
Automatic Quantization for Physics-Based Simulation
JIAFENG LIU∗, State Key Laboratory of CAD&CG, Zhejiang University, China
HAOYANG SHI∗, State Key Laboratory of CAD&CG, Zhejiang University, China
SIYUAN ZHANG, State Key Laboratory of CAD&CG, Zhejiang University, China
YIN YANG, Clemson University & University of Utah, USA
CHONGYANG MA, Kuaishou Technology, China
WEIWEI XU†, State Key Laboratory of CAD&CG, Zhejiang University, China

32
26

64

1512

32

84
54

128

4441

128

4034
64

524564

f32

f32

ϵ = 0.1 ϵ = 0.01

ϵ = 0.1 ϵ = 0.01

Fig. 1. Snapshots of our automatically quantized simulation on a single NVIDIA RTX 3090 GPU. Top left: large-scale Eulerian smoke simulation with quantized
types with 230M active voxels. Top right: MLS-MPM elastics simulation of 295M particles. Bottom left: MLS-MPM fluid simulation of 400M particles.
Bottom right: comparison of full-precision and quantized results in Eulerian smoke (with pressure and velocity quantized) and MLS-MPM experiment (with
position, velocity, deformation gradient, and affine velocity field quantized). From left to right: float32 reference, fixed-point quantized result with a relative
error-bound of 0.1 and 0.01, respectively. The total bit length is shown in the histogram on the right. Compared to the float32 reference, our automatically
generated quantization scheme satisfies the precision requirement while achieving 2.53× and 2.04× memory compression (smoke) and 2.21× and 2.15×
memory compression (elastic objects).

∗Joint first authors.
†Corresponding author: Weiwei Xu (xww@cad.zju.edu.cn)

Authors’ addresses: Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Weiwei Xu, State Key
Laboratory of CAD&CG, Zhejiang University; Yin Yang, Clemson University &
University of Utah; Chongyang Ma, Kuaishou Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Quantization has proven effective in high-resolution and large-scale simu-
lations, which benefit from bit-level memory saving. However, identifying
a quantization scheme that meets the requirement of both precision and
memory efficiency requires trial and error. In this paper, we propose a
novel framework to allow users to obtain a quantization scheme by simply
specifying either an error bound or a memory compression rate. Based
on the error propagation theory, our method takes advantage of auto-diff
to estimate the contributions of each quantization operation to the total
error. We formulate the task as a constrained optimization problem, which

© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART51 $15.00
https://doi.org/10.1145/3528223.3530154

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530154

51:2 • Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Weiwei Xu

can be efficiently solved with analytical formulas derived for the linearized
objective function. Our workflow extends the Taichi compiler and introduces
dithering to improve the precision of quantized simulations. We demonstrate
the generality and efficiency of our method via several challenging examples
of physics-based simulation, which achieves up to 2.5×memory compression
without noticeable degradation of visual quality in the results. Our code and
data are available at https://github.com/Hanke98/AutoQuantizer.

CCS Concepts: • Computing methodologies→ Parallel programming
languages; Physical simulation.

Additional Key Words and Phrases: Physics-based simulation; Quantized
computation; GPU programming.

ACM Reference Format:
Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Wei-
wei Xu. 2022. Automatic Quantization for Physics-Based Simulation. ACM
Trans. Graph. 41, 4, Article 51 (July 2022), 15 pages. https://doi.org/10.1145/
3528223.3530154

1 INTRODUCTION
In computer graphics, the resolution of physics-based simulation
plays a critical role in the visual quality of final results. Higher
resolution leads to richer details and is often desirable in practice.
A relevant programming paradigm is quantization. For example,
QuanTaichi [Hu et al. 2021] implemented a compiler-supported
quantized type system, allowing the user to represent the physical
variables with fewer bits. The simulation can then be performed in
a higher resolution with the help of quantized data types.
The benefit of quantization does not come for free. To get the

best out of the quantization, users must specify an optimal quan-
tization scheme, e.g., the fraction bit of each variable used in the
simulation, to describe the data types that balance the precision
and memory usages. Designing such a quantization scheme can
be challenging. The problem is weaved with the following three
troublesome characteristics. First, the impact of quantization on the
simulation quality is not intuitive. To understand how a quantization
scheme may negatively impact the simulation, one must repeat the
simulation multiple times under different quantization parameters.
Second, as the number of customized types increases, the search
space grows exponentially. This curse of dimension makes fine-
grained customization almost impossible. Third, in practice, it is
easy to quantize certain properties that have a plain physical signif-
icance, e.g., positions and velocities of particles. Unfortunately, this
becomes difficult when the physical significance of the property is
not intuitively comprehensible, especially for non-expert users. For
example, average users may find it challenging to catch the influence
on the overall errors of the deformation gradient. Therefore, it is
not safe to assume that quantization is a harmless gift until we find
the answer to a series of questions about the impact of quantization
on the simulation process. How much further can we compress
the variables before the quality loss become intolerable, and how
many bits of information are essential to encode the whole process?
Without an automatic quantization scheme, users have to tackle
these core issues manually by trial and error.
In this paper, we study how to solve the automatic quantization

problem using a constrained optimization algorithm. Our method
effectively obtains a quantization scheme automatically and effi-
ciently. Based on the uncertainty propagation theory [Cohen 1998],

we can consider the overall error of the simulation as a synthesis
of the errors induced by quantization at each step. It allows us
to specify a measurement to indicate the simulation error after
quantization, e.g., the volume change for an incompressible fluid
simulation, and use the gradients of the simulation error concerning
each quantized variable to characterize the contribution of each
quantization operation. Consequently, the automatic quantization
problem can be formulated as a constrained optimization problem
via local linearization of the overall simulation error. By solving the
optimization problem, we can achieve a desirable compression rate
of memory consumption with visually plausible simulation results.

The optimal fraction bits in a quantization scheme should balance
the memory consumption and the simulation precision. However,
as the number of possible fraction bits is discrete, the formulated
optimization problem is computationally expensive since, in com-
binatorial optimization algorithms, we need to repeat the physics-
based simulation multiple times to evaluate the searched solution for
fraction bits. Therefore, we convert the discrete fraction bit variable
to the continuous quantization resolution variable such that the
optimization problem can be solved continuously via the Lagrange
multiplier method. Our method computes gradient information after
running the physical simulation once and then leverages it to obtain
the fraction bits for each variable in an analytical way, providing
fast user feedback.
Although the uncertainty propagation theory can also consider

the correlation among the random variables, it is expensive to
evaluate the correlation among variables in a large-scale simula-
tion problem. Therefore, we introduce dithering [Schuchman 1964]
to enforce the independence among the round-off errors so that
the correlation terms in uncertainty propagation can be safely ig-
nored. Moreover, our experiments show that dithering significantly
improves simulation results in some cases since it can alleviate
dependence between round-off errors in the forward simulation.
In our formulation, gradients are essential to error estimation.

Unfortunately, the memory consumption of gradients computation
is too large for a long-multi-step simulation because the states
must be checkpointed at each time step. We adopt the methods
from [Braconnier and Langlois 2002] with O(log𝑁) space complex-
ity to save memory during the back-propagation process. After we
obtain the quantization scheme by solving the optimization, it is
also problematic to automatically fit those custom data types with
different bit widths into memory. The compiler has to pack those
custom data into a physical word, e.g., 32-bit or 64-bit length. To
tackle this problem, we extend the Taichi compiler [Hu et al. 2019a]
and offer a new bit-level container called bit pack that allows users to
place arbitrary lengths of custom data types into memory regardless
of the limits of physical word.

In summary, our main contributions include:

(1) A novel formulation and solution for computing a quantiza-
tion scheme based on uncertainty propagation theory;

(2) A simple compiler interface for quantization and a low mem-
ory cost implementation of automatic differentiation;

(3) Comprehensive evaluation and validation of the proposed
automatic quantization scheme with empirical instructions
on how to use our method.

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

https://github.com/Hanke98/AutoQuantizer
https://doi.org/10.1145/3528223.3530154
https://doi.org/10.1145/3528223.3530154

Automatic Quantization for Physics-Based Simulation • 51:3

Differentiable

Simulator

Range Analysis
Auto Quantization

Error Bound εerr

Compression Rate εmem

Custom Types
(x:17bit, y:17bit, z:17bit)

32 bits32 bits
17 bits

1 0 … 1 0 1 …1 0 1 0 1
17 bits 17 bits

1 0 1 0 1

bit_pack

… …

Quantized Large-Scale
Simulator

Scale
Float64

Fig. 2. Overview of our method. A differentiable simulator is developed on a relatively low resolution in a generic workflow. The user specifies an evaluation
function and launches the simulation with float64. Ranges and derivatives are recorded during this run. Our auto-quantization system can then derive a
quantization scheme according to the user’s specification on either error or memory constraints. The user starts to refine the simulation on a higher resolution
with the derived quantization scheme before eventually getting a quantized large-scale simulator.

Our method is implemented as an extension to the Taichi pro-
gramming language [Hu et al. 2019a] to take advantage of its feature
of automatic differentiation. However, other automatic differentiable
programming frameworks, such as Jax1 and Tensorflow2, can also
be adopted to implement differentiable simulations. Therefore, our
method can be integrated into these frameworks to obtain quantiza-
tion schemes as well. See Fig. 2 for an overview of our system.

