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ABSTRACT
This paper proposes a novel deep learning-based video object mat-
ting method that can achieve temporally coherent matting results.
Its key component is an attention-based temporal aggregation mod-
ule that maximizes image matting networks’ strength for video
matting networks. This module computes temporal correlations
for pixels adjacent to each other along the time axis in feature
space, which is robust against motion noises. We also design a
novel loss term to train the attention weights, which drastically
boosts the video matting performance. Besides, we show how to
effectively solve the trimap generation problem by fine-tuning a
state-of-the-art video object segmentation network with a sparse
set of user-annotated keyframes. To facilitate video matting and
trimap generation networks’ training, we construct a large-scale
video matting dataset with 80 training and 28 validation fore-
ground video clips with ground-truth alpha mattes. Experimen-
tal results show that our method can generate high-quality al-
pha mattes for various videos featuring appearance change, oc-
clusion, and fast motion. Our code and dataset can be found at:
https://github.com/yunkezhang/TCVOM
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• Computing methodologies → Image processing; Video seg-
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1 INTRODUCTION
The task of video object matting is to compute temporally coherent
alpha mattes for a foreground video object at each frame. It is a fun-
damental task for many video editing applications, e.g. compositing
the foreground object into new background videos. The resulting
alpha mattes represent the fractional opacity (between 0 and 1) of
pixels. Such opacity mainly comes from the transparency or the
partial coverage of background pixels around the foreground object
boundaries. Specifically, the matting problem tries to solve for three
types of unknowns at each pixel, i.e., the foreground color 𝐹 , the
background color 𝐵, and the alpha value 𝛼 , based on the measured
pixel color 𝐶 , where 𝐶 = 𝛼𝐹 + (1 − 𝛼)𝐵. Moreover, to facilitate
image and video matting, a trimap [58] is usually required to sep-
arate an image into the foreground region (FR), the background
region (BR), and the unknown region (UR). Here UR covers partial
or transparent foreground object boundaries.

Video object matting is related to image matting in the sense
that each frame of the matting output essentially solves the cor-
responding image matting problem. The matting problem is chal-
lenging since the number of unknowns exceeds the number of
measured colors. Thus, it is critical to build priors to constrain the
solution space [1, 11, 15, 32]. State-of-the-art (SOTA) image mat-
ting algorithms typically build on convolutional neural network
(CNN). They improve the image matting results significantly by
learning multi-scale features to predict alpha values for pixels in
the UR [7, 10, 12, 24, 39, 54, 61]. Given an input video clip and
its corresponding trimap for each frame, one can perform video
matting with any image matting method by processing each video
frame independently. However, this approach may lead to temporal
incoherence in the obtained alpha mattes (e.g. flickering, shown in
the third row of Figure 1). To improve temporal coherence, existing
video matting methods exploit temporal correspondence between
video frames, such as optical flow, to construct multi-frame alpha or
color priors or compute temporal affinities to incorporate motion
cues [3, 13, 14, 34, 74]. However, they rely on local color distribu-
tions as main features and may suffer from motion ambiguities at
transparent pixels, resulting in flickering or blocky artifacts in the
matting results.
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Figure 1: A video matting result comparison using an In-
ternet video clip “plant”. Trimaps are generated using our
trimap generation method. Red, blue and green color corre-
spond to FR, BR, and UR respectively. “#” denotes the frame
number. Our method is capable of generating more tempo-
rally coherent result compared to GCA [35], an image mat-
ting network. Please see the supplementary video for the
complete result.

This paper proposes a novel CNN-based video object matting
method to achieve temporally coherent results. Its essential compo-
nent is a simple yet effective attention-based temporal aggregation
module (TAM) that can be seamlessly combined with SOTA image
matting networks, such as GCA [35], IndexNet [38] (Index) and
DIM [61], extending them into video matting networks. This sim-
ple design maximizes image matting networks’ strength and yields
a substantial performance boost for video matting, especially on
temporal-related metrics. We leverage the widely used attention
mechanism to compute the temporal attention weights [56, 59] for
a pair of pixels adjacent to each other along the time axis. Con-
ceptually, these weights are analogous to the non-local, temporal
affinity values used in traditional affinity-based video matting meth-
ods [13, 17]. However, the attention weights are computed using
high-dimensional features rather than local color and motion fea-
tures. Moreover, we design a novel target affinity term to supervise
the learning of attention weights. This term’s ground-truth is auto-
matically derived from the alpha matte and used in a cross-entropy
loss to guide the training. Such design significantly improves our
method’s robustness against noises due to video compression, ap-
pearance change and motion. As shown in Figure 1, our method
(the last row) can generate much more temporally coherent result.

Another challenge is generating trimaps for an input video clip
to fulfill the task of video object matting. To this end, we propose
to train the space-time memory network (STM) [42], which is a
semi-supervised video object segmentation (VOS) network, to seg-
ment each frame into FR, BR and UR. It only requires the user to

annotate trimaps of a target object at several keyframes, usually
three to five frames for a video clip of around 200 frames in our
experiments, which enhances the efficiency of video matting signif-
icantly. To handle the large variations of user-annotated keyframe
trimaps, we perform online-finetuning on the STM network. We
then ensemble the bidirectional prediction results to improve the
quality of generated trimaps.

