,000
using bit struct
particles.bit_struct(num_bits=64).place(x(0),x(1))
particles.bit_struct(num_bits=64).place(x(2),v(0),v(1))
particles.bit_struct(num_bits=64).place(v(2),C(0,0),C

(0,1),C(0,2),C(1,0))
particles.bit_struct(num_bits=64).place(C(1,1),C(1,2),C

(2,0),C(2,1),C(2,2))

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

51:2 • Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Weiwei Xu

Table 4. Quantization schemes for the experiments about compression rates.

Attributes Compression rate Ranges0.4 0.5 0.6 0.7

𝑋𝑥 18 21 24 27 1
𝑋𝑦 18 21 25 28 1
𝑉𝑥 13 16 19 22 8.570
𝑉𝑦 13 16 20 23 1.140
𝐶0,0 9 12 16 19 7.441 × 102

𝐶0,1 9 12 15 18 8.479 × 102

𝐶1,0 10 13 16 20 8.633 × 102

𝐶1,1 9 12 16 19 7.314 × 102
𝐽 11 13 17 20 0.3140

particles.bit_struct(num_bits=64).place(F(0,0),F(0,1),F
(0,2))

particles.bit_struct(num_bits=64).place(F(1,0),F(1,1),F
(1,2))

particles.bit_struct(num_bits=64).place(F(2,0),F(2,1),F
(2,2))

using bit pack
particles.bit_pack().place(x, v, C, F)

Comparison with QuanTaichi [Hu et al. 2021]. The quantization
scheme which is used in the comparison with QuanTaichi is shown
in Table 7.

Scalability. The quantization scheme of the scaling experiment
in Section 8.3 of our main text can be found in Table 8.

Large-scale demos. The quantization schemes of the large-scale
demo in Section 8.4 of our main text can be found in Tables 3 and 9.

3 ADDITIONAL EXPERIMENTS

3.1 Iterative Solutions
We iteratively solve the optimization for the 2D smoke simulation
experiments to test the convergence of our method. Starting from
32 bits for each variable, we restrict the step size of changing bits in
each iteration by setting a learning rate of 0.5. All test cases in this
experiment converge after no more than six iterations. The results
presented in Table 10 show that the final solution is very close to
the non-iterative solution, which is obtained from the first iteration.

3.2 Simulation Error of Optimality Check
The simulation error of optimality check in Section 8.1 of our main
text can be found in Fig. 1. The error is computed via 𝜎2

𝜃
+ (𝜇𝜃 − 𝑧)2,

where 𝜇𝜃 and 𝜎𝜃 denote the mean and standard deviation of the
observed distribution 𝜃 .

3.3 Preliminary Feasibility Tests
All of the experiments in this section are conducted on 2D MPM
elastics simulation with 5000 particles and 1282 grids. The full-
precision reference is float64, and the quantized simulator has 19
and 13 bits for position and velocity, respectively. The experiments

-3 -2 -1 0 1 2 3
C-F adjustment

-3
-2

-1
0

1
2

3
x-

v
ad

ju
st

m
en

t

87962 93721 56085 94239 36258 116456 92121

70521 44165 12350 8902 12534 39568 26007

171465 10704 19644 4716 17159 15312 27237

57264 19679 7171 4319 9438 23003 57248

10724 26090 7960 1503 18758 15643 89692

89939 8707 4641 6024 12081 19518 37314

74601 37789 9532 47380 37402 23615 163258

Optimality Check

Fig. 1. Optimality check. Error measured in the square sum of standard
deviation and bias. Positive x-axis: move bits from x to v; positive y-axis:
move bits from C to F.

are implemented using Taichi programming language and run on
the CUDA backend. The hardware is an NVIDIA GTX 1080Ti GPU
with 11GB memory.

The quantization errors tend to accumulate exponentially with
time. We recorded the point-to-point errors, which are shown in
Fig. 2, suggesting that mean squared errors might not be an ideal
evaluation function. Similarly, gradients also accumulate exponen-
tially with growth in time (shown in Fig. 3), which gives us a hint
on the feasibility of using accumulated gradients for error control.
By our linear model, one of our predictions is that with each

bit added to all quantized types, the aggregated quantization error
is reduced by half. Fig. 4 shows that this is generally true in this
experimental setting, as the quantized mean value of evaluation
function approaches the reference value roughly in an exponential
manner.