2 RELATED WORK
High-resolution simulation. QuanTaichi [Hu et al. 2021] intro-

duces quantized data types into the area of physics-based simu-
lations. Empowered by bit-level compression, rich details can be
achieved in the simulation results. Besides, sparse data structures
[Hu et al. 2019a; Museth 2013; Setaluri et al. 2014; Wu et al. 2018]
are also important to implement high-resolution simulations. These
techniques aim to allocate memory only when necessary.
However, if all memory is occupied, it is more sensible to use

different resolutions/scales in the simulation scenes [Solenthaler and
Gross 2011;Wang et al. 2018]. It is also shown that great visual details
can be revealed by adapting the resolution dynamically [Aanjaneya
et al. 2017; De Goes et al. 2015; Ferstl et al. 2014]. Coarsening the
interior elements is a commonly usedmethod. Besides, the Boundary
Element Method (BEM) [James and Pai 1999] is another practical
way to enhance the details of simulation [Hahn and Wojtan 2015;
Huang et al. 2021; Keeler and Bridson 2015]. For all methods above,
parallelization on multi-GPUs is essential to increasing the upper
bound of the simulation scale [Gao et al. 2018; Liu et al. 2016; Wang
et al. 2020; Wu et al. 2015]. Most of these methods need tailored
implementation of the corresponding algorithms, while our method
allows users to reduce memory consumption easily with minor
modification of the original simulator.

Word-length optimization. In Digital Signal Processing (DSP),
word-length optimization (WLO) [Catthoor et al. 1988; Constan-
tinides et al. 2001; Sung and Kum 1995] is a methodology to de-
termine the quantization schemes of data to trade-off between
precision and computational cost on resource-limited devices. The
key component of WLO is an evaluation method that approximates
the relationship between the quantization errors and the system
precision. Early research uses simulation-based methods [Sung
and Kum 1995] to evaluate a set of quantization schemes, which
becomes intolerable as the scale and number of variables increase.

1https://github.com/google/jax
2https://www.tensorflow.org/

[Constantinides et al. 2001] uses transfer functions of linear time-
invariant (LTI) systems to estimate the system errors. Perturbation
analysis is introduced to obtain the error model for non-linear
systems, in which the main idea is to consider the quantization error
as a small perturbation to the signal and to measure the contribution
of each quantization operation to the systematic error. [Shi and
Brodersen 2004] fits an error model by reducing the word length
and catching the variation of the total error. [Constantinides 2006]
performs a Taylor expansion and uses the first-order derivatives
as the coefficients of the linear combination. Another method of
constructing the error model is Interval Arithmetic (IA) [Moore and
Yang 1996]. IA is a widely-used method for precision analysis. In IA,
numbers are represented not only by themselves but also by a lower
and an upper bound. An entire set of arithmetic rules is defined to
support the range and error analysis. Typical improvement on IA
is Affine Arithmetics (AA), which takes the correlations of signals
into consideration [Lee et al. 2006; Vakili et al. 2013].
The main form of WLO is to minimize the hardware cost of the

whole system under constraints of the total errors. Because the
quantization schemes are represented by integers, solving the opti-
mization is not an easy task. There are two practical ways to solve
the optimization. One is to adopt stochastic search methods such as
simulated annealing [Constantinides 2003]. The other methodology
is setting the fraction bits to the maximum (e.g., 32) at first and then
gradually reducing them to find the minimal feasible word length
[Shi and Brodersen 2004].
The intrinsic nature of these DSP tasks indicates that they can

yield reasonable results within a short period of time. However, for
high-resolution physics-based simulation, fitting the error model by
running the simulation multiple times or solving the optimizations
by a stochastic search method can be time-consuming.

Differentiable simulations. Running a differentiable simulation is
an upstream task for our core algorithm of automatic quantization.
Recently, several types of differentiable-simulation methods have
been developed. ChainQueen [Hu et al. 2019b] presents a differen-
tiable soft body simulator using the Material Point Method (MPM)
with explicit time integration. A differentiable finite element method
(FEM) with implicit time integration has also been proposed under
the framework of projective dynamics [Bouaziz et al. 2014; Du et al.
2021]. Another line of methods approximates the simulation process
via neural networks [Battaglia et al. 2016; Li et al. 2019; Sanchez-
Gonzalez et al. 2020], which inherits the differentiability from the
network. However, the differentiation is not rigorously built on
physics, and the physical correctness might not be guaranteed in

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

https://github.com/google/jax
https://www.tensorflow.org/

51:4 • Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Weiwei Xu

this way [Bangaru et al. 2021; Du et al. 2021]. In addition, Auto-
matic differentiation tools are used to reduce the implementation
efforts of differentiable simulations [de Avila Belbute-Peres et al.
2018; Degrave et al. 2019]. For instance, DiffTaichi [Hu et al. 2020]
proposes a programming framework that automatically generates
gradient computation kernels that can be applied to implement
various simulation algorithms. As for optimal control tasks, the
adjoint method is often utilized to compute the gradients of a loss
function with respect to simulation parameters [Geilinger et al. 2020;
McNamara et al. 2004]. To simplify the programming process and
facilitate integration with the compiler, we choose to extend the
DiffTaichi framework in our implementation.

Prior to our work, applications of differentiable simulation include
parameter estimation, inverse dynamics, and motion control [Liang
et al. 2019; Qiao et al. 2020]. Our work identifies its significance as
the sensitivity of the target function to errors in each input variable
and utilizes it as the key ingredient in error estimation.

Dithering. In our framework, we leverage dithering as a method
to modulate the distribution of quantization errors. Dithering refers
to imposing a random noise on the continuous signal before quanti-
zation. It has long been applied in improving the subjective quality
of quantized representation for images or speeches [Jayant and Noll
1990]. Schuchman [1964] develops the theory about the property of
dithering and proves that a desirable dither signal should generate
quantization errors independent of the input signal. The common
applications use the manner of subtractive dithering, which enjoys
strong mathematical robustness, and is considered to be an efficient
algorithm to send a real number using only one bit. Subtractive
dithering assumes that the receiver is informed of the random
noise, which is subtracted out when reproducing the original signal.
However, difficulty in fulfilling this assumption has led to research
on non-subtractive dithering with similar effects on the moments
of quantization error [Wannamaker et al. 2000]. We follow the non-
subtractive approach in our implementation since bookkeeping
the dithering signal violates our motivation to reduce memory
consumption in the first place.

3 BACKGROUND

3.1 Quantization Procedure for Physics-Based Simulation
Our algorithm returns a quantization scheme of a simulation task,
given a memory budget or an accuracy expectation specified by
the user. Since a physical simulation proceeds one time step after
another, this process is inherently sequential. The error induced by
quantized computation accumulates along the simulation procedure.
Table 1 summarizes the notations used in our algorithm for clarity.

LetF denote a generic simulation function of one time step, which
maps the system configuration from the previous time step s𝑡−1
to the current step s𝑡 , i.e., s𝑡 = F(s𝑡−1). Meanwhile, we have a
quantized simulation function, F̃, which limits the total bit length
of s𝑡 and results in a quantized simulation result s̃𝑡 . F̃ can also be
understood as imposing a quantization error e𝑡 to the full-precision
simulation s𝑡 by eliminating nonzero quantities at its least signifi-
cant digits. If s𝑡−1 is quantized, we have:

s̃𝑡 = F̃ (̃s𝑡−1) = F (̃s𝑡−1) + e𝑡 . (1)

Table 1. List of notations.

Symbol Type Meaning or Definition

F function simulation function of one time step
s vector system state
F̃ function quantized simulation function
s̃ vector quantized system state
q vector component of s
e vector error vector
Z function evaluation function
𝑧 scalar value of the evaluation function
𝑥 scalar arbitrary variable with quantized type
△ scalar quantization resolution
𝑏 scalar fraction bits for fixed-point numbers
𝑅 scalar range of the fixed-point numbers
𝐻 scalar number of quantized data types
𝑃 scalar number of variables
𝑇 scalar total simulation steps
𝑁 scalar total quantization times
𝜙 function quantization encoding function
𝜙−1 function quantization dencoding function
𝜎 scalar standard deviation
𝜖𝑒𝑟𝑟 scalar target simulation error tolerance
𝜖𝑚𝑒𝑚 scalar target memory compression rate
𝑀 scalar reference memory consumption
P function probability density function
G function adjoint kernel for computing gradients
g vector accumulated squared gradients

During the simulation, s is composed of several generalized coor-
dinates and other attributes, e.g., particle positions, velocities etc:
s = (q𝑇1 , q

𝑇
2 , · · · , q

𝑇
𝐻
)𝑇 , where 𝐻 is the number of different physical

quantities, such as components of position and velocity involved in
the simulation, and each generalized coordinate q𝑖 is of 𝑃𝑖 dimension.
For example, in material point method (MPM), 𝑃𝑖 can be the number
of particles or grid cells (see Fig. 3).

We assume that the user appoints a specific evaluation function,
Z, which measures a metric of interest of the simulation over 𝑇
time steps. Naturally, the goal of an automatic quantizer seeks to
minimize 𝛿𝑧, the difference between the evaluation function values
of the quantized and full-precision simulations:

𝛿𝑧 =
��Z (̃

s0, s̃1, · · · , s̃𝑇
)
− Z

(
s0, s1, · · · , s𝑇

) ��2 . (2)

For example, Z can be set to calculate the kinetic energy of all
the particles in a fluid simulation, and then 𝛿𝑧 should identify the
magnitude of the numerical viscosity induced by the quantization.

We follow the same quantization algorithm as in [Hu et al. 2021].
A quantized type variable is stored in the memory with a limited
digit count but decoded as a standard float32 or float64 quantity
when participating in the computation. Typically, this operation is
lossless. The reverse operation i.e., the encoding from a regular float
to the quantized type, however, brings a quantization error.

