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Abstract

This paper proposes a novel location-aware deep
learning-based single image reflection removal method.
Our network has a reflection detection module to regress a
probabilistic reflection confidence map, taking multi-scale
Laplacian features as inputs. This probabilistic map tells
whether a region is reflection-dominated or transmission-
dominated. The novelty is that we use the reflection con-
fidence map as the cues for the network to learn how to
encode the reflection information adaptively and control
the feature flow when predicting reflection and transmis-
sion layers. The integration of location information into
the network significantly improves the quality of reflection
removal results. Besides, a set of learnable Laplacian ker-
nel parameters is introduced to facilitate the extraction of
discriminative Laplacian features for reflection detection.
We design our network as a recurrent network to progres-
sively refine each iteration’s reflection removal results. Ex-
tensive experiments verify the superior performance of the
proposed method over state-of-the-art approaches.

1. Introduction

Reflections often occur when an image is photographed
through reflective and transparent media (e.g., glass). Re-
moving undesired reflections enhances the image quality
and benefits many follow-up computer vision tasks, such
as image classification, etc. In reflection removal, an im-
age I with reflections can be modeled as the weighted ad-
ditive composition of a transmission layer T and a reflec-
tion layer R.. Precisely, following the linear synthesis model
in [5, 18, 45], we express the composition procedure as fol-
lows:

I=WoT+R, (1)

where W here is extended to be a weight map that rep-
resents the variation of the attenuation of the transmission
layer, an optical effect related to Fresnel’s law.

*Corresponding author. The authors from Zhejiang University are af-
filiated with the State Key Lab of CAD&CG.
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Figure 1. State-of-the-art methods (b,c.d.e,f) typically fail to re-
cover high-quality transmission layers from strong reflections,
e.g., the highlights. Our method addresses this problem by learn-
ing the reflection confidence map (RCMap) for the detection of the
reflection-dominated regions (g) and reflection removal (h). The
input image (a) is obtained from [38].

The task of single image reflection removal (SIRR) is to
recover T from a given image I. It is an ill-posed prob-
lem since the number of unknowns is much more than
the number of equations derived from Eq. 1. Therefore,
priors are necessary to constrain the solution space, such
as natural image gradient sparsity [16, 17], ghosting cues
for thick glasses [27], and relative smoothness that as-
sumes the refection layer is smoother than the transmis-
sion layer [20, 43]. To disambiguate the restoration of
T and R in the gradient domain, several works propose
first to determine the locations of reflection-dominated and
transmission-dominated pixels, and then exploit different
constraints at different locations to improve the reflection
removal results [16, 33, 35]. While these methods are
sensitive to the selection of hyperparameters, for instance,
the commonly used gradient magnitude threshold, the de-
tected location information is proven to be useful to han-
dle strong reflections. However, such location information
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is not explicitly investigated in deep learning-based SIRR
methods [5, 12, 13, 18, 38, 39, 42, 45]. In other words, there
is no clue for the networks to be aware of how the infor-
mation of reflections is encoded in features to facilitate the
reflection removal. It might cause ambiguities when strong
reflections (e.g., reflected highlights) appear. We observe
that state-of-the-art SIRR methods typically fail to recover
high-quality transmission layers.

This paper proposes a location-aware deep learning-
based SIRR method for generic refection removal. Our
network incorporates a novel reflection detection module
(RDM) to detect reflection-dominated regions via learning
multi-scale Laplacian features. The usage of the Laplacian
features here is motivated by the assumption that the charac-
teristics of transmission and reflection layers in the gradient
domain are different from each other, such as the relative
smoothness prior in [20]. The output of RDM is a proba-
bilistic reflection confidence map (RCMap), which controls
the subsequent feature flow, resulting in significantly im-
proved SIRR results. The inverse RCMap, i.e., 1 - RCMap,
can serve as the weight map W in Eq. 1 and be used to in-
dicate the transmission-dominated regions. It motivates us
to use Eq. | as a loss to control the RDM training.