In summary, the main contributions of this work are:
• We propose a temporal aggregation module that integrates
image matting networks to achieve temporally coherent
video matting results. It leverages the attention mechanism
to compute temporal affinity values in the feature space,
resulting in a robust matting method to handle challeng-
ing videos featuring appearance change, occlusion, and fast
motion.

• We propose an STM-based trimap generation method to
enhance the efficiency of videomatting greatly. The user only
needs to annotate trimaps at several keyframes to generate
trimap for every video frame.

• To enable video object matting and trimap generation net-
works training, we construct a video object matting dataset,
termed VideoMatting108, that covers various objects and
different types of motions. In total, our dataset has 108
foreground video clips with ground-truth alpha mattes, all
in 1080p resolution, averaging in 821 frames per clip. The
dataset will be made publicly available.

2 RELATEDWORKS
Image matting. The sampling-based image matting methods [15,
19, 21, 23, 46] build the FR and BR color priors using the sam-
pled pixels to infer the alpha values, while the affinity-based meth-
ods [1, 2, 4, 11, 22, 32, 33, 51] propagate the alpha values from
the known FR and BR pixels to the UR pixels based on affinity
score and have proven to be robust when dealing with complex im-
ages [15, 21, 46]. The deep learning-based matting methods usually
train a convolutional encoder-decoder neural network to predict
alpha values or foreground/background colors with user-specified
trimaps [7, 10, 12, 24, 35, 38, 39, 54, 72]. Recently, “trimap-free” im-
age matting methods also received much attention as they do not
require user annotation. Some of the methods use other forms of
prior instead of trimaps, e.g. background image [47], rough seg-
mentation map or coarse alpha matte [67]. Others do not use any
prior at all [37, 45, 70]. The most used image matting dataset in this
line of research is provided by Xu et al. [61], and a larger dataset is
proposed recently by Qiao et al. [45].
Videomatting. The central problem of video matting is how to ob-
tain temporally coherent alpha mattes. Chuang et al. [14] proposed
to interpolate manually specified trimaps at key-frames using opti-
cal flow, estimate the background pixels, and then perform Bayesian
matting at each frame with the estimated background. Motion cues
and prior distributions for alpha values and multi-frame colors
are widely used in video matting [3, 48, 49, 60]. In [13, 17, 31, 34],
spatio-temporal edges between pixels are constructed to compute
the alpha mattes for video frames simultaneously. These methods
are the extension of affinity-based methods to video matting, which
is time-consuming due to the Laplacian matrix’s fast-growing size.
Zou et al. [74] proposed to select nonlocal neighbors through sparse
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Figure 2: The flowchart of our method during training. “OS” denotes output stride. We do not show encoder-decoder skip
connections for clarity. All networks and modules share the same weight across different frames.

coding to constrain pixels having similar features in different frames
to get similar alpha values. Besides, depth information can help
to construct trimaps and differentiate between pixels of similar
colors [73]. Hardware-assisted methods in [26, 40] automatically
generate and propagate trimaps in all video frames and optimize
for high-quality alpha mattes. Recently, CNN-based video matting
methods gained much attention. Lin et al. [36] and Ke et al. [27] pro-
posed real-time CNN-based methods for trimap-less human portrait
matting. However, both of the methods do not enforce the temporal
consistency between video frames during training, which may lead
to temporally incoherent results. Our method on the other hand,
is a trimap-based video matting method that can handle different
types of objects with explicitly supervised temporal consistency.
Concurrent to our work, Sun et al. [52] also proposed a CNN-based
video matting method that focuses on temporal coherency.
Attention mechanisms in segmentation and matting. Atten-
tion mechanism provides an effective way for neural networks to
reinforce correlated features and suppress feature noise, leading
to a performance boost in segmentation. There are two main vari-
ations of this mechanism. One is the channel-wise self-attention
pioneered by Hu et al. [25]. Given an input feature tensor, it lever-
ages the global average pooling and the fully-connected layer to
infer a channel-wise weight vector to modulate feature maps. The
other is the non-local block proposed by Wang et al. [59]. It com-
putes the spatiotemporal correlation as the attention, reinforcing
the consistency of feature maps effectively. The channel-wise atten-
tion approach is widely adopted in image segmentation [65, 66, 69].
Many methods [20, 63, 64, 68, 71] exploit variants of non-local at-
tention modules to capture the spatial long-range dependency. For
image matting tasks, the attention mechanism is mostly used for
fusing high and low-level image features. Qiao et al. [45] adopted
both channel-wise and spatial attention for trimap-free matting
since high-level image features are the key to recognize a fore-
ground object. GCA [35] also utilizes high-level image features as
the attention map to guide the low-level alpha features, achieving
SOTA performance in image matting. We thus employ GCA as
one of the base matting network structures. Several recent VOS
methods also utilize the attention mechanism to fuse features from
different video frames for improving temporal consistency [41, 57].
Oh et al. [42] extended the memory network approach used in NLP
to VOS, which is also a variation of the spatiotemporal attention
mechanism. Yang et al. [62] extended this idea by matching both