Consider a quantization operation of a fixed-point transformation
𝜙 : R ↦→ Z, which takes a scalar 𝑣 ∈ R as the input and produces

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

Automatic Quantization for Physics-Based Simulation • 51:5

s0 s̃ t−1 s̃ t s̃T··· ···
Simulation Time

···

···x1
y,t

Position

x1
z,tx1

x,t v1
y,t

Velocity

v1
x,t v1

z,t F1
(1,2),t

Deformation Gradient

···F1
(1,1),t F1

(3,3),t

xP
y,t xP

z,txP
x,t vP

y,tvP
x,t vP

z,t FP
(1,2),tFP

(1,1),t FP
(3,3),t

···x2
y,t x2

z,tx2
x,t v2

y,tv2
x,t v2

z,t F2
(1,2),t ···F2

(1,1),t F2
(3,3),t

··· ···

··· ··· P
ar

ti
cl

es
P

 TypesH

Fig. 3. Notations of a quantized MPM simulation. In this case, we only
quantize the attributes stored on particles, so there are 𝑃 variables for each
attribute, where 𝑃 is the number of particles.

its integer representation 𝑢 ∈ Z and its inverse 𝜙−1, estimating the
floating-point value from a quantized integer 𝑢:

𝑢 = 𝜙 (𝑣) = ⌈𝑣/△⌋, 𝜙−1 (𝑢) = 𝑢 · △, (3)

where ⌈·⌋ is the function of rounding to the nearest integer and
△ = 2−𝑏𝑅 is the resolution of the corresponding quantization, where
𝑏 and 𝑅 are the fraction bits and the range for 𝑣 respectively. The
error induced by ℎ then becomes 𝑒 = 𝑣 − 𝜙−1

(
𝜙 (𝑣)

)
.

In this quantized simulation procedure, we need to determine
the optimal value for fraction bits 𝑏 and ranges 𝑅 for each custom
type. For example, in a 3D Eulerian fluid simulation, each cell is
associated with a vector of velocity (v) and a scalar of pressure (𝑝).
If we want to take advantage of quantized simulation, we need to
figure out how many fraction bits we should assign to each quantity
and what is the feasible range. However, there are many choices for
the fraction bits, i.e., 16 bits for 𝑝 and each component of v or 10
bits for 𝑝 and 3× 18 bits for v. Different choices will lead to different
simulation errors and memory compression rates. In this paper, we
focus on how to automatically obtain the number of fraction bits
according to users’ requirements on memory budget or computation
precision. As for the range analysis, we record the ranges from the
full precision simulation and multiply the ranges by a factor (e.g., 2)
to prevent overflowing.

3.2 Uncertainty Propagation Theory
Considering the quantization operation as imposing an error 𝑒𝑖 to
a variable 𝑥𝑖 , we can model the relationship between the quantity
𝛿𝑧 and system configuration variables using uncertainty propaga-
tion theory [Cohen 1998]. This theory proposes to measure the
uncertainty of a variable as standard deviation and construct a step-
by-step propagation procedure to estimate the final uncertainty
of a composite function. Specifically, if all the input variables are
uncorrelated, the uncertainty of a synthesized variable 𝑧 can be
estimated from the uncertainty of all its contributing variables {𝑥𝑖 }
as follows:

𝜎2𝑧 =
∑
𝑖=1

(
𝜕𝑧

𝜕𝑥𝑖

)2
𝜎2𝑥𝑖 , (4)

where 𝜎2𝑧 and 𝜎2𝑥𝑖 are the variances of 𝑧 and 𝑥𝑖 , respectively.

In our case, Eq. (4) allows us to track the uncertainty from all the
quantization errors for 𝛿𝑧 in Eq. (2):

𝐸 [𝛿𝑧] =
𝑁∑
𝑖=1

∫ △𝑖/2

−△𝑖/2

(
𝜕Z

𝜕𝑒𝑖

)2
𝑒2𝑖 P(𝑒𝑖)d𝑒𝑖 (5)

where the summation traverses all the components in each gen-
eralized coordinate across 𝑇 time steps, and thus 𝑁 =

∑𝐻
𝑖=1 𝑃𝑖 · 𝑇 .

The integral range is the absolute error bound, which is half of
the quantization resolution. The probability density function for an
error component 𝑒𝑖 is denoted as P(𝑒𝑖).

Note that we assume that the quantization errors are uncorrelated,
and therefore the cross terms of correlations are neglected in Eq. (4)
Under this assumption, our model lacks the ability to recognize the
correlation between quantization errors. It is essentially a localized
linear expansion at the point of the true value. Hence, we introduce
dithering operations so that this form of uncertainty propagation
can be applied to our problem properly (see Sec. 5).
In our implementation, a full-precision simulation needs to be

carried out first to obtain 𝑧 = Z(𝒔𝑖), the partial derivatives of the
quantization error, as well as the range of each custom data type.

4 UNCERTAINTY-PROPAGATION-BASED
QUANTIZATION

In this section, we first describe the details of the objective functions
and then present how to convert the automatic quantization prob-
lem into a continuous optimization problem using vector variables
consisting of the quantization resolution △ of each quantity.

4.1 Formulation of Objective Functions
The proposed automatic quantization includes two different strate-
gies, aiming to provide the user with either a controllable accuracy
bound or a guaranteed memory compression rate. Below we elabo-
rate the objective functions for these two strategies in detail.

Error-bounded quantization. Being quantized, simulation vari-
ables inevitably lose precision under capped bit length, which po-
tentially impacts the simulation quality and may even result in
visible artifacts. Error-bounded quantization scheme aims to address
this concern. It offers the accuracy guarantee prescribed by a user-
specified error bound and lowers the total memory consumption:

min
𝑏ℎ

𝐻∑
ℎ=1

𝑃ℎ𝑏ℎ, s.t. 𝐸 [𝛿𝑧] < (𝜖𝑒𝑟𝑟 · 𝑧)2, (6)

where 𝑃𝑖𝑏𝑖 gives the memory footprint of each generalized coordi-
nate q𝑖 , 𝐸 [·] computes the expectation of a random variable, 𝑧 =

Z
(
s0, s1, · · · , s𝑇

)
is the reference simulationmetric obtainedwithout

quantization, and 𝜖𝑒𝑟𝑟 is the relative error tolerance specified by
users.

Memory-bounded quantization. In a different scenario where the
hardware resource is limited, a guaranteed memory consumption
could be more favored in practice. To this end, we pose the memory
compression rate as a hard constraint that must be fulfilled by the
automatic quantization algorithm. Based on this constraint, we push

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

51:6 • Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Weiwei Xu

to suppress the accuracy loss as much as possible:

min𝐸 [𝛿𝑧] s.t.
𝐻∑
ℎ=1

𝑃ℎ𝑏ℎ < 𝜖𝑚𝑒𝑚 ·𝑀, (7)

where 𝜖𝑚𝑒𝑚 is thememory compression rate specified by the user,𝑀
stands for the total memory usage for the full-precision simulation,
e.g., 𝑀 = sizeof(float32)∑ 𝑃ℎ , assuming float32 is used as the
data type.

4.2 Continuous Optimization Problem
We change the fraction bit variable 𝑏ℎ into its corresponding quan-
tization resolution variable △ℎ for objective functions defined in
Sec. 4.1, such that the automatic quantization problem can be solved
in a continuous way. Assuming P(𝑒𝑖) follows a uniform distribution,
Eq. (5) is integrated into:

𝐸 [𝛿𝑧] = 1
12

𝐻∑
ℎ=1
△2
ℎ
𝑔ℎ

def
=

1
12

𝐻∑
ℎ=1
△2
ℎ

©«
𝑇∑
𝑡=0

𝑃ℎ∑
𝑖=1

(
𝜕𝑧

𝜕𝑥𝑖
𝑡,ℎ

)2ª®¬ , (8)

where the coefficient 𝑔ℎ is the accumulated squared gradient of the
variable with type ℎ. More, specifically, since 𝑏ℎ = − log2

△ℎ
𝑅ℎ

, the
objective function in Eq. (6) after the variable quantization is as
follows:

min
△ℎ

𝐻∑
𝑖=1
−𝑃ℎ log2

△ℎ
𝑅ℎ

𝑠 .𝑡 .
1
12

𝐻∑
ℎ=1
△2
ℎ
𝑔ℎ < (𝑧𝜖𝑒𝑟𝑟)2

△ℎ ∈ R+

(9)

Such a continuous optimization problem has an analytical solution
using Lagrange multiplier method:

△ℎ =

√
12𝑃ℎ (𝜖𝑒𝑟𝑟 · 𝑧)2

𝑔ℎ
∑𝐻
ℎ=1 𝑃ℎ

(10)

The fraction bits for each type of variable are then obtained ac-
cording to the value of △ℎ . Likewise, we can obtain the analytical
solution for memory-bounded scenario in Eq. (7) after the variable
quantization. Please refer to section 4 in supplementary material
for the solution derivations.

Discussions. The objective function in Eq. (9) is a local lineariza-
tion of Eq. (6). Indeed, the linearization can be iteratively updated at
new values of △ℎ after we solve Eq. (9). However, such an iterative
algorithm incurs a high computational cost since the gradients
must be computed after another round of forwarding simulation
in auto-diff. In practice, we have found linearizing using the gra-
dients computed with full-precision simulation is able to produce
approximate solutions that have the desirable properties: the quan-
tized simulation result is visually consistent with the full-precision
simulation, and their differences from the full-precision simulation
or the memory footprint can be controlled in most cases using our
objective functions with dithering. Therefore, we accept the solution
without iteration, which means we prefer speed over optimality in
automatic quantization. It can provide users with faster feedback.

ALGORITHM 1: Automatic quantization scheme based on an error-
bound constraint.