3.4 Acceleration of Dithering Operations
The performance statistics of the dithering operation reported in our
main paper are obtained using the default random number generator
(RNG) algorithm in Taichi programming language [Hu et al. 2019],
which includes at least four times global memory access to make
the random number reproducible.

To avoid extra memory access, we borrow the idea from the GLSL
random number function in Perlin noise. Specifically, we use the
following formula: 𝑟 = 𝐹 (sin(𝑥 × 52.1063) × 43758.5453123), where
𝑥 is the number to be dithered, 𝑟 is the random number, and the
function 𝐹 returns the fractional part of the number. However, the

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

Automatic Quantization for Physics-Based Simulation – Supplementary Materials • 51:3

Table 5. Quantization schemes for the 3D MPM performance experiments. The range values of all the {𝐶 } are scaled by a factor of 10−3.

𝑋𝑥 𝑋𝑦 𝑋𝑧 𝑉𝑥 𝑉𝑦 𝑉𝑧 𝐶0,0 𝐶0,1 𝐶0,2 𝐶1,0 𝐶1,1 𝐶1,2 𝐶2,0 𝐶2,1 𝐶2,2 𝐹0,0 𝐹0,1 𝐹0,2 𝐹1,0 𝐹1,1 𝐹1,2 𝐹2,0 𝐹2,1 𝐹2,2

Bits 24 23 23 17 17 15 11 14 11 13 11 10 11 12 10 19 18 18 18 18 17 17 17 18
Ranges 4 4 4 3.811 4.299 × 101 3.316 × 101 3.683 9.041 3.286 6.865 5.328 3.070 3.708 6.660 3.490 7.424 7.992 7.768 8.340 8.423 6,283 6.133 5.396 5.734

Table 6. Quantization schemes for optimality check, dithering, and perfor-
mance benchmarks on MPM.

Dithering Bits: Optimality
Check Base

MPM
Performance Ranges

𝑋𝑥 19 26 23 1
𝑋𝑦 19 26 23 1
𝑉𝑥 13 20 17 9.398
𝑉𝑦 13 20 17 1.299
𝐶0,0 9 12 10 7.262 × 102

𝐶0,1 10 15 12 1.128 × 103

𝐶1,0 10 15 12 1.452 × 103

𝐶1,1 9 12 10 8.151 × 102
𝐹0,0 14 21 19 4.629
𝐹0,1 14 21 18 4.759
𝐹1,0 14 21 18 6.725
𝐹1,1 15 21 19 5.337

Table 7. Quantization schemes used in comparison with QuanTaichi. Note
that we only use the fixed-point data format while the velocity is represented
by a custom float type (10 fraction bits and 6 exponent bits) in QuanTaichi.

Attributes Our method QuanTaichi
Bits Ranges Bits Ranges

𝑋𝑥 18 1.0 20 2.0
𝑋𝑦 18 1.0 20 2.0
𝑉𝑥 13 18.153 frac: 10, exp: 6 /
𝑉𝑦 12 18.810 frac: 10, exp: 6 /
𝐹0,0 13 2.913 16 4.0
𝐹0,1 12 2.522 16 4.0
𝐹1,0 12 2.702 16 4.0
𝐹1,1 12 2.465 16 4.0

computation of the sinusoidal function is relatively expensive. So we
use a quadratic function 𝑆 to compute the sine value approximately:
𝑆 (𝑥) = 4

𝜋 𝑥 − 4
𝜋2 𝑥 |𝑥 |, 𝑥 ∈ [−𝜋, 𝜋]. In this way, we can accelerate

dithering by up to a factor of 6.12 in the benchmark test. Note
that, although the extra global I/O overhead can be alleviated in
this way, the quality of the randomness is degraded slightly. The
results of the performance benchmark of fast dithering are shown
in Table. 11. In most cases, the performance of our fast dithering
implementation is very close to the result of the experiment without
dithering. However, as the quality of randomness decreases, the
simulation errors become larger than the default dithering algorithm.
We evaluate the effectiveness by comparing both algorithms in the
dithering experiment of Section 8.1 in our main paper. The result of
our fast dithering algorithm is shown in the third row in Table 12,

Fig. 2. Mean Square Error is not an ideal canary of the visual quality as
false-positive frequents. It undergoes exponential growth with respect to
time, but in most cases, large MSE does not directly translate to degraded
visual effects.