Our proposed network iteratively restores the transmis-
sion layer from the corrupted input. In each iteration, we
formulate the restoration process in a reflection removal-by-
detection manner. It first detects the reflection-dominated
regions based on the RCMap. Afterward, it predicts the
whole reflection layer by suppressing the transmission in-
formation and restores the transmission layer by jointly
leveraging the transmission-dominant regions and the pre-
dicted reflection layer. Such a network design is moti-
vated by the alternating optimization strategy [2], which
tries to decompose the complicated SIRR problem of Eq. |
into easy-to-solve sub-problems and take the mutual depen-
dence between reflection and transmission into considera-
tion. As illustrated in Fig. 1, our network can effectively
restore the transmission layer for an image with strongly
reflected highlights.

In summary, the main contributions of our work are:

* We propose a novel SIRR method that iteratively re-
stores the transmission layer from the corrupted input
image. At each iteration, the restoration process is for-
mulated in a removal-by-detection sequential manner.

e We propose a recurrent neural network, which incor-
porates a novel reflection detection module (RDM) to
detect the reflection-dominated regions. It learns a
group of multi-scale Laplacian kernel parameters to
exploit reflection boundary information.

» Extensive experiments verify the superior perfor-
mance of the proposed method over state-of-the-art ap-
proaches by a considerable margin.

2. Related Work

A variety of reflection removal methods, such as multi-
view or video-based methods [0, 8, 19, 21, 26, 30, 31, 32,
], dual-pixel sensor [23] and polarization-based [3, 15,

] methods, have been proposed to reconstruct the back-
ground transmission layer through motion or optical cues.
Since we focus on SIRR in this paper, we mainly review the
works mostly related to ours in this section.

To handle the ill-posed SIRR problem, researchers pro-
posed different priors to constrain the solution space. Work
in [17] leveraged the sparsity prior of gradients when de-
composing an image into reflection and transmission lay-
ers. Observing that reflection layers are usually out of fo-
cus and appear to be more blurry than transmission lay-
ers, Li et al. [20] proposed to model the gradient distri-
bution of these two layers with different probability dis-
tributions, resulting in good quality reflection removal re-
sults. When the thickness of the glass cannot be ignored,
ghosting reflection could appear due to refraction. Shih et
al. [27] employed a patch-based GMM prior distribution
to model the natural image for reflection removal in this
case. Some methods suppressed the blurry reflections us-
ing gradient-domain thresholding and image reconstruction
methods [ 1, 43]. However, when there are strong reflection
areas in the scene, these methods cannot effectively remove
them and might smooth out the details in the transmission
layer. It is also beneficial to separate the gradients of the
original image into reflection gradients and transmission
gradients to provide gradient-domain constraints to facili-
tate the layer separation in SIRR [16]. Detecting reflection-
dominated regions in an image can be achieved through
depth-of-field analysis [33, 35]. Our method is motivated
by these methods but relies on deep learning to improve
the robustness of reflection detection. Moreover, in contrast
to the binary map in [33, 35], our RCMap is a probabilis-
tic map used to suppress the unrelated features in reflection
prediction.

Recently, deep learning-based SIRR methods have be-
come popular. These methods are data-driven and try to
learn task-specific features to solve the SIRR problem in
feature space. Fan er al. [5] designed a deep neural network,
CEIL-Net, to first regress the edge map of the transmission
layer and then reconstruct the transmission layer. BDN [42]
is also a two-stage network, where the reflection layer pre-
dicted in the first stage is used as auxiliary information to
guide the transmission layer reconstruction in the second
stage. IBCLN [ 18] proposed a recurrent network based on
LSTM [10] units to refine the results of predicted reflection
and transmission layers iteratively. CoRRN [37] proposed
a network with a feature-sharing strategy and a statistic loss
to remove the strong reflections within local regions. Face
reflection removal has also been studied in [36]. Besides,
various loss terms have been proposed to guided the deep
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Figure 2. The architecture of our recurrent SIRR network. Stage 1: predict the RCMap and the reflection layer. “x4” indicates that the SE
(Squeeze-and-Excitation) residual block [11] is repeated 4 times. Stage 2: predict the transmission layer. CBAM: Convolutional Block
Attention Modules [40]. The output transmission image at iteration ¢ — 1 will be fed back to the network as the input of iteration ¢, and T

is initialized as I.