Input: 𝜖𝑒𝑟𝑟
Output: (𝑏1, 𝑅1), ..., (𝑏𝐻 , 𝑅𝐻)

1 𝑇 ← Total simulation steps
2 𝐻 ← Number of quantized data types
3 for h = 1 to H do
4 𝑃ℎ ← number of variables using type ℎ
5 end
6 s0 ← Initial conditions
7 for t = 0 to T-1 do

// step forward
8 s𝑡+1 ← F (s𝑡)

// update ranges for each quantity
9 Update 𝑅1 ...𝑅𝐻 according to s𝑡+1

10 end
// compute the evaluation function

11 𝑧 ← Z
(
s0, s1, · · · , s𝑇

)
12 Back propagation and accumulate gradients in g according to Eq. (8)
13 for h = 1 to H do

14 △ℎ ←
√

12𝑃ℎ (𝜖𝑒𝑟𝑟 ·𝑧)2
𝑔ℎ

∑𝐻
ℎ=1 𝑃ℎ

15 𝑏ℎ ← ⌈− log2
△ℎ
𝑅ℎ
⌉

16 end

0 1 2 3 4
steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

1.4

0.4

1.4

0.4

value of fixed-point variable y

Fig. 4. An illustration of the dependence between quantization errors. At
each frame, the variable 𝑦 is added by 1.4△ (see the green arrows) and
then 𝑦 is rounded down causing a quantization error of −0.4△ (the red
arrows). In this simulation pattern, the quantization errors for each frame
are all equal to the previous one. Therefore, assuming they are independent
random variables is not always reasonable.

The pseudocode of solving the quantization scheme under error-
bound constraints can be found in Algorithm 1.

5 DITHERING
So far, we model the quantization error as random uniform dis-
tribution for each quantization operation, and we assume they
are independent in the simulation. However, it is not a realistic
assumption in general settings. The quantization error is directly

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

Automatic Quantization for Physics-Based Simulation • 51:7

coupled with the digit after the least significant bit. It is liable to
reflect the functional relationship between the state variables. In
other words, if the uncorrelated assumption on the quantization
error 𝐶𝑜𝑣 (𝑒𝑡1,𝑖1 , 𝑒𝑡2,𝑖1) = 0 does not hold for every distinct pair of
(𝑡1, 𝑖1) ≠ (𝑡2, 𝑖2), it is not safe to apply Eq. (4), since the actual error
can be much bigger than the estimation.
As an example, assuming we have a variable 𝑦 represented by a

two-bit unsigned fixed-point number with four quantization levels.
Starting from 𝑦 = 0, we add 1.4△ to 𝑦 for each time step. In this
pattern, the quantization error of the first step is −0.4△, which leads
to the subsequent quantization errors being all −0.4△. Therefore
we cannot assume the quantization errors are independent random
variables in this case. Please see Fig. 4 for details.

As shown in [Gray 1990; Hejn and Pacut 1996; Widrow 1961],
dithering is an effective solution to supply the necessary condition
of modeling the quantization error as uniform and uncorrelated.
Overall, we follow the practice of non-subtractive dithering [Wan-
namaker et al. 2000] in our system. To elaborate, in each store
operation, we impose an additive uniform noise before rounding:

𝑢 = 𝜃𝑑𝑖𝑡ℎ𝑒𝑟 (𝑣) = ⌊
𝑣

△ + 𝜉⌉, 𝜉 ∼ 𝑈 (−1
2
,
1
2
) (11)

This dithered representation is a more accurate description than
a deterministic round-to-nearest scheme because it has an unbiased
first moment. Even with unevenly distributed signals, dithered
quantization presents a stronger tolerance and leads to a less biased
result. Specifically, if we denote the normalized round-off error, i.e.
𝑣
△ − ⌊

𝑣
△ ⌋, as 𝑌 ∈ [0, 1), the probability of performing a round-up

is exactly 𝑌 , i.e. P(𝑌 + 𝜉 > 0.5) = 𝑌 . In other words, the dithered
value after rounding shares the same expectation of 𝑌 regardless
of the distribution of 𝑌 . In comparison, if 𝑌 distributes unevenly
between the two intervals [0, 0.5), [0.5, 1), a naive rounding scheme
will result in a bias in the expectancy. However, the error variance
still depends on the value of 𝑌 and the 1

12△
2 variance of quantiza-

tion error remains an unsubstantiated assumption. In practice, our
dithering scheme works better than an alternative implementation
without dithered quantization (see Fig. 5 for an example).

6 GRADIENT COMPUTATION
Our method relies on the gradient of each variable involved in the
estimation of the system error in Eq. (8). We thus adopt the differ-
entiable programming framework of DiffTaichi [Hu et al. 2020] and
adhere to its restrictions to compute the gradients. However, Diff-
Taichi requires storing the states of each frame for back-propagation.
This requirement leads to linear growth of memory footprint, which
restricts the steps of the simulation. Thus, we follow the bisection al-
gorithm [Griewank 1992] to achieve logarithmic spatial complexity
w.r.t the growth of simulation steps.

With auto-diff implementation, gradient 𝜕𝑧
𝜕s𝑡 is calculated from

the chain rule below:
𝜕𝑧

𝜕s𝑡
=

𝜕𝑧

𝜕s𝑡+1
𝜕s𝑡+1
𝜕s𝑡

(12)

where 𝜕𝑧
𝜕s𝑡+1 is the result from last step which is carried backward,

and 𝜕s𝑡+1
𝜕s𝑡 is a function of s𝑡 . In all, the compiler transforms the for-

ward program s𝑡+1 = F(s𝑡) to the adjoint kernel G which calculates

Fig. 5. Effect of our dithering scheme. Top: quantized simulation without
dithering where the letters fall with different vertical velocities. Bottom:
quantized simulation with our dither scheme where the letters align neatly.

𝜕𝑧
𝜕s𝑡 from input s𝑡 and 𝜕𝑧

𝜕s𝑡+1 :

𝜕𝑧

𝜕s𝑡
= G(s𝑡 ,

𝜕𝑧

𝜕s𝑡+1
) (13)

Therefore, we must recover state s𝑡 before execution of adjoint
kernel before back-propagating the gradients from s𝑡+1 to s𝑡 . In the
implementation of ChainQueen, all the states s0, . . . , s𝑇 are stored
in pre-allocated areas so that they can be referenced out of the box
[Hu et al. 2019b].
Our bisection algorithm is similar to DiffTaichi’s checkpointing

method. Each checkpoint stores the entire time section so that a
rerun is possible. Trading time for space is possible by not keeping
all the states at hand but only recovering them by restarting from the
nearest checkpoint when necessary. However, instead of dividing
the simulation into uniform segments as suggested by DiffTaichi,
we allocate the checkpoints unevenly so that each checkpoint is in
the middle of the last checkpoint and the current state.
In practice, we organize the states s0, . . . , s𝑇 in a binary B+ tree,

with storage only on its leaves. The leaf nodes are indexed by 0, . . . ,𝑇
from left to right, corresponding to the states s0, . . . , s𝑇 . Each non-
leaf node serves as a signpost, which records the smallest value of
their sub-trees. We equate the checkpoints to the non-leaf nodes
according to the value, i.e., a non-leaf node with a signpost value
𝑡 corresponds to a checkpoint storing the information of state s𝑡 .
In a time step 𝑡 , only the checkpoints on the path from the root
to leaf node 𝑡 reside in memory. Upon execution of the routine
𝜕𝑧
𝜕s𝑡 = G(s𝑡 , 𝜕𝑧

𝜕s𝑡+1) to back-propagate gradients from step (𝑡 + 1) to 𝑡 ,
state s𝑡 is required as an input. With the above structure, we trace
back to the nearest common ancestor of s𝑡 and s𝑡+1 where we will
find the nearest checkpoint available and then execute a rerun from
there. (Please refer to Fig. 6 for an illustration.)
Overall, this bisection algorithm achieves temporal and spatial

complexity of 𝑂 (𝑁 log𝑁) and 𝑂 (log𝑁), respectively, as opposed
to𝑂 (𝑁) and𝑂 (

√
𝑁) of DiffTaichi, and thus significantly expanding

the capacity of total number of steps in a memory-bound scenario.
The actual running time is reported in Fig. 14.

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

51:8 • Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Weiwei Xu

0

0 4

0 2

0 1 2 3

4 6

54 6 7

Checkpoint

Checkpoint

Fig. 6. Illustration of the bisection algorithm. Adjoint kernel is back
propagating 𝜕𝑧

𝜕s4
to 𝜕𝑧

𝜕s3
. The states at steps 0,4 are stored as checkpoints

(shown in red). To recover s3, retrace to the nearest non-empty checkpoint
(red arrow), which is state s0, the nearest common ancestor of leaf node of
state s3 and s4. A rerun is then executed from s0. During the rerun process,
the checkpoints at depth 1 and 2 (with root at depth 0) are updated after 0
and 2 steps respectively (green arrow, new checkpoints shown in green).

7 BIT PACK DATA STRUCTURE
After solving the optimization problem defined in Eq. (6) or Eq. (7),
we need to place the custom-length data types into the memory
automatically. Therefore, we propose a new bit-level data structure,
namely bit pack, which allows us to easily place arbitrary length
custom data types into memory without worrying about the bit-
level layout. Similar to the bit-level container bit struct proposed
by [Hu et al. 2021], bit pack is also a tree-based custom data type
container. However, bit struct only supports hardware-native data
types as the variable containers, which makes users restrained when
working with custom data types. There are two main limitations
of bit struct. First, users have to modify the code describing the
placements of quantized data types if the number of bits inside
the bit struct exceeds the maximum length of the physical type.
The following code snippet is an example. The code describes the
memory usage of a particle in a 3D MPM simulation, where p, v,
and F represent the position, velocity, and deformation gradient of
the particle, respectively.

using bit struct
ti.root.bit_struct(num=64).place(p(0), p(1), p(2))
ti.root.bit_struct(num=64).place(v(0), v(1), v(2))
ti.root.bit_struct(num=64).place(F(0, 0), F(0, 1), F(0,

2), F(1, 0))
ti.root.bit_struct(num=64).place(F(1, 1), F(1, 2), F(2,

0), F(2, 1))
ti.root.bit_struct(num=32).place(F(2, 2))

In the example above, the total bit width of p cannot exceed 64.
However, this constraint cannot be guaranteed before the quantiza-
tion scheme is derived from our optimization. Users may need to
re-organize the placement, for instance, move the last component
of p into another bit struct if the bit width violates the limit. Besides,
when designing a quantized simulator manually, trial and error
takes the most of the time. Frequently adjusting the placement by
modifying codes can be troublesome.