the foreground and background with multi-scale features in those
frames, achieving SOTA performance. Our method also leverages
the attention mechanism for temporally coherent matting. Never-
theless, our attentionmodule is bi-directional, andwe use additional
temporal loss terms to supervise the network training.
Temporal coherence. One standard solution to temporal coher-
ence is the temporal smoothing filter, which considers the spatial
and temporal adjacent pixels simultaneously [8, 9, 30, 43]. Another
solution is to impose the temporal coherence in the post-processing,
which is blind to image filters [5, 29]. In contrast, our method does
not rely on temporal smoothing filter but the feature-space affinity
to produce temporally coherent alpha mattes.

3 OUR METHOD
Given an input video, our method first runs trimap generation to
propagate the user-annotated trimaps to the other frames. We then
run a video matting network, formed by integrating temporal ag-
gregation module (TAM) into an image-based matting network,
to obtain a temporally coherent alpha matte at each frame (See
Figure 2). When computing an alpha matte for frame I𝑡 in testing
stage, TAM only needs to aggregate the CNN features from three
consecutive frames, i.e. I𝑡−1, I𝑡 , I𝑡+1. The choice of three consecutive
frames offers great flexibility in network design while ensures com-
putational efficiency. However, during training, our network takes
five consecutive frames simultaneously as inputs, i.e. I𝑡−2, ..., I𝑡+2,
and predicts 𝛼𝑡−1, 𝛼𝑡 , 𝛼𝑡+1 to facilitate the computation of loss func-
tions. Note that we choose to integrate TAM into the base network
at the decoder stage of output stride (OS) 8. It indicates that the
resolution of the feature map should be 𝐻/8 ×𝑊 /8, where 𝐻,𝑊 is
the input image resolution. This choice is to balance computational
cost and feature level, and we empirically found that OS=8 is a good
trade-off (see the supplementary material for the OS experiment).

In the following, wewill first describe the design of TAM (Sec. 3.1),
and proceed to describe the training loss (Sec. 3.2) and the training
strategy of TAM (Sec. 3.3). Finally, we describe the details of trimap
generation using STM [42] (Sec. 3.4) and our video object matting
dataset (Sec. 3.5).

3.1 Temporal Aggregation Module
Figure 3 illustrates the structure of TAM. It leverages the attention
mechanism to aggregate features from I𝑡−1 and I𝑡+1 with features
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ule.

from I𝑡 for pixels inside the UR of I𝑡 . This design benefits tempo-
ral coherence by encoding temporal correlation in the aggregated
features at frame I𝑡 .

For a video frame I𝑡 , we denote its input feature map as F𝑡 ∈
R𝑁×𝐶 . Here 𝐶 is the total number of channels, and 𝑁 is the total
number of pixels in this feature map. TAM takes three feature maps
F𝑡−1, F𝑡 , F𝑡+1 as inputs. First, we compute key and query features
with separate convolution layers. Specifically, we feed F𝑡−1, F𝑡+1

into a 3 × 3 query convolution layer. With Q𝑡−1,Q𝑡+1 we denote
the output query feature map. In contrast, we input F𝑡 into a 3 × 3
key convolution layer and denote the output feature map as K.

Since we only focus on UR of I𝑡 in TAM, we extract the UR in K
using a mask generated by down-sampling the original trimap to
the same resolution. For each pixel 𝑖 within the UR of K, we extract
two𝑊 ×𝑊 feature patches centered at the same position of pixel 𝑖
from features Q𝑡−1 and Q𝑡+1, respectively. We denote this window
asW and the extracted patch features as U𝑡−1,U𝑡+1 ∈ R𝑀×𝑊 2×𝐶 ,
where𝑀 is the number of pixels in the UR.

Next, we compute the attention weights between K and U𝑡−1

and similarly for K and U𝑡+1, and then use the attention weights as
temporal affinity values to modulate the corresponding adjacent
frame features. Taking K and the query features U𝑡−1 of I𝑡−1 as an
example, we compute the set of affinity values A𝑡−1 ∈ R𝑀×𝑊 2

as
follows:

A𝑡−1 (𝑖, 𝑗) = eK(𝑖) ·U
𝑡−1 (𝑖, 𝑗)∑𝑊 2

𝑘=1 e
K(𝑖) ·U𝑡−1 (𝑖,𝑘)

, 𝑖 ∈ 𝑈𝑅, 𝑗 ∈ W. (1)

where A𝑡−1 (𝑖, 𝑗) denotes the affinity value computed for a pixel 𝑖 of
I𝑡 and a pixel 𝑗 within the patch at I𝑡−1; note that · denotes the point-
wise dot product. This operation effectively matches the key feature
K(𝑖) of pixel 𝑖 with features fromU𝑡−1 inside a corresponding𝑊 ×𝑊
local patch. While our module only uses a local patch instead of the
full feature map in the computation attention weights, empirically,
it is enough to capture the temporal correlation since the motion

between adjacent frames in a video sequence is relatively small.
The patch size is set to 7 × 7 throughout our experiments if not
noted otherwise. Note that we use feature maps of OS=8, which
can cover a broad range of motion.