neural networks to improve the SIRR results, such as per-
ceptual loss based on VGG network, exclusion loss in gra-
dient domain, and adversarial losses to prevent the blurring
of reconstructed layers [13, 18, 38, 39, 42, 45].

The construction of the SIRR dataset is critical to the
success of deep learning-based reflection removal methods.
To this end, Jin ez al. [ 12] proposed multiple data generation
models. Wen et al. [39] proposed SynNet to generate im-
ages with reflections beyond linearity. Wei et al. [38] intro-
duced an alignment-invariant loss to utilize the misaligned
images as the real-world training dataset. Recently, Kim e?
al. [13] proposed a physics-based rending method to render
images with reflections, the proposed method considers the
reflection and refraction of light in glasses to obtain realistic
rendering results.

3. Proposed Method

Our network is a recurrent network, as illustrated in
Fig. 2. In each iteration %, our network takes the original
image I and the transmission layer T, 1 predicted in the
previous iteration ¢ — 1 as inputs, and predicts the transmis-
sion layer Ti to continue the iteration. 'i‘o is initialized as
I. The step-by-step refinement results of reflection removal

are shown in Fig. 3. This design is inspired by the recurrent

Code and the pre-trained model: https://github.com/zdlarr/Location-
aware-SIRR

network for reflection removal in IBCLN [18], and we also
use an LSTM [10] unit to aggregate information through it-
erations. However, our network is designed to lean towards
the reconstruction of transmission and only iterates over the
predicted transmission layer T;.

In our network, each iteration is divided into two stages
for restoring two layers sequentially, which is in a spirit sim-
ilar to BDN [42]. However, we rely on RCMap to control
the between-stage information flow. In the first stage, we
predict the reflection layer R; and the reflection confidence
map G, by taking I and T,_; as inputs. We denote the first
stage as a function G that can be written as:

R;,Ci = Gr(I, T 1). 2

This stage mainly consists of two modules: reflection de-
tection module (RDM) and transmission-feature suppres-
sion module (TSM). Specifically, RDM takes I and Tz-_l
as inputs and predicts the map ¢, using features from a
multi-scale Laplacian sub-module (MLSM). Next, TSM is
used to suppress the Laplacian features within transmission-
dominated regions via an element-wise multiplication be-
tween the features and C,. Afterward, the suppressed
features and the images features are concatenated as an
LSTM [10] block’s inputs to estimate Rl In our work,
R, is mainly used as a cue to improve the reconstruction
of transmission layer.

In the second stage, we predict the transmission layer T,
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Figure 3. The gradual refinement of reflection removal results after each iteration. The input image I is taken in front of a window glass.
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Figure 4. Visualization of two inverse edge maps and inverse
Laplacian maps along with their original images. For the inverse
edge map, we first compute the edge map E ranging from O to 1
using the method in [5] and then obtain its inverse map by 1 — E.
Similar to the inverse Laplacian map, we first compute absolute
Laplacian values through convolution with the Laplacian kernel
k., then divide each Laplacian value by the maximal absolute
value of the image to obtain a map L. The inverse Laplacian map
is then set to 1 —L. Consequently, the 0 value of the low-frequency
signals in gradient domain is mapped to 1 in the inverse maps. Best
view on screen and zoom in.