32 bits32 bits
17 bits

1 0 … 1 0 1 …1 0 1 0 1
17 bits 17 bits

1 0 … 1 0 1

bit_pack

32 bits
17 bits

1 0 … 1 0 1 …

32 bits
17 bits

1 0 … 1 0 1 …

32 bits
17 bits

1 0 … 1 0 1 …

…

bit_struct bit_struct bit_struct

Fig. 7. Comparison of bit pack with bit struct. Two 17-bit numbers do not fit
into a single 32-bit bit struct, and the three 17-bit elements consume three
bit structs. In contrast, the three elements can be contained by two 32-bit
bit packs.

01 10 1 0 0 0

0 0 10 1 11 1
mask

1 0 00 1 10 1

01 10 11 0 0

and

left shift

1 1 10 1 10 0

00 10 0 1 1 0

1 1 10 1 10 0

1 1 01 0 00 0
mask

1 1 00 0 00 0

0 0 00 0 10 1

01 10 1 1 1 0

right shift

or

load load

bit_pack

and

Fig. 8. Illustration of the load operation on a custom type variable spanning
two different physical words based on our bit pack data structure. We first
load the two words, then use a series of bit operations to reconstruct the
original data.

The second limitation of bit struct is that it does not allow custom
data types to span across two physical words. See Fig. 7 for an
example. Supposing we have three 17-bit custom integers to be
placed in 32-bit bit structs. Due to the limitation, we have to use
3 × 32 bits to accommodate them, leading to 3 × 15 bits unfilled.
We propose bit pack to address this problem using a simple

strategy. Custom data types can be placed into the memory contigu-
ously, and the compiler will detect the case that the data types span
across two physical words. When a data type is split by physical
words, the compiler will generate code performing a series of bit
operations to reconstruct the custom data types. See Fig. 8 for a
visual demonstration. With the help of bit pack, the above example
only requires one line of code to describe the memory placement
clearly as below, and nomore code changes in other parts are needed.

using bit pack
ti.root.bit_pack().place(p, v, F)

8 EXPERIMENTS AND EVALUATIONS
We conduct experiments to evaluate the effectiveness, performance,
and scalability of our method. We further develop three large-scale
simulators with our workflow. Implementation details of all the

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

Automatic Quantization for Physics-Based Simulation • 51:9

6880 6890 6900 6910
Evaluation value

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
eq

ue
nc

y/
Pr

ob
ab

ili
ty

Fitted Distribution
Predicted Distribution
Frequency Histogram

Fig. 9. Distribution of the evaluation function on quantized MPM elastic
body simulation. The probability density function fitted from the mean
and variance of the observed samples is shown in blue. The red curve
representing the predicted density function is computed through Eq. (8)
with the gradients of the simulation and the testing quantization resolution.
The close match between the two curves validates our error estimation
model.

quantization schemes presented in this section can be found in the
supplemental materials.

8.1 Effectiveness
Weevaluate the controllability of our approach in both error-bounded
andmemory-bounded scenarios using three 2D simulators, including
an MLS-MPM [Hu et al. 2018] elastic body simulator, an MLS-MPM
fluid simulator, and an advection-reflection [Zehnder et al. 2018]
Eulerian smoke simulator.

Error-bounded quantization. To evaluate the capability of the
error-bounded quantization, we conduct experiments of 2D elastic
body and Eulerian fluid simulation on an NVIDIA GTX 1080Ti GPU
with 11 GB memory.

We simulate eight elastic squares falling down and colliding with
each other based on the MLS-MPM algorithm [Hu et al. 2018].
Particles are the primarymemory consumer, while background grids
use less memory due to sparsity. We store positions (p), velocities
(v), deformation gradients (F) and affine velocity field (C) on each
particle which add up to 48 bytes with IEEE754 single floating-point
precision. The MPM experiment is conducted with 80, 000 particles
and 128 × 128 background grids. We use the kinetic energy in the
final state as the evaluation function. The entire simulation process
includes 8192 steps with a time interval of 2 × 10−4.

Our 2D Eulerian Smoke experiment is conducted using a differen-
tiable advection-reflection [Zehnder et al. 2018] solver. We perform
advection in a semi-Lagrangian scheme with RK-3 path integration.
We solve Poisson’s equation using 64 Jacobian iterations. The grid
resolution and time interval are 256×256 and 0.01, respectively. The
evaluation function is set to be the squared sum of smoke density
on all grids in the final state. Finally, the quantized variables are the
pressure and velocity of the grids.

In our experiments, we consider the evaluation function of a
quantized simulation as a normal distribution. To validate this as-
sumption, we first run a quantized 2D MPM elastic body simulation
500 times and record the frequency of the function. The histogram
of the distribution is shown in Fig. 9, from which we can see the
values of the evaluation function can be well approximated using a
normal distribution. Please refer to the 4th column of Table 1 in our
supplementary materials for the quantization scheme used in this
experiment.
We set the relative error tolerance 𝜖𝑒𝑟𝑟 to four different mag-

nitudes: 10−1, 10−2, 10−3, and 10−4. The quantized simulation is
executed 20 times for each magnitude, where the mean and standard
deviations are recorded as 𝜇𝑠𝑖𝑚, 𝜎𝑠𝑖𝑚 . Since we model the evaluation
function as a normal distribution, we consider the error is success-
fully under control if the evaluation function value of a quantized
simulation falls in a range of 3𝜖𝑒𝑟𝑟 centered at 𝜇𝑠𝑖𝑚 . We record the
number of successful controls out of 20 tests as the success rate.
From Table 2 we can see that as the error tolerance increases,

the number of quantization bits increases, and the fluctuation of
the evaluation function becomes smaller. The bias and variance
satisfy well with the error tolerance in most cases. The failure case
of Eulerian smoke in the second row of Table 2 is quantized with
only 4 fraction bits on pressure and 6 fraction bits on velocity. This
shows the potential hazard of abuse, where a radical setting of the
error bound might lead to a bold quantization scheme and a large
deviation from the full-precision simulation. In this situation, the
local linearization cannot approximate Eq. (5) well enough.

As mentioned above, our method can be solved iteratively, but we
only adopt the solution without iteration for lower computational
costs. To validate this design choice, we solve the optimization
iteratively in the example of 2D smoke simulation. We find that the
optimization process converges after nomore than six iterations, and
the corresponding result of the iterative approach differs from the
non-iterative solution by at most one bit on each variable. However,
the iterative solution is highly expensive due to the re-computation
of gradients at each iteration, so we keep using the non-iterative
solution in the rest of our experiments. Please refer to section 3.1 in
the supplementary material for the detailed results.

Memory-bounded quantization. Weevaluate the scenario ofmemory-
bound quantization on a 2D MLS-MPM based fluid simulation of
a dam break example. Similar to the previous MPM elastic body
simulations in error-bounded experiments, we store p, v, and C
of each particles. As for the deformation gradient F, we follow
Tampubolon et al. [2017] to track its determinant 𝐽 instead of its
matrix elements for improved numerical stability. In a full-precision
simulation, it takes 36 bytes to store the attributes of each particle.
We use the kinetic energy of the final time step as the evaluation
function. We run the simulation with 10, 000 particles and 128× 128
background grids. The simulation lasts for 16,384 steps with a time
interval of 2× 10−4𝑠 . The experiments run on an NVIDIA RTX 3090
GPU with 24 GB memory.
We set the control parameters of the target compression rate

from 40% to 60% We run the simulation 10 times for each target
compression rate and record the mean 𝜇𝑚𝑒𝑚 and standard deviation
𝜎𝑚𝑒𝑚 . The results can be found in Table 3. Using the compression

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

51:10 • Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Weiwei Xu

Table 2. Results of the error-bounded experiments. The MPM elastic body
and Eulerian smoke simulations are labeled as Exp. 1 and Exp. 2. The column
of 𝜖𝑒𝑟𝑟 is the relative error tolerance used in each experiment. Control
Objective in the table dictates the absolute tolerance of the simulation
error. We use S.R. and M.C. as abbreviations for success rate and memory
compression. The quantized evaluation function lands nicely within the
range of permitted error bound. Of all the 160 experiments, there are 136
times that our quantization scheme manages to control the value.

Exp. 𝝐𝒆𝒓𝒓 Control Objective Quantized
Evaluation Function S.R. M.C.

1 0.1 6.9 ± 2.1 × 103 7.1 ± 1.1 × 103 19/20 2.00×
2 0.1 1.87 ± 0.56 × 104 3.69 ± 0.08 × 104 0/20 5.05×
1 0.01 6.89 ± 0.21 × 103 6.90 ± 0.06 × 103 20/20 1.67×
2 0.01 1.875 ± 0.056 × 104 1.90 ± 0.04 × 104 17/20 3.20×
1 0.001 6.893 ± 0.021 × 103 6.895 ± 0.008 × 103 20/20 1.42×
2 0.001 1.8749 ± 0.0056 × 104 1.875 ± 0.003 × 104 20/20 2.40×
1 0.0001 6.8934 ± 0.0021 × 103 6.8946 ± 0.0007 × 103 20/20 1.23×
2 0.0001 1.87486 ± 0.00056 × 104 1.87488 ± 0.00019 × 104 20/20 1.96×

Table 3. Memory-bound experiments. The target compression rate is the
control parameter specified by users. The real compression rate is computed
according to the quantization scheme derived from our optimization. The
reference evaluation function value is 1.32 × 103.