Fig. 3. Accumulated gradients grow exponentially with growth in the num-
ber of back-propagation steps. Recorded in 2D MLS-MPM elastics simula-
tion.

and the statistics in the rest rows are copied from Table 5 in the
main paper. It verifies that the quality of simulation results based
on our accelerated dithering operations is comparable to the default
dithering implementation.

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

51:4 • Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Weiwei Xu

Table 8. Quantization schemes for the scaling experiment. The range values of all the {𝐶 } are scaled by a factor of 10−3.

𝑋𝑥 𝑋𝑦 𝑋𝑧 𝑉𝑥 𝑉𝑦 𝑉𝑧 𝐶0,0 𝐶0,1 𝐶0,2 𝐶1,0 𝐶1,1 𝐶1,2 𝐶2,0 𝐶2,1 𝐶2,2 𝐽

Bits 22 23 22 17 16 16 14 17 15 14 15 13 14 16 14 16
Ranges 1 1 1 1.103 × 101 1.129 × 101 1.345 × 101 1.793 1.857 1.770 1.901 1.729 1.546 1.921 2.558 1.661 1.403

Table 9. Quantization schemes for the large-scale MPM simulations. The range values of all the {𝐶 } are scaled by a factor of 10−3.

𝑋𝑥 𝑋𝑦 𝑋𝑧 𝑉𝑥 𝑉𝑦 𝑉𝑧 𝐶0,0 𝐶0,1 𝐶0,2 𝐶1,0 𝐶1,1 𝐶1,2 𝐶2,0 𝐶2,1 𝐶2,2 𝐹0,0 𝐹0,1 𝐹0,2 𝐹1,0 𝐹1,1 𝐹1,2 𝐹2,0 𝐹2,1 𝐹2,2 𝐽

Bits:
Elastic Body 22 23 22 18 18 16 9 14 11 14 10 9 11 11 9 19 18 18 18 19 18 18 18 18 -

Bits:
Fluid 21 22 21 15 18 15 12 16 13 14 13 14 14 15 13 - - - - - - - - - 17

Ranges:
Elastic Body 4 4 4 3.811 4.299 × 101 3.316 × 101 3.683 9.041 3.286 6.865 5.328 3.070 3.708 6.660 3.490 7.424 7.992 7.768 8.340 8.423 6,283 6.133 5.396 5.734 -

Ranges:
Fluids 4 1 4 5.141 4.471 × 101 4.915 1.578 6.634 1.414 1.880 1.538 1.986 1.616 4.912 1.230 - - - - - - - - - 1.637

Table 10. Results obtained by solving the optimization for the 2D smoke
experiments iteratively under the same relative error 𝜖𝑒𝑟𝑟 . The results show
that the fraction bits converges after at most 6 iterations and the final
solution is very close to the non-iterative result (See the last row).

𝜖𝑒𝑟𝑟 0.1 0.01 0.001 0.0001

Iteration 0 [20, 19] [22, 20] [23, 22] [25, 24]
Iteration 1 [13, 12] [16, 14] [18, 17] [20, 19]
Iteration 2 [9, 8] [13, 11] [15, 14] [18, 17]
Iteration 3 [8 ,6] [11, 9] [14, 13] [17, 16]
Iteration 4 [9, 7] [10, 8] [13, 12] [17, 16]
Iteration 5 [8, 6] - - -

Initial solution [7, 5] [11, 8] [14, 12] [17, 15]

Fig. 4. Blue line and area depicts mean and variance with the number of
fraction bits of x and v specified on the x axis. By our error estimation,
aggregated error should reduce by half with every bit added to all quan-
tized types. It is shown that the bias roughly follows this postulation as
the blue line approximates the reference value (grey) exponentially, while
the variance only begins to comply with our prediction after the bias and
standard deviation become comparable.

Table 11. Benchmark with accelerated dithering. The time is measured in
seconds.