Finally, we formulate feature aggregation for I𝑡 as follows:

F̂𝑡 (𝑖) =

{ S(𝑖) + Û𝑡−1 (𝑖) + Û𝑡+1 (𝑖) , 𝑖 ∈ 𝑈𝑅

S(𝑖) ,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Û𝑓 (𝑖) =
∑𝑊 2

𝑗=1 A
𝑓 (𝑖, 𝑗)U𝑓 (𝑖, 𝑗), 𝑓 = {𝑡 − 1, 𝑡 + 1}

(2)

where the modulated feature Û𝑡−1 ∈ R𝑀×𝐶 is a weighted sum of
all features inside the local patch using A𝑡−1, and S indicates the
features output by a 3×3 convolution layer at frame I𝑡 . The features
F̂𝑡 are fed into next convolution layer to continue the workflow of
the original network.

Note that the TAM’s design can be seen as sharing the weight
between the “query” and “value” convolution in the conventional
“KQV” structure. We choose this design because it achieves the
best performance among other weight sharing configurations. The
influence of the weight sharing will be investigated later in Sec. 4’s
ablation study.

3.2 Loss function
The overall loss function is a composition of three different terms:
the image matting term 𝐿𝑖𝑚 , the temporal coherence term 𝐿𝑡𝑐 , and
the target affinity term 𝐿𝑎𝑓 . In the following, we describe these
three terms in details.
Image matting term. The image matting term 𝐿𝑖𝑚 is directly
inherited from the deep learning-based image matting methods.
This term only considers the single frame prediction results w.r.t.
its corresponding ground truth. Common choices of this term are
the combination of 𝐿1 alpha matte loss, 𝐿1 alpha gradient loss,
composition loss [61] and Laplacian loss [64]. In all our experiments,
we set 𝐿𝑖𝑚 the same as the image matting method we chose to use
as the base network. Hence, for DIM [61] and Index [38], we use
alpha matte loss, alpha gradient loss, and composition loss; for
GCA [35], we only use alpha matte loss.
Temporal coherence term. We leverage the temporal coherence
metric proposed by Erofeev et al. [18] as the temporal coherence
term 𝐿𝑡𝑐 , which can be expressed as follows:

𝐿
𝑝,𝑞
𝑡𝑐 (𝑖) = | (𝛼𝑡−1𝑖 − 𝛼𝑡𝑖 ) − (𝛼𝑡−1𝑖 − 𝛼𝑡𝑖 ) |1, (3)

where𝛼, 𝛼 are the predicted and ground-truth alphamatte. 𝑖 denotes
a pixel in the UR of frame 𝑝 . This term is denoted by “dtSSD” in [18],
which penalizes the temporal gradient of alpha mattes in our work.
There is another temporal coherence metric, termed as “MESSDdt”
in [18], which augments Eq. 3withmotion vectors for the purpose of
better correspondence between frame 𝑡−1 and frame 𝑡 . However, we
found that even computed with SOTA optical flow algorithms [55],
there are severe motion noises for translucent pixels, which hurts
the performance of the network when using “MESSDdt” as the
temporal coherence loss. Thus, we do not use “MESSDdt” in our
implementation. The quantitative result of using “MESSDdt” as a
loss term can be found in the supplementary material.
Target affinity term. While the attention mechanism works well
in many cases, Yu et al. [64] demonstrates that providing direct
supervision for the attention weights can further boost the perfor-
mance. Inspired by this work, we thus design the target affinity
term 𝐿𝑎𝑓 . For a pixel 𝑖 ∈ UR at I𝑡 , the target probability of having a



large attention weight between 𝑖 and a pixel 𝑗 ∈ W inside its local
patch at a neighboring frame 𝑓 can be formulated as:

𝐺 𝑓 (𝑖, 𝑗) =

{ 1 − 𝑠, |𝛼𝑡
𝑖
− 𝛼

𝑓

𝑗
| < 𝜃

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (4)

where 𝑓 = 𝑡 − 1 or 𝑡 + 1, and 𝜃 is set to be 0.3. In addition, we follow
the label smoothing technique [53] to avoid over-confident decision
by introducing the parameter 𝑠 = 0.2. The target probability is
computed according to the ground-truth alpha mattes. The goal of
this loss term is to make the network learn to assign small affinity
values to pixels with large alpha value differences. Therefore, we
model the target affinity term between pixel 𝑖 and 𝑗 as