Target
Compression Rate (𝜖𝑚𝑒𝑚)

Real
Compression Rate Evaluation Function

60% (1.67×) 58.3% (1.71×) 1.28 ± 0.06 × 103
50% (2.0×) 47.2% (2.12×) 1.29 ± 0.08 × 103
40% (2.5×) 37.8% (2.64×) 1.25 ± 0.11 × 103

Table 4. The success rate and evaluation function values for the first two
experiments of optimality check. The base quantization scheme with a
success rate of (20/20) and evaluation function of (6.90 ± 0.06 × 103) can be
found in the supplemental material.

Bits Taken Success Rate Evaluation Function
Reduce All Reduce Half Reduce All Reduce Half

1 19/20 20/20 6.9 ± 0.1 × 103 6.88 ± 0.09 × 103
2 13/20 17/20 6.9 ± 0.3 × 103 6.8 ± 0.2 × 103
3 5/20 12/20 7.3 ± 0.7 × 103 6.9 ± 0.4 × 103

rate as the quantization target makes it difficult to define a successful
error control as in the previous section, because the error bound
is used as a soft constraint. So we use an error metric denoted
as 𝑒𝑚𝑒𝑚 =

√
𝜎2𝑚𝑒𝑚 + (𝜇𝑚𝑒𝑚 − 𝑧)2, where 𝑧 is the reference value

obtained by full-precision simulation. Given this error metric, even
in the case of the highest compression rate (2.5×), the relative error
is only 9.9%. Meanwhile, the visual quality is still comparable to
the full-precision version. Please refer to the visual comparison in
Fig. 10. In summary, our automatic quantization scheme successfully
assigns appropriate numbers of quantization bits to each variable
according to their contribution to the overall error under the limited
memory budget.

Optimality check. Aided by the accurate prediction of the simu-
lation error, the quantization scheme derived from our system can
reach a very close vicinity to the critical point. We verify this claim

Float64

ϵmem = 40 %

ϵmem = 50 %

ϵmem = 60 %

Fig. 10. Visual comparison for the memory-bounded experiments.

-3 -2 -1 0 1 2 3
C-F adjustment

-3
-2

-1
0

1
2

3
p-

v
ad

ju
st

m
en

t
0.4 0.7 0.6 0.5 0.9 0.3 0.7

0.5 0.7 0.9 1.0 1.0 0.4 0.9

0.4 1.0 0.9 1.0 0.9 0.9 0.8

0.6 0.9 1.0 1.0 1.0 0.8 0.8

0.8 0.8 1.0 1.0 0.9 0.9 0.5

0.5 1.0 1.0 1.0 0.9 0.9 0.8

0.6 0.7 1.0 0.7 0.5 0.8 0.6

Optimality Check

Fig. 11. Optimality check. We conduct two orthogonal adjustments: to
move bits from p to v (positive y-axis and vice versa) and from C to F
(positive x-axis). The success rate is counted based on ten repetitions on
each quantization scheme.

using the previous MLS-MPM elastic body simulation with the same
experiment settings. We first solve the optimization by setting the
relative error bound to 0.01 and then make minor adjustments to
the quantization scheme in three different ways:

(1) Unanimously take away bits in all data types.
(2) Randomly reduce the length on half of the data types.
(3) Move bits from some data types to others.
The bit reduction results (the first two methods) are recorded

in Table 4, and the result of bits-redistribution (the last method)
is shown in Fig. 11 and our supplemental materials. In these ex-
periments, the success rates are counted by 20 and 10 repetitions,
respectively. This experiment reveals that even with less than 10%
modification of our generated scheme, there is a significant impact
on the success rate of the error constraints, and our quantization

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

Automatic Quantization for Physics-Based Simulation • 51:11

No Dithering

Dithering

Float64

Simulation Time

Fig. 12. Effect of our dithering scheme. Without dithering (the bottom row),
the elastic cubes fall from rest, bounce over the initial position, and smash
the ceiling. In comparison, the dithered simulation with the same bit number
(the second row) closely resembles the full-precision reference (the first row).

Table 5. The effectiveness of dithering. We compare three data types on a
2D MPM elastic body simulation. The result without dithering deviates far
away from the full-precision reference and the case with dithering. Also
the uneven ratio of round-ups to round-downs can be observed in the case
without dithering.

Data Type Evaluation Function Round-ups/
Round-downs

float64 1.378 × 105 -
Quantize with dithering 1.370 × 105 0.999976

Quantize without dithering 8.885 × 105 0.683994

scheme is almost the most memory-efficient scheme that satisfies
the error constraints.

Dithering. To showcase the effectiveness of dithering in reducing
the overall errors of quantized simulation, we use a quantization
scheme with a relatively high memory compression (2.5×). We
choose kinetic energy as the evaluation function to measure the er-
rors. Table 5 shows that the dithered simulation leads to amuchmore
accurate evaluation function value in this challenging case, while
the simulator exhibits significant deviation from the full-precision
float64 simulation without dithering, which is confirmed by the
target function value and the visual comparisons in Fig. 12. The
explanation for the failure is that the induced round-off errors are ill-
distributed, contradicting our assumption of uniform independence
distribution in the error model. We record the aggregated ratio of
round-ups and round-downs and find that the ratio of rounding
up and rounding down is 1.47 for the 𝑦 component of velocity, as
opposed to the dithered result of 1.00 (See Table 5).

Comparison with hand-tuned schemes. We compare our method
with human-generated results by reproducing theMPMball collision
experiment in QuanTaichi [Hu et al. 2021] and present the visual
results in Fig. 13. We keep using the kinetic energy as the evaluation
function. All the components of position, velocity and deformation

(d) QuanTaichi refined

(a) Float64

(b) Our method

(c) QuanTaichi

Simulation Time

Fig. 13. The comparison with human generated schemes. From top to
bottom: (a) the float64 reference, (b) the result of our method, (c) the
result of QuanTaichi [Hu et al. 2021], and (d) the result via a refined version
of (c).As we can see from the last frame, our scheme and the refined human-
generated scheme are closer to the float64 reference, while our scheme
uses 12.7% less faction bits. The vertical dashed line is added to help compare
the horizontal positions of circles by different methods.

Table 6. The benchmark of dithering performance on both CPU and CUDA
backend. The quantization scheme can be found in the supplementary
materials.

Case Backend Dithering No Dithering

Store x64 54.516s 8.888s
CUDA 0.144s 0.059s

MatMul x64 115.888s 16.593s
CUDA 0.655s 0.262s

MPM 2D x64 89.892s 59.498s
CUDA 26.819s 26.651s

MPM 3D CUDA 29.094s 27.284s

gradients are quantized in the experiment. We first evaluate the
error of the hand-tuned scheme 10 times and use the mean error as
the constraint. As a result, the quantization scheme derived from
our optimization has 12.7% less number of fraction bits and 94.5%
more minor error than the human-generated schemes. In the human-
generated scheme, the velocity is represented by a custom float type
with 6 exponent bits and 10 fraction bits. This data type has a larger
dynamic range but has lower precision in a specific small range
compared to the fixed-point data type. After we change it to a fixed-
point data type and apply the ranges of our scheme for all variables,
the error becomes 97.2% smaller, which is very close to our scheme
(see the last row of Fig. 13). The results show that our method can
generate quantization schemes comparable to or even better than
human experts.

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

51:12 • Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Weiwei Xu

Table 7. The benchmark of bit pack performance on CPU and CUDA
backend. The quantization schemes and the data placement of the bit struct
are shown in the supplementary materials.

Cases Backend Bit pack Bit struct

Store x64 7.173s 7.376s
CUDA 0.105s 0.084s

MatMul x64 13.608s 18.269s
CUDA 0.159s 0.316 s

MPM 2D x64 87.614s 112.109s
CUDA 26.155s 26.814s

MPM 3D CUDA 29.094s 33.232s

8.2 Performance
The techniques we presented in previous sections, such as dithering
and bit pack, may have impact on the performance. We conduct
several experiments to evaluate the performance impact of these
techniques. Unless with further explanation, all the experiments in
this section are evaluated on an NVIDIA RTX 3090 GPU with 24 GB
memory and Intel Core i7-7700k with 24 GB memory.

Performance benchmark. We make a benchmark suite consisting
of the following four different tasks to evaluate the running time:
Store. We record the time consumption of storing 512M 16-bit

fixed-point numbers in to the memory ten times.
MatMul. Similar to the former settings, we allocate 256M 3 × 3

matrices andmultiply eachwith another 3×3matrix ten times.
Each element of the matrix is a 16-bit fixed-point number.

MPM 2D. We test performance on a 2D MPM simulator with 8,000
particles, 1282 grids and 8,192 steps for five times.

MPM 3D. We further test the performance on a more practical
application of 3D MPM simulation with 30M particles, 10243
sparse grid and 12,800 steps.

We test the first three cases on both CPU and GPU backends and
record the total time cost. However, for the 3D MPM example, we
only test it on GPU backend because CPU is not suitable for this
large-scale simulation in practice. We record the running time per
frame for this case. The quantization schemes of the 2D/3D MPM
test cases can be found in section 2 of supplementary material.

Dithering. Dithering in Sec. 5 introduces an extra random number
generation step that degrades the performance. We test the influence
of dithering using the benchmark and the corresponding results can
be found in Table 6. Our experiments reveal that storing custom
float types with dithering is a time-consuming operation, especially
on a CPU backend, which slows down a memory-dense task by a
factor of 8 in the worst case. Fortunately, the performance dose not
significantly decrease on CUDA and the overall simulations of the
MPM 2D/3D test cases are only 1.04× slower on average as shown in
Table. 6. We further implement a faster random number generator to
accelerate the dithering, improving the speed by 3.83× on average
(see Section 3.4 in the supplementary material for details).