(b) Inverseedge map () Inverse Laplacian map

with the input of I, T,_, as well as f{i, 1-C; computed in
the first stage. We denote the second stage as a function G
which can be described as:

T:=Gr(I, T 1,Ri, 1 - C)). 3)

Notice that we utilize the inverse confidence map, i.e.
1—C;, in this stage. Since the transmission layer dominates
at regions where 1 — C, have a high value, we expect this
map to help the network learn weights to encode the reflec-
tion information in an adaptive manner, which should bene-
fit the reconstruction of the transmission layer. For the net-
work structure in this stage, we follow the contextual auto-
encoder network in [24], and additionally leverage CBAM
(Convolutional Block Attention Module) [40] blocks after
Conv and ReLU to compute the channel-wise and spatial
attention. Please see supplementary materials for detailed
network parameters.

Multi-scale Laplacian Features. We observe that the
Laplacian operator, a second-order differential operator, can
suppress the low-frequency reflections better. As illustrated
in Fig. 4, low-frequency reflections are less obvious in the
inverse Laplacian map than in the inverse edge map, it
suggests that the Laplacian operator more effectively sup-
presses low-frequency reflections. Besides, it is desirable
since we intend to detect strong reflections, and suppressed
low-frequency reflections are relatively easier to remove. In

@1 (b) Iter =1 (c) Iter=2 (d) Iter =3 @eT
Figure 5. Visualization of the improvement of the reflection confi-
dence map after each iteration. Note that the reflection-dominated

regions are gradually obvious and accurate.

contrast, strong reflections that have hard boundaries can
not be suppressed by the Laplacian operator. It is possible
that the difference between I and T caused by strong re-
flections become more obvious in the Laplacian domain.
We assume it is beneficial to detect reflection-dominated
regions and thus concatenate these two images to form
Xin = I, ’i‘i_l] as inputs to obtain multi-scale Laplacian
features.

For the purpose of multi-scale Laplacian feature learn-
ing, we down-sample X;,, to original size’s 1/2,1/4,1/8
by bi-linear interpolation [7]. The down-sampled results are
denoted by Xg, Xi, Xé respectively. We utilize a convolu-
tion kernel with weights initialized to be a 3 x 3 Laplacian
kernel, denoted by k;, = [0,—1,0;—1,4,—-1;0,—1,0], to
obtain the second derivative signal from X;,. We allow
the network to fine-tune the Laplacian kernel parameters to
better extract Laplacian features, where the fine-tuned pa-
rameters are denoted as Lap. During training, we utilize
gradient clipping (0.25 in our experiments) to make sure
that the learned kernel parameters stay close to the original
kernel k..

After the Laplacian convolution block in Fig. 2, the up-
sampling operation U jT is applied to the multi-scale Lapla-
cian feature maps to restore their original size, where j is the
sampling rate. Precisely, given the images Xj (j =2,4,8)
and X,,, the output features X,,,; can be written as:

Xout = Concat(Lap(Xiy), U;(ﬁap(xj)))jzz,zi,s, )
where C'oncat is the concatenation operation.

Finally, taking X,,; as input, RDM predicts the re-
flection confidence map from the Laplacian features. We



employ three Squeeze-and-Excitation Residual Block (SE-
ResBlocks) [11] to get efficient multi-channel Laplacian
features, where each block comprises of three layers of SE-
ResNet, then the PReLU function [9] is used to activate the
features while keeping the negative values. These combined
blocks denotes as frq,. Thus, given the features X,,;, the
map C can be described as:

C= Sigmoid(Conv(frap(Xout)))- 5)

Improvement of the predicted RCMaps for three training
images along with their iteration is illustrated in Fig. 5.

Transmission-feature suppression module. While it is
feasible to predict R, with RCMap C; as input, just like
predicting T; in the second stage, we empirically found
that suppressing the part of Laplacian features belong to
transmission-dominated regions benefit the reflection layer
prediction. It also leads to a relatively simple network
design by concatenating the features computed with X,
and the suppressed Laplacian features as the input to the
LSTM [10] block. That is, the same encoder-decoder net-
work structure in the second stage is not used in the first
stage to reduce the number of network parameters. Pre-
cisely, in this module, we employ three SE-ResBlocks to
refine the Laplacian features and then multiply the features
by C, for the purpose of transmission features suppressing.