𝐿
𝑓

𝑎𝑓
(𝑖, 𝑗) = BCE(Φ(K(𝑖) · U𝑓 (𝑖, 𝑗)),𝐺 𝑓 (𝑖, 𝑗)) (5)

where BCE denotes the binary cross-entropy function, and Φ de-
notes the sigmoid function. During training, the term 𝐿𝑎𝑓 is calcu-
lated as 𝐿𝑎𝑓 = 1

2 (𝐿
𝑡−1
𝑎𝑓

+ 𝐿𝑡+1
𝑎𝑓

).
In summary, our network is trained by the weighted average of

these three terms:
𝐿 = 𝑤𝑖𝑚𝐿𝑖𝑚 +𝑤𝑡𝑐𝐿𝑡𝑐 +𝑤𝑎𝑓 𝐿𝑎𝑓 . (6)

where we set 𝑤𝑖𝑚 = 1, 𝑤𝑡𝑐 = 0.5, and 𝑤𝑎𝑓 = 0.25 in our experi-
ments.

3.3 Training strategy
The training of our video matting network consists a pre-training
stage and a main stage. In the following, we denote the video mat-
ting network as GCA+TAM, DIM+TAM or Index+TAMwhich corre-
sponds to base methods GCA [35], DIM [61] and Index [38] respec-
tively. For pre-training, we input three frames I𝑡−1, I𝑡 , I𝑡+1 along
with trimaps and predict the center frame alpha matte 𝛼𝑡 using the
supervision from 𝐿𝑖𝑚 only. During pre-training, all layers before
the TAM in the network are initialized and fixed using the pre-
trained weight of a off-the-shelf image matting network. TAM and
the rest of the decoder layers are randomly initialized and trained
on the DIM dataset [61]. The dataset is augmented with random
affine transformations (rotation, translation, and scaling) to gen-
erate sequences of three frames. Random flipping and cropping
are also conducted for further augmentation. We pre-trained the
network for 20 epochs using an input resolution of 512 × 512 with
the Adam optimizer [28]. For different base image matting methods,
we used different batch sizes and learning rates. The batch size is
set to 40 for both DIM+TAM and GCA+TAM, 24 for Index+TAM.
The learning rate is set to 10−5 for DIM+TAM, 10−4 for Index+TAM
and 4 × 10−4 with “poly” decay strategy for GCA+TAM where the
decay rate is set to 0.9.

In the main stage, our network takes five consecutive frames
{I𝑡−2, ..., I𝑡+2} along with their corresponding trimaps as inputs.
The motivation comes from the fact that the temporal coherence
term requires alpha mattes of three consecutive frames, and each
frame needs the features of its two neighboring frames for alpha
matte prediction. The predicted {𝛼𝑡−1, 𝛼𝑡 , 𝛼𝑡+1} are used to com-
pute the loss function in Eq. 6. We use Adam as the optimizer to
train the network on VideoMatting108 for 30 epochs with the same
input resolution 512 × 512. Our data augmentation strategies in-
clude random shape augmentation, such as cropping, flipping and
scaling, and random color augmentation, such as hue, saturation,
gamma, and JPEG compression [64]. We use “poly” decay strategy
with the base learning rate of 10−4, 10−5, 10−4 and decay rate of 0.9

during main training for GCA+TAM, DIM+TAM and Index+TAM.
The batch size is set to 24, 16 and 24 respectively.

3.4 Video Trimap Generation
We leverage the SOTA VOS network STM [42] to segment each
frame into FR, BR, and UR. That is, we let STM track FR and UR as
two different objects in a video and classify the remaining pixels
that do not belong to FR and UR as BR. To obtain the ground-truth
labels, we label the translucent pixels obtained in the construction
of VideoMatting108 without any dilation as UR, and the pixels with
alpha value equals one as FR. Additionally, we give UR a higher
weight (4.0 in training) to achieve class-balanced cross-entropy loss
since UR generally has fewer pixels than FR and BR.
Training parameters. Same with STM, we also utilize the two-
stage training strategy. First, the network is initialized from the
weight pre-trained on ImageNet [16].We then use theDIMdataset [61]
augmented with random affine transformations (rotation, transla-
tion, scaling, and shearing) to pre-train the network. The network
is pre-trained for 25 epochs. We then proceed to the main training
stage. The only difference is that we use a larger maximum frame
skip, which is 75 frames in our implementation since the videos
in VideoMatting108 are much longer compared to the VOS dataset
like DAVIS [44]. We train the network for 150 epochs, where every
epoch consists of 850 iterations. The maximum frame skipping is
gradually increased by one every two epochs. We also utilize the
“stair” learning rate strategy with the base learning rate of 10−5,
5 × 10−6, 10−6 and 5 × 10−7 at 40, 80 and 120 epochs, respectively.
We use the batch size of 4, input resolution of 512 × 512, and Adam
optimizer for all of our experiments.
Inference strategy.When generating trimaps for a new video that
is not present in the training and validation sets, we found that
online fine-tuning with the user-annotated trimaps at keyframes
drastically improves the performance of the network in our case.
During online fine-tuning, we treat the user-annotated trimap as the
ground truth and use the same random affine transform technique
to generate “fake” video sequences. Subsequently, we fine-tune
the network on these sequences for 500-800 iterations with a con-
stant learning rate of 10−6. When there is more than one frame of
user-defined trimaps, a bidirectional inference strategy is used to
ensemble the prediction results. Please refer to our supplementary
material for more details.