Bit pack. Using bit pack will lead to cases where custom data
types span across two adjacent physical words, introducing one

0 2000 4000 6000 8000 10000 12000 14000 16000
steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

tim
e

(s
ec

on
ds

)

bisection
fully unfolded

Fig. 14. Comparison of temporal complexity between the bisection algo-
rithm (blue) and the fully unfolded scheme (orange). Note that the orange
line ends after 2000 steps since GPU fails to allocate enoughmemory, and the
bisection algorithm is roughly 8 times slower under this situation. However,
the bisection scheme is nearly free from memory limitations.

extra memory access and several bit-level operations of shifting
and masking. To evaluate the performance impact, we use the
performance benchmark described above with slight modifications
on the quantization scheme. Specifically, we use 20-bit and 25-bit
fixed-points, in the Store and MatMul cases, respectively, to create
situations of custom data types across two physical words. A similar
memory storage optimization strategy inQuanTaichi [Hu et al. 2021]
is used to avoid atomicRMW when using bit pack. We compare the
performance with bit struct in Table 7. To comprehensively evaluate
the performance difference between the two data structures, we
turn off dithering for the first two test cases and enable it for the
two MPM cases. As can be seen from this table, the performance of
bit pack is comparable to or even better than bit struct in most cases,
since bit pack leads to less memory consumption on both space and
bandwidth with limited disruption to spatial locality.

Bisection algorithm. We evaluate the performance of our bisection
algorithm introduced in Sec. 6 on a 2D MPM solver with 5000
particles and 1282 grids. We record the average running time of
a forward simulation and a back-propagation step combined, with
eight repeations and three warm-up iterations, on an NVIDIA GTX
1080Ti GPU with 11GB memory. The GPU can only contain 2000
states with a fully unfolded scheme before running out of memory,
while the bisection algorithm enjoys at least 7.8× larger carrying
capacity in the experiment. See Fig. 6 for the comparison results.

8.3 Scalability
In this section, we describe how to obtain quantization schemes
for high-resolution simulations via a scaling procedure. Specifically,
we choose to first optimize for a quantization scheme using the
corresponding low-resolution simulation and then apply the scheme
to the high-resolution simulation. Its advantage is that we can avoid
the expensive cost of high-resolution differentiable simulation in
terms of both memory and computation. We demonstrate how to
scale the resolution up in an example of 3D fluid simulation to verify

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

Automatic Quantization for Physics-Based Simulation • 51:13

Fig. 15. Visual comparisons of four simulations by gradually refining the
resolution from top to bottom. All the four simulations share the same
quantization scheme obtained with the first configuration in Table 8. The
visual quality does not show significant degradation in the four different
levels of resolution.

Table 8. Scaling configurations and the evaluations functions of the simula-
tion. The reference evaluation function value is obtained by the float64
type. The quantized evaluation function is obtained by applying the
quantization scheme derived using the first configuration. The quantization
scheme can be found in the supplemental materials.

Particles Δ𝑡 Grid Steps Reference
Evaluation Function

Quantized
Evaluation Function

200,000 2 × 10−4 643 16384 1.9910 × 10−2 1.9908 ± 0.0004 × 10−2
500,000 2 × 10−4 643 16384 2.0130 × 10−2 2.0543 ± 0.0019 × 10−2
1,000,000 1 × 10−4 1283 32768 2.6773 × 10−2 2.6776 ± 0.0010 × 10−2
5,000,000 5 × 10−5 2563 65536 2.8241 × 10−2 3.2300 ± 0.0015 × 10−2

the effectiveness of the scaling procedure, and the influence of the
initial conditions on the quantization scheme is also evaluated.
We use the average height as the evaluation function in this

experiment since it is approximately proportional to the fluid volume
at equilibrium. For each particle, we store the position (p), velocity
(v), the volume ratio (𝐽), and the local affine velocity field (C).
These quantities add up to a total memory consumption of 48
bytes. Starting from 0.2M particles, we show that the unmodified
quantization scheme can deliver physically-plausible results with
0.5M, 1M, and 5Mparticles with the configurations in Table 8. While,
with the help of the bisection gradient computation algorithm, we
can compute gradients of a simulation with many time steps, it
is still costly to directly compute the gradients for 5M or even
more particles. Therefore, we use the gradients computed with
0.2M particles. The ranges are obtained via running the simulation
at the highest resolution in Table 8. Finally, we set the ranges of
the fixed numbers to be twice the value of the recorded maximal
ranges.

Scaling up resolution. In this experiment, we use the memory-
bounded quantization to obtain a scheme with a memory compres-
sion rate of 50%. We directly apply the scheme to the simulator
with the four configurations in Table 8 with increased particle
densities and keep a constant initial volume in the scaling procedure.
To exploit the advantages of additional particles, we refine the

Float 64

(a)

(b)

(d)

(c)

Quantized

Fig. 16. Simulation results under different initial conditions and parameters.
The left three columns are the results of three time steps using the same
quantization scheme as the scaling experiment in Fig. 15, and the last column
shows the corresponding results of a float64 reference for the last time
step. From top to bottom: We change the initial position and volume in rows
(a) and (b); The result with an initial velocity of 2.0 is shown in row (c); The
last row (d) shows the result using 4× larger pressure coefficient in the fluid
state equation.

background grids synchronously, which leads to a smaller time
step for the sake of numerical stability. We also increase the total
number of steps to match the overall duration. In the end, with all
these modifications on numerous parameters, we still arrive at a
large-scale physically-plausible simulation, as shown in Fig. 15 and
the supplemental material.

Generalization to different initial conditions. To evaluate our frame-
work with different initial conditions, we apply the same scheme
obtained in the above scaling experiment to four different initial
simulation settings and show the results in Fig. 16. We use 1M
particles for the four experiments and only adjust the initial position
volume and velocity. We also increase the fluid pressure coefficient
by a factor of 4 to test the simulation stability (see the bottom row
of Fig. 16). Our scheme can produce visual results very similar to the
float64 reference. However, if we further decrease the compression
rate from 50% to 30%, artifacts will appear during the simulation.
For the failure case, please refer to section 2.5 in our supplementary
material.

8.4 Large-scale Simulations
We show three large-scale simulation results using our method, in-
cluding a 3D Eulerian smoke simulation, a 3D elastic simulation, and
a fluid simulation based on MLS-MPM. The configuration details are
listed in Table 9 and the rendered results are shown in Fig. 17. Their
quantization schemes can be found in our supplemental materials.

Eulerian smoke simulation. We develop a large-scale advection-
reflection solver with the same algorithm described in Sec. 8.1.
We start our workflow by computing the gradients in the float64
implementation. Then we apply the resulting scheme with a 1.93×
compression and eventually get a large-scale smoke simulation with
over 228M voxels activated in total.

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

51:14 • Jiafeng Liu, Haoyang Shi, Siyuan Zhang, Yin Yang, Chongyang Ma, and Weiwei Xu

Fig. 17. Snapshots of large-scale simulation results using our automatic quantized schemes.

Table 9. The configuration and results of three large-scale simulations. The elastic body and liquid simulations are based on the MLS-MPM algorithms and
the smoke simulation is using an advection-reflection solver.

Demo Δ𝑡 Particles Grids Frames Steps/
Frame

Active
Voxels

Memory
Compression

Seconds/
FrameInitial Final Initial Final Initial Final Initial Final

Elastic body 2 × 10−4 s 7.5 × 10−5 s 1,000,000 295,280,208 2563 10243 128 320 128 - 2.01× 63.5 s
Fluid (liquid) 4 × 10−4 s 1 × 10−4𝑠 1,000,000 400,000,000 1283 2563 128 256 128 - 2.02× 139.3 s
Fluid (smoke) 0.01 s 0.01 s - - 1283 10243 256 300 1 228,982,784 1.93× 49.3 s

MLS-MPM simulations. We develop two large-scale MLS-MPM
solvers featuring simulation of fluid and elastic body, respectively.
Gradients are computed with 100M particles under 1283 and 2563
background grids, respectively. The sum of the final kinetic energy
and gravitational potential energy is used as the evaluation function
for both simulations. When scaling to relatively high resolution,
we observe that the ranges of some attributes such as the local
affine velocity C become much broader. To prevent the simulator
from overflowing, we increase the range by 24 times for C in the
fluid simulation. Another way to determine the range of fixed-
point numbers is evaluating the simulation at a relatively high
resolution in full precision. We perform an elastic body simulation
at a resolution of 125M particles and 10243 background grids to
obtain the ranges and scale them by a factor of two. In the fluid
simulation demo, we clamp the gradients during the gradients
back-propagation to avoid outliers. Finally, we are able to run a
fluid simulation example with 400M particles and an elastic body
simulator with 295M particles.

9 CONCLUSIONS
We have developed a novel automatic quantization framework to
determine quantization schemes, which circumvents manual trial
and error and significantly improves efficiency. Users can obtain
a feasible quantization scheme by simply setting a target memory
compression rate or an acceptable error bound. Experimental results
show that our method can generate quantization schemes that
can balance the memory consumption and computation errors

according to users’ preferences, which achieves up to 2.5× memory
compression rate without noticeable artifacts.

Limitations. In our workflow, the quantization scheme for a high-
resolution simulation is obtained via its low-resolution version,
which does not take the difference between the low-resolution result
and the high-resolution counterpart into account. Although the
procedure of scaling up the resolution achieves reasonable results in
our experiments, there is no theoretical guarantee that it can work
all the time.

Future work. We currently prefer efficiency over optimality and
accept the slim possibility of failure to meet the error constraint.
However, it is desirable to investigate how to speed up iterative
optimization to enforce the error control more robustly. Moreover,
we have only developed and tested our system on fixed-point repre-
sentation, leaving the support of floating-point representation as a
possible enhancement in the future.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their constructive comments.
Weiwei Xu is partially supported by NSFC grant (No. 61732016)
and Kuaishou Research Collaboration Initiative. Yin Yang is par-
tially supported by National Science Foundation grant (No. 2011471,
2016414). This paper is supported by Information Technology Center
and State Key Lab of CAD&CG, Zhejiang University.