Case Backend Fast dithering No dithering

Store x64 8.902 8.888
CUDA 0.060 0.059

MatMul x64 39.256 16.593
CUDA 0.268 0.262

MPM 2D x64 61.592 59.498
CUDA 25.984 26.651

MPM 3D CUDA 27.699 27.284

Table 12. The effectiveness of fast dithering. Round-ups/Round-downs indi-
cates the ratio of round-ups operations to round-downs operations.

Data type Evaluation function Round-ups/
Round-downs

float64 1.378 × 105 -
Quantization with dithering 1.370 × 105 0.999976
Quantization with fast dithering 1.361 × 105 0.999635
Quantization without dithering 8.885 × 105 0.683994

Users may choose which type of dithering to use according to
their preference for performance or quality. If not mentioned in
the rest of this supplementary material, we choose the native RNG
provided by Taichi to conduct dithering operations for simplicity.

3.5 Failure Cases
After setting a large compression rate of 30%, we re-run the experi-
ment in Fig. 15 in our main paper with two modifications of initial
conditions: an initial velocity of 3.0 and 4x times larger pressure.
As shown in Fig. 5, noticeable artifacts appear in the simulation re-
sults, and the quantization schemes computed in this experiment are
shown in Table 13. Comparing to the original quantization scheme
listed in Table 8, it can be seen that the bits of each quantity drop
significantly with the target compression rate of 30%, which is the
cause of the artifacts.

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

Automatic Quantization for Physics-Based Simulation – Supplementary Materials • 51:5

Float 64Quantized

Fig. 5. Failure cases caused by different initial conditions. Top: we increase the pressure coefficient by a factor of 4, and the simulation becomes unstable.
Bottom: after we use a large non-zero velocity 3.0, the volume of fluid increases significantly compared to the full-precision reference.

Table 13. Quantization schemes of the failure cases. The range values of all the {𝐶 } are scaled by a factor of 10−3.

𝑋𝑥 𝑋𝑦 𝑋𝑧 𝑉𝑥 𝑉𝑦 𝑉𝑧 𝐶0,0 𝐶0,1 𝐶0,2 𝐶1,0 𝐶1,1 𝐶1,2 𝐶2,0 𝐶2,1 𝐶2,2 𝐽

Bits 14 16 15 9 8 9 8 8 8 7 7 6 6 9 7 9
Ranges 1 1 1 1.103 × 101 1.129 × 101 1.345 × 101 1.793 1.857 1.770 1.901 1.729 1.546 1.921 2.558 1.661 1.403

4 ANALYTICAL SOLUTIONS FOR AUTOMATIC
QUANTIZATION

4.1 Error-BoundedQuantization
The formulation in Section 4.2 is:

min
△ℎ

𝐻∑︁
ℎ=1

−𝑃ℎ log2
△ℎ
𝑅ℎ

,

𝑠 .𝑡 .
1
12

𝐻∑︁
ℎ=1

△2
ℎ

©«
𝑇∑︁
𝑡=0

𝑃ℎ∑︁
𝑖=1

(
𝜕𝑧

𝜕𝑥𝑖
𝑡,ℎ

)2ª®¬ < (𝑧𝜖𝑒𝑟𝑟)2,

△1, . . . , △𝐻 > 0.

(1)

With the Lagrange multiplier method, we have:

𝐿 =

𝐻∑︁
𝑖=1

−𝑃ℎ log2
△ℎ
𝑅ℎ

+ 𝜆
©« 1
12

𝐻∑︁
ℎ=1

△2
ℎ

©«
𝑇∑︁
𝑡=0

𝑃ℎ∑︁
𝑖=1

(
𝜕𝑧

𝜕𝑥𝑖
𝑡,ℎ

)2ª®¬ − (𝑧𝜖𝑒𝑟𝑟)2ª®¬ .
Setting the partial derivatives to zeros, we have:

𝜕𝐿

𝜕△ℎ
= 0, ∀ℎ = 1, . . . , 𝐻 (2)

𝜕𝐿

𝜕𝜆
= 0 (3)

With algebraic derivation, we can obtain the solution as follows:

𝜆 =

∑𝐻
ℎ=1 𝑃ℎ

2 ln 2 𝜖2𝑒𝑟𝑟𝑧2
,

△ℎ = 𝜖𝑒𝑟𝑟𝑧

√︄
12𝑃ℎ

𝑔ℎ
∑𝐻
ℎ=1 𝑃ℎ

,

where 𝑔ℎ =
∑𝑇
𝑡=0

∑𝑃ℎ
𝑖=1

(
𝜕𝑧

𝜕𝑥𝑖
𝑡,ℎ

)2
.