4. Training Loss

In this section, we describe the five loss functions used
in the training of our network. For clarity, we denote the
ground-truth transmission and reflection layers by T, R re-
spectively, and the predicted transmission and reflection
layers at iteration ¢ as T, R; respectively. The iterations
number used in our recurrent network is denoted by V.
Composition Loss. The composition loss is proposed to
guide the training of RDM to predict Rand C. Firstly, since
the map 1 — C can serve as the weight map W in Eq. 1, we
can compose an image by the following formula:

IL=(1-C)oT+R, (6)

where o is an element-wise production operation. Notice
that T and R are the ground-truth images after Gamma cor-
rection [44]. We formulate the loss for C as follows:

N
S Y N Luse L), (7)

I,T,RED i=1

where L );sg indicates the mean squared error, 6 is an at-
tenuation coefficient to indicate the strength of supervision
and we set it to 0.85.

Secondly, same as IBCLN [15], we adopt the linear syn-
thesis model, i.e., I = a - T + R, to form a loss to guide
the prediction of Tz, R It has two forms: IZ =a- T+R;
andI; = o-T;+ RZ, where IZ, T and R are the results of
the inverse gamma correction of I,, T;and R; respectively,

and « is a known quantity for the synthesized images (see
data augmentation in Sec. 5 for details). We use Eq. 7 to
compute the loss for these two forms and denote the loss
as Lyesidual s well. In short, our composition loss for the
synthesized images is defined as:

£comp = EC + ‘Cresiduab (8)

Perceptual Loss. Same as ERRNet [38] and IBCLN [18],
we use VGG-19 network [29] pre-trained on ImageNet [25]
dataset to extract features for the computation of this loss.
Our perceptual loss takes multi-scale images as inputs, and
it can be written into:

=2 2

TieD j=1,1/2,1/4

’YJEVGG(T]a T?\])a (9)

where Ly ¢ denotes the mean square error between VGG
features. We use three scales, ie., j = 1,1/2,1/4 and
set the weights as: v = 1,73 = 0.8,75 = 0.6 respec-
tively. For Ly ca, we use the layers ‘conv2_2’, ‘conv3_1’,
‘conv4_2’ and ‘conv5_2’ as [38]. Fig. 2 shows how the net-
work computes T

Pixel and SSIM Loss. The pixel loss is used to penalize
the pixel-wise difference between T and Ti. Here, we uti-
lize I; loss which denotes as £; to compute the absolute
difference. We define the pixel loss as:

N
['pixel - Z Z HNiiLI (T7 Ti)a (10)

TeD i=1

where 0 is set to 0.85 as well.

It is verified that the SSIM(structural similarity index)
loss combined with [; loss perform better than ls loss in
image restoration [46]. Therefore, we also adopt LF5TM =
1-SSTM(T, Tl) in each iteration 7 as a loss term, which
can be written into:

N
Lssia = Y > N LISM, (1)

TeD i=1
where the setting of 6 is same as Eq. 10. We denote the
mixture of SSIM and pixel loss as L,,,;, and define it as:

Lomic = aLssiv + (1 — a)Lpiger, (12)

where « is set to 0.84, same as the setting in [46].
Adversarial Loss. To improve the quality of the gener-
ated images, we further add an adversarial loss. We adopt a
multi-layer discriminator network D to assess the quality of
images and define the adversarial loss as:

Loay = Y —log D(T,T). (13)
TeD

Final loss. The final training loss can then be defined as:

L= )\lﬁcomp + >\2£p + )\SLMiZL’ + )\4£adv~ (14)