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

Automatic Quantization for Physics-Based Simulation • 51:15

REFERENCES
Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis.

2017. Power diagrams and sparse paged grids for high resolution adaptive liquids.
ACM Trans. Graph. 36, 4, Article 140 (2017), 12 pages.

Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and
Jonathan Ragan-Kelley. 2021. Systematically differentiating parametric discontinu-
ities. ACM Trans. Graph. 40, 4, Article 107 (2021), 18 pages.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. 2016.
Interaction networks for learning about objects, relations and physics. In Advances
in Neural Information Processing Systems. 4509–4517.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans.
Graph. 33, 4, Article 154 (2014), 11 pages.

Thierry Braconnier and Philippe Langlois. 2002. From rounding error estimation to
automatic correction with automatic differentiation. In Automatic Differentiation of
Algorithms: From Simulation to Optimization. 351–357.

Francky Catthoor, Hugo De Man, and Joos Vandewalle. 1988. Simulated-annealing-
based optimization of coefficient and dataword-lengths in digital filters. International
Journal of Circuit Theory and Applications 16, 4 (1988), 371–390.

E Richard Cohen. 1998. An introduction to error analysis: The study of uncertainties
in physical measurements.

George A Constantinides. 2003. Perturbation analysis for word-length optimization. In
11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
2003. FCCM 2003. IEEE, 81–90.

George A Constantinides. 2006. Word-length optimization for differentiable nonlinear
systems. ACM Transactions on Design Automation of Electronic Systems (TODAES)
11, 1 (2006), 26–43.

George A Constantinides, Peter YK Cheung, and Wayne Luk. 2001. The multiple
wordlength paradigm. In The 9th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’01). IEEE, 51–60.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico
Kolter. 2018. End-to-end differentiable physics for learning and control. In Advances
in Neural Information Processing Systems. 7178–7189.

Fernando De Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun.
2015. Power particles: an incompressible fluid solver based on power diagrams.
ACM Trans. Graph. 34, 4, Article 50 (2015), 11 pages.

Jonas Degrave, Michiel Hermans, Joni Dambre, et al. 2019. A differentiable physics
engine for deep learning in robotics. Frontiers in Neurorobotics 13 (2019), 6.

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and
Wojciech Matusik. 2021. Diffpd: Differentiable projective dynamics. ACM Trans.
Graph. 41, 2, Article 13 (2021), 21 pages.

Florian Ferstl, Rüdiger Westermann, and Christian Dick. 2014. Large-scale liquid
simulation on adaptive hexahedral grids. IEEE Transactions on Visualization and
Computer Graphics 20, 10 (2014), 1405–1417.

Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and
Chenfanfu Jiang. 2018. GPU optimization of material point methods. ACM Trans.
Graph. 37, 6, Article 254 (2018), 12 pages.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski,
and Stelian Coros. 2020. ADD: analytically differentiable dynamics for multi-body
systemswith frictional contact. ACMTrans. Graph. 39, 6, Article 190 (2020), 15 pages.

Robert M Gray. 1990. Quantization noise spectra. IEEE Transactions on Information
Theory 36, 6 (1990), 1220–1244.

Andreas Griewank. 1992. Achieving logarithmic growth of temporal and spatial
complexity in reverse automatic differentiation. Optimization Methods and Software
1, 1 (1992), 35–54.

David Hahn and Chris Wojtan. 2015. High-resolution brittle fracture simulation with
boundary elements. ACM Trans. Graph. 34, 4, Article 151 (2015), 12 pages.

Konrad Hejn and Andrzej Pacut. 1996. Generalized model of the quantization error-a
unified approach. IEEE Transactions on Instrumentation and Measurement 45, 1
(1996), 41–44.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Frédo Durand. 2020. DiffTaichi: Differentiable Programming for Physical
Simulation. In International Conference on Learning Representations (ICLR).

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and
Chenfanfu Jiang. 2018. A moving least squares material point method with
displacement discontinuity and two-way rigid body coupling. ACM Trans. Graph.
37, 4, Article 150 (2018), 14 pages.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
2019a. Taichi: a language for high-performance computation on spatially sparse
data structures. ACM Trans. Graph. 38, 6, Article 201 (2019), 16 pages.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum, William T
Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019b. Chainqueen: A real-
time differentiable physical simulator for soft robotics. In International Conference
on Robotics and Automation (ICRA). IEEE, 6265–6271.

Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang
Dai, William T. Freeman, and Frédo Durand. 2021. QuanTaichi: A Compiler for

Quantized Simulations. ACM Trans. Graph. 40, 4, Article 182 (2021), 16 pages.
Libo Huang, Ziyin Qu, Xun Tan, Xinxin Zhang, Dominik L. Michels, and Chenfanfu

Jiang. 2021. Ships, splashes, and waves on a vast ocean. ACM Trans. Graph. 40, 6
(2021), 203:1–203:15.

Doug L James and Dinesh K Pai. 1999. Artdefo: accurate real time deformable objects.
In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive
Techniques. 65–72.

Nuggehally S. Jayant and P. Noll. 1990. Digital Coding of Waveforms: Principles and
Applications to Speech and Video. Prentice Hall Professional Technical Reference.

Todd Keeler and Robert Bridson. 2015. Ocean Waves Animation Using Boundary
Integral Equations and Explicit Mesh Tracking. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 11–19.

D-U Lee, Altaf Abdul Gaffar, Ray CC Cheung, Oskar Mencer, Wayne Luk, and
George A Constantinides. 2006. Accuracy-guaranteed bit-width optimization. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 10
(2006), 1990–2000.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. 2019.
Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects,
and Fluids. In International Conference on Learning Representations (ICLR).

Junbang Liang, Ming C. Lin, and Vladlen Koltun. 2019. Differentiable Cloth Simulation
for Inverse Problems. InAdvances in Neural Information Processing Systems. 771–780.

Haixiang Liu, NathanMitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A scalable
schur-complement fluids solver for heterogeneous compute platforms. ACM Trans.
Graph. 35, 6, Article 201 (2016), 12 pages.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control
using the adjoint method. ACM Trans. Graph. 23, 3 (2004), 449–456.

Ramon E Moore and CT Yang. 1996. Interval analysis. Vol. 2. Prentice-Hall Englewood
Cliffs, NJ.

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
Trans. Graph. 32, 3, Article 27 (2013), 22 pages.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C. Lin. 2020. Scalable
Differentiable Physics for Learning and Control. In International Conference on
Machine Learning (ICML). 7847–7856.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. 2020. Learning to simulate complex physics with graph networks.
In International Conference on Machine Learning. 8459–8468.

Leonard Schuchman. 1964. Dither signals and their effect on quantization noise. IEEE
Transactions on Communication Technology 12, 4 (1964), 162–165.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans.
Graph. 33, 6, Article 205 (2014), 12 pages.

Changchun Shi and Robert W Brodersen. 2004. A perturbation theory on statistical
quantization effects in fixed-point DSP with non-stationary inputs. In 2004 IEEE
International Symposium on Circuits and Systems (IEEE Cat. No. 04CH37512), Vol. 3.
IEEE, III–373.

Barbara Solenthaler and Markus Gross. 2011. Two-Scale Particle Simulation. ACM
Trans. Graph. 30, 4, Article 81 (2011), 8 pages.

Wonyong Sung and Ki-Il Kum. 1995. Simulation-based word-length optimization
method for fixed-point digital signal processing systems. IEEE Transactions on
Signal Processing 43, 12 (1995), 3087–3090.

Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran,
Chenfanfu Jiang, and Ken Museth. 2017. Multi-species simulation of porous sand
and water mixtures. ACM Trans. Graph. 36, 4, Article 105 (2017), 11 pages.

Shervin Vakili, JM Pierre Langlois, and Guy Bois. 2013. Enhanced precision analysis for
accuracy-aware bit-width optimization using affine arithmetic. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 32, 12 (2013), 1853–1865.

Xinlei Wang, Yuxing Qiu, Stuart R Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin
Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang. 2020. A massively parallel
and scalable multi-GPU material point method. ACM Trans. Graph. 39, 4, Article 30
(2020), 15 pages.

Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, and Huamin Wang.
2018. Parallel multigrid for nonlinear cloth simulation. Computer Graphics Forum
37, 7 (2018), 131–141.

Rob Wannamaker, Stanley Lipshitz, John Vanderkooy, and J. Wright. 2000. A theory of
nonsubtractive dither. IEEE Transactions on Signal Processing 48 (2000), 499–516.

B. Widrow. 1961. Statistical analysis of amplitude-quantized sampled-data systems.
Transactions of the American Institute of Electrical Engineers, Part II: Applications and
Industry 79, 6 (1961), 555–568.

Jun Wu, Christian Dick, and Rüdiger Westermann. 2015. A system for high-resolution
topology optimization. IEEE Transactions on Visualization and Computer Graphics
22, 3 (2015), 1195–1208.

Kui Wu, Nghia Truong, Cem Yuksel, and Rama Hoetzlein. 2018. Fast fluid simulations
with sparse volumes on the GPU. Computer Graphics Forum 37, 2 (2018), 157–167.

Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. 2018. An advection-
reflection solver for detail-preserving fluid simulation. ACM Trans. Graph. 37,
4, Article 85 (2018), 8 pages.

ACM Trans. Graph., Vol. 41, No. 4, Article 51. Publication date: July 2022.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Quantization Procedure for Physics-Based Simulation
	3.2 Uncertainty Propagation Theory

	4 Uncertainty-Propagation-based Quantization
	4.1 Formulation of Objective Functions
	4.2 Continuous Optimization Problem

	5 Dithering
	6 Gradient Computation
	7 Bit Pack Data Structure
	8 Experiments and Evaluations
	8.1 Effectiveness
	8.2 Performance
	8.3 Scalability
	8.4 Large-scale Simulations

	9 Conclusions
	Acknowledgments
	References