3.5 A New Video Matting Dataset
Lacking training data is a massive barrier to deep learning-based
video matting methods. For instance, the most commonly used
video matting dataset from videomatting.com [18] has only ten
test clips and three clips with ground-truth mattes, which is not
enough for network training. To this end, we propose our video
matting dataset, VideoMatting108. We rely on green screen video
footages to extract ground-truth alpha mattes. First, we collect 68
high-quality (1080p and 4K) footages from the Internet [50]. While
these footages have diverse objects, we found that they generally
lack several types of objects, such as fur, hair, and semi-transparent
objects. Thus, we capture 40 green screen footages for these types
of objects ourselves as the supplement. Next, we carefully extract
the foreground object’s alpha matte and color from the green screen
footages using After Effects and BorisFX Primatte Studio [6].



Table 1: Result on VideoMatting108 validation set. GCA [35], Index [38] and DIM [61] are used as the base image matting
network structures to verify the effectiveness of the TAM. The best result is in bold, the second best is underlined. “+F” indi-
cates the single image matting method is fine-tuned on our training dataset. “+TAM” denotes we add TAM for video matting.
“+TAM𝑠ℎ𝑎𝑟𝑒” and “+TAM𝑠𝑒𝑝” denote we share / separate all convolutions in TAM, respectively. “MSDdt” denotes “MESSDdt”.

Method Loss Narrow Medium Wide
SSDA dtSSD MSDdt MSE SAD SSDA dtSSD MSDdt MSE SAD SSDA dtSSD MSDdt MSE SAD

GCA+F 𝐿𝑖𝑚 49.99 27.91 1.80 8.32 46.86 55.82 31.64 2.15 8.20 40.85 60.69 34.83 2.50 8.41 38.59
+TAM 𝐿𝑖𝑚 46.86 26.21 1.48 7.68 44.82 54.01 29.49 1.78 7.90 39.51 59.09 32.55 2.07 8.18 37.41
+TAM𝑠ℎ𝑎𝑟𝑒 𝐿𝑖𝑚 49.71 27.49 1.68 8.34 46.45 57.20 29.90 1.91 8.88 41.15 62.90 33.13 2.22 9.35 39.31
+TAM𝑠𝑒𝑝 𝐿𝑖𝑚 54.06 27.69 1.78 10.37 48.03 59.13 30.75 2.00 9.84 41.56 64.89 33.90 2.30 10.37 39.78
+TAM 𝐿𝑖𝑚+𝐿𝑡𝑐 48.35 25.04 1.43 8.00 45.47 52.83 27.81 1.60 7.55 38.84 57.51 30.34 1.84 7.73 36.57
+TAM 𝐿𝑖𝑚+𝐿𝑎𝑓 46.87 25.70 1.47 7.70 45.22 53.00 28.97 1.72 7.73 39.47 58.08 31.97 2.00 8.05 37.47
+TAM 𝐿𝑖𝑚+𝐿𝑡𝑐+𝐿𝑎𝑓 45.39 24.37 1.28 7.30 44.01 50.41 27.28 1.48 7.07 37.65 54.35 29.60 1.69 6.98 34.81
Index+F 𝐿𝑖𝑚 52.75 29.49 1.97 9.78 50.90 58.53 33.03 2.33 9.37 43.53 64.49 36.39 2.73 9.73 41.22
+TAM 𝐿𝑖𝑚+𝐿𝑡𝑐+𝐿𝑎𝑓 51.18 26.31 1.52 8.87 50.02 57.91 29.36 1.81 8.78 43.17 63.56 32.09 2.10 9.21 40.97
DIM+F 𝐿𝑖𝑚 56.40 31.77 2.56 10.46 51.76 61.85 34.55 2.82 9.99 44.38 67.15 37.64 3.21 10.25 41.88
+TAM 𝐿𝑖𝑚+𝐿𝑡𝑐+𝐿𝑎𝑓 53.61 27.77 1.90 9.48 50.12 58.94 29.89 2.06 9.02 43.28 63.27 32.15 2.31 8.88 40.45

Table 2: Comparison between GCA+TAM and GCA [35] on
the 10 test clips from videomatting.com [18] with different
trimaps. The best result is in bold. Please see our supplemen-
tary material for quantitative results of each test video clip.
Method Trimap SSDA dtSSD MESSDdt
GCA+F Narrow 39.40 30.83 1.43
GCA+TAM 36.95 26.37 1.12
GCA+F Medium 44.74 33.42 1.74
GCA+TAM 42.17 28.81 1.35
GCA+F Wide 50.45 36.71 2.14
GCA+TAM 49.23 32.94 1.76

In total, our dataset consists of 108 video clips, all in 1080p resolu-
tion. The average length of the video clip is 821 frames, significantly
longer than other datasets. The foreground objects cover a wide
range of categories, such as human, fluffy toys, cloth (net, lace, and
chiffon), smoke and plants. The background footage usually has 3D
camera motion or complex scenery, adding more challenge to our
dataset. We split the dataset with 80 clips in the training set and 28
clips in the validation set. Trimaps are generated and dilated on the
fly with random sized kernel from 1 × 1 to 51 × 51 during training.
In the validation set, trimaps are generated by dilating transparent
pixels with three different kernel sizes: 11 × 11 for narrow trimaps,
25 × 25 for medium trimaps, and 41 × 41 for wide trimaps.