4.2 Memory-BoundedQuantization
The full formulation in Section 4.2 is:

min
△ℎ

1
12

𝐻∑︁
ℎ=1

△2
ℎ

©«
𝑇∑︁
𝑡=0

𝑃ℎ∑︁
𝑖=1

(
𝜕𝑧

𝜕𝑥𝑖
𝑡,ℎ

)2ª®¬,
𝑠 .𝑡 .

𝐻∑︁
ℎ=1

−𝑃ℎ log2
△ℎ
𝑅ℎ

< 𝑀𝜖𝑚𝑒𝑚,

△1, . . . , △𝐻 > 0.

(4)

Its Lagrangian function can then be constructed as follows:

𝐿 =
1
12

𝐻∑︁
ℎ=1

△2
ℎ

©«
𝑇∑︁
𝑡=0

𝑃ℎ∑︁
𝑖=1

(
𝜕𝑧

𝜕𝑥𝑖
𝑡,ℎ

)2ª®¬ + 𝜆

(
(
𝐻∑︁
ℎ=1

−𝑃ℎ log2
△ℎ
𝑅ℎ

) −𝑀𝜖𝑚𝑒𝑚

)
.

The solution can be obtained by setting the partial derivatives to
zero:

𝜕𝐿

𝜕△ℎ
= 0, ∀ℎ = 1, . . . , 𝐻 (5)

𝜕𝐿

𝜕𝜆
= 0 (6)

Let 𝑔ℎ = 𝑅2
ℎ

∑𝑇
𝑡=0

∑𝑃ℎ
𝑖=1

(
𝜕𝑧

𝜕𝑥𝑖
𝑡,ℎ

)2
, and then substitute the variables

△ℎ to 𝑥ℎ =
△2
ℎ

𝑅2
ℎ

in (5), we have:

1
12

𝑔ℎ − 𝜆
𝑃ℎ

2 ln 2𝑥ℎ
= 0,

𝑥ℎ =
6𝜆𝑃ℎ
ln 2𝑔ℎ

. (7)

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

51:6 • Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Weiwei Xu

Substituting (7) to (6) yields:

ln 𝜆 =
−∑𝐻

ℎ=1 𝑃ℎ ln
𝑃ℎ
𝑔ℎ

− 2𝜖𝑚𝑒𝑚 ·𝑀 ln 2∑𝐻
ℎ=1 𝑃ℎ

− ln
6
ln 2

,

ln𝑥ℎ =
−∑𝐻

ℎ=1 𝑃ℎ ln
𝑃ℎ
𝑔ℎ

− 2𝜖𝑚𝑒𝑚 ·𝑀 ln 2∑𝐻
ℎ=1 𝑃ℎ

+ ln
𝑃ℎ

𝑔ℎ
.

With algebraic derivation, we can obtain the solution as follows:

△ℎ = 𝑅ℎ

√︄
𝑃ℎ

𝑔ℎ
exp

(
−∑𝐻

ℎ=1 𝑃ℎ ln
𝑃ℎ
𝑔ℎ

− 2𝜖𝑚𝑒𝑚 ·𝑀 ln 2

2
∑𝐻
ℎ=1 𝑃ℎ

)
.

REFERENCES
Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.

2019. Taichi: a language for high-performance computation on spatially sparse data
structures. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–16.

Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang
Dai, William T. Freeman, and Frédo Durand. 2021. QuanTaichi: A Compiler for
Quantized Simulations. ACM Transactions on Graphics (TOG) 40, 4 (2021), 182:1–
182:16.

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

	1 Quantization Schemes of the Experiments
	2 Optimality Check, Dithering, and Performance Benchmark On MPM
	3 Additional Experiments
	3.1 Iterative Solutions
	3.2 Simulation Error of Optimality Check
	3.3 Preliminary Feasibility Tests
	3.4 Acceleration of Dithering Operations
	3.5 Failure Cases

	4 Analytical Solutions for Automatic Quantization
	4.1 Error-Bounded Quantization
	4.2 Memory-Bounded Quantization

	References