4 EXPERIMENTAL RESULTS
In this section, we present the evaluation of our approach on the
VideoMatting108 dataset. We also evaluate our trimap generation
algorithm. Our computing platform for video matting related ex-
periments was a 4 V100 GPU server with 2 Intel 6148 CPUs. Trimap
generation related experiments were conducted on a 4 1080Ti GPU
server with 2 E5-2678v3 CPUs.
Evaluation metrics. We employ SSDA (average sum of squared
difference) and two temporal coherence metrics, namely dtSSD
(mean squared difference of direct temporal gradients) and MESS-
Ddt (mean squared difference between the warped temporal gradi-
ent) from [18] to evaluate the accuracy of the predicted video alpha
mattes and their temporal coherence. Besides, we also report “MSE”
(mean squared error) and “SAD” (sum of absolute difference) to
verify the pixel-wise accuracy of alpha values at each frame. Lower
evaluation metrics correspond to better video matting results.

Table 3: Ablation study on the temporal window size𝑊 and
the number of aggregated frames used for GCA+TAM. “nF”
denotes 𝑛-frames are aggregated in TAM. 2F: only uses I𝑡−1;
3F: uses I𝑡−1 and I𝑡+1; 5F: uses I𝑡−2, I𝑡−1, I𝑡+1 and I𝑡+2.
𝑊 F SSDA dtSSD MESSDdt
𝑊 = 5 3F 49.75 24.08 1.30
𝑊 = 7 3F 47.59 23.53 1.19
𝑊 = 9 3F 52.35 24.29 1.38
𝑊 = 7 2F 48.51 23.81 1.30
𝑊 = 7 5F 51.25 24.79 1.32

Quantitative comparisons. Table 1 shows the quantitative com-
parisons between our video matting networks and single image
matting networks on the Videomatting108 validation set. For fair
comparisons, we fine-tune single image matting networks on Video-
Matting108 using each video frame as the image matting training
data. The learning rate and input resolution are kept the same as
we train our video matting network. The results are averaged over
all 28 test video clips. It can be seen that our method (denoted
“+TAM” with “𝐿𝑖𝑚 +𝐿𝑡𝑐 +𝐿𝑎𝑓 ” in the table) consistently outperform
the baseline image matting networks (denoted “GCA+F”, “Index+F”
and “DIM+F”) on all metrics. More comparison results with other
methods, such as KNN Video Matting [34] and DVM [52], can be
found in our supplementary material.

Furthermore, in Table 2, the GCA+TAM network also outper-
forms GCA on the test dataset from videomatting.com [18]. This
verifies the ability of the proposed TAM that is designed to aggre-
gate temporal information for better video object matting results.
Since GCA+TAM achieves much lower metric numbers comparing
to DIM+TAM and Index+TAM, we use GCA+TAM as the default
for evaluating video matting, if not mentioned otherwise.
Ablation studies. We first investigate the influence of the weight
sharing in TAM (see the second to the fourth row in Table 1). Differ-
ent from the widely utilized “KQV” structure without any weight
sharing, in our case we empirically found out that sharing “query”
and “value” weights achieves the best result compared with other
weight sharing configurations. Note that the conventional “KQV”
structure without weight sharing performs worse than the baseline
method without TAM on the validation set. We speculate that sep-
arating all weights causes over-fitting during the training, since it
does achieve lower training loss compared with our design.
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Figure 4: Qualitative evaluations that illustrate the effectiveness of our TAM. Blowups are used to show the details of the alpha
matte. These three video clips are from VideoMatting108 validation set, and we use the “medium” ground-truth trimaps to
obtain the results. Please see the supplementary video for the complete results.
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Figure 5: Comparing our GCA+TAM with GCA [35] on Internet videos. “k” indicates the number of the annotated keyframe
trimaps. Please see the supplementary video for the complete results.

We proceed to assess the influence of different loss terms (see
the fifth to the seventh row in Table 1). By only adding the temporal
coherence term 𝐿𝑡𝑐 , we obtain performance boost across all metrics,
except pixel-wise alpha value accuracy in “narrow” trimaps. Since
the UR of a narrow trimap mainly consists of transparent pixels,
we speculate that the motion ambiguities at these pixels are the
main reason for the drop of alpha value accuracy. By only adding

the target affinity term 𝐿𝑎𝑓 , the temporal metrics “dtSSD” and
“MESSDdt” are slightly improved while the alpha value accuracy
metrics are comparable to the baseline. By combining both terms,
the network achieved much improved results. For the “narrow”
trimaps in particular, the direct supervision in 𝐿𝑎𝑓 could suppress
the erroneous affinity values, thus improving performance.



Table 4: Ablation study for trimap generation on Video-
Matting108 validation set using the mIoU metric. All met-
rics are averaged with a per-video basis. “nFT” denotes how
many keyframe trimaps are used in fine-tuning. 1FT: first
frame as keyframe. 2FT: first+last frame as keyframes. 3FT:
first+last+100-th frame as keyframes.
Method FR BR UR Average
STM [42] 81.43 95.58 81.63 86.21
STM+1FT 85.92 96.62 82.75 88.43
STM+2FT 87.73 97.91 84.90 90.18
STM+3FT 87.72 97.93 85.04 90.23

In Table 3, we analyze the influence of the temporal window size
(Sec. 3.1) parameter𝑊 and the number of frames used in TAM. To
reduce the computational cost, we conduct experiments on half
of the VideoMatting108 training and validation set with “medium”
ground-truth trimaps. We can see that the network performance
achieves the best balance when𝑊 = 7. In contrast, the network
performance degrades when𝑊 = 9. The reason may come from
the difficulties of suppressing a large number of unrelated features
from adjacent frames through attention. Thus, we choose𝑊 = 7
in all of our experiments. To verify the bi-directional design, we
conduct experiments on the number of aggregated frames (fourth
and fifth rows). As seen in Table 3, our bi-directional design (second
row, 3F) outperforms all other configurations.
STM-based trimap generation. We use the medium trimaps from
VideoMatting108 as the ground truth to evaluate the performance
of STM [42] on trimap generation using the mIoU metric. As the
video sequences in VideoMatting108 are long, we only use the first
200 frames in this experiment. Specifically, we choose the first, the
last, and the 100-th frame as keyframes during online fine-tuning.
We also gradually add their corresponding ground-truth trimaps to
show their impact on online fine-tuning. The input resolution is set
to 768 × 768, and we fine-tune the network for 500 iterations. The
average time for fine-tuning STM is 7.5 minutes on one GPU. As
shown in Table 4, online fine-tuning with the first or other frames
improved the result by a largemargin, especially in FR. Addingmore
ground-truth trimaps improves the results further. In conclusion,
fine-tuning is necessary to adapt the network to user-specified
keyframe trimaps, which improve the quality of generated trimaps.
Table 4 also shows that adding more keyframes improves the mIoU
score marginally, which indicates that a sparse set of annotated
keyframe trimaps is enough for video trimap generation. We use
around three frames in all our experiments. On the other hand,
inaccurate FR/BR heavily affects the matting result. As shown in
the third row of Figure 6(a), the pixels inside the gap between the
two legs have erroneous high alpha values, despite the UR being
roughly the same in the trimaps. In (b) and (c), the excessive URs
lead to artifacts in the final alpha matte.
Qualitative evaluations. In Figure 1 and Figure 4, we show that
our method could improve the temporal coherence comparing to
single image matting networks. In the “plant” clip, GCA [35] pro-
duces flickering in the alpha matte although the foreground object
is nearly static. As seen in the “lion” clip, GCA produces an erro-
neous white blob between the fur in the blowup. In contrast, our
method could mitigate this discontinuity by aggregating temporal
features. The same effect can be seen in the “dancing woman” clip
and “standing man” clip when using Index [38] and DIM [61] as the
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Figure 6: Qualitative evaluation of trimap generation. Red,
blue and green corresponds to FR, BR and UR respectively.
“3FT” denotes that we use three keyframes during fine-
tuning.

base network, respectively. All examples validate the effectiveness
of our TAM. In Figure 5, we qualitatively compare GCA+TAM with
GCA on three Internet video clips. The trimaps are generated by the
fine-tuned STM [42]. In the “fashion” clip, our method can alleviate
the artifacts in the gap between the model’s arm and body. In the
“xmas-dog” and the “sofa” clip, not only our method can produce
more detailed result (#9 of “xmas-dog” and #92 of “sofa”), it is also
more robust to inaccurate URs in the trimap (#22 of “xmas-dog” and
#23 of “sofa”). The lengths of these three clips are 89, 100 and 93
frames respectively. More results can be found in the supplementary
materials.

5 CONCLUSION
We have developed a deep video object matting method to achieve
temporally coherent video matting results. Its key feature is an
attention-based temporal aggregation module to compute the tem-
poral affinity values in feature space, which are robust to appearance
changes, fast motions, and occlusions. The temporal aggregation
module can be easily integrated into image matting networks to
enhance video object matting performance. We constructed a video
matting dataset to enable the training of video object matting and
trimap generation networks. This dataset has 80 training and 28
validation foreground video sequences with ground truth alpha
mattes. In the future, we plan to investigate weakly supervised
video object matting methods to reduce the workload of creating
high-quality video matting training data.
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