Methods

Dataset (size) Index (1)
Zhang et al-F [45] BDN [42] RMNet [39] ERRNet-F [38] Kimeral. [13] IBCLN-F[I8] Ours
Postcard (199) PSNR 21.497 20.460 19.833 22.374 23.055 23.421 23.724
SSIM 0.870 0.858 0.872 0.889 0.871 0.864 0.903
Object (200) PSNR 23.675 22.642 24.045 23.101 23.552 24.416 24.361
SSIM 0.885 0.857 0.847 0.876 0.879 0.889 0.898
Wild(55) PSNR 24.861 22.048 19.800 24.097 25.534 24.724 25.731
SSIM 0.886 0.828 0.885 0.880 0.890 0.871 0.902
Zhang et al.(20) PSNR 22.230 18.487 18.780 23.153 20.218 21.008 23.338
SSIM 0.800 0.729 0.708 0.809 0.735 0.760 0.812
Li et al.(20) PSNR 20.721 18.828 15.457 20.368 20.096 23.695 23.451
SSIM 0.765 0.738 0.732 0.771 0.759 0.804 0.808
Average(494) PSNR 22.752 21.374 21.315 22.810 23.298 23.882 24.179
SSIM 0.871 0.844 0.851 0.875 0.866 0.868 0.893

Table 1. Quantitative comparison to state-of-the-art methods on real-world datasets. The best results are marked in red, and the second-best
results are marked in blue.
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Figure 6. Examples of our synthesized images. Top: the transmis-
sion layers. Bottom: the synthesized images with reflections. First

two columns: adding ghosting effect. Middle two columns: the
blurred reflections. Last two columns: adding reflected highlights.

We set the weights for each loss in our experiments as fol-
lows: A\ = 0.4, Ao = 0.2, )\3 = 0.4, Aq = 0.01.

5. Experiments

We have implemented our method using Pytorch [22
and tested it on a PC with an Nvidia Geforce RTX 2080 Ti
GPU. To minimize the training loss, we adopt ADAM op-
timizer [14] to train our network for 60 epochs with learn-
ing rate 2¢~* and batch size 2. The 31, 2 in ADAM are
set to 0.5 and 0.99, respectively. The network weights are
initialized using a normal distribution (mean:0, variance:
0.02), and the number of recurrent iterations is set to 3,
same as IBCLN [18]. In the inference stage, it takes about
0.068s for our method to process an input image of resolu-
tion 400 x 540.

Training dataset. Our training dataset consists of both
synthesis and real-world data. For the synthesis data, we
use the images dataset from [5]. This dataset has approx-
imately 13700 transmission and reflection image pairs of
size 256 x 256. With these pairs, we generate images
with reflection using the linear synthesis model in [45]:
I = a-T+R, where «a is randomly sampled in the interval
[0.7,1.0] (see Fig. 6 for examples of synthesized images)
and prepare triples, {I, T,R} for training. For the real-
world data, there are a total of 290 real-world image pairs,
{I, T}, in our dataset, including 200 pairs provided by the

“Nature” dataset in IBCLN [18] and 90 pairs provided by
Zhang et al. [45]. Same as [18], we feed the network with
4000 images in each epoch, including 2800 randomly sam-
pled from the synthesis data and 1200 image patches of size
256 x 256 cropped from the real-world images.

Data augmentation. For sampled reflection images from
the synthesis data, the data augmentation procedure first
chooses whether to add ghosting effects or using a gray-
scale version of reflection images with a probability of 0.2
or 0.3 respectively. The usage of gray-scale reflection im-
ages is an efficient acceleration strategy in the early train-
ing of reflection removal networks. The ghosting effect is
used to simulate the reflective effect of thick glasses [4, 27],
which can be formulated as: f-He K& R,
where K is a Gaussian kernel, § is a reflection rate map
of size 256 x 256 x 3 cropped from a 560 x 560 x 3 Gaus-
sian map (sigma=3) [18], H is a two-pulse kernel(size=9,
peaky = 1 — /a, peaks = y/a — a), ® is the convolu-
tion operation. Second, if the ghosting effect is not chosen
in the first step, all the images will be blurred with a Gaus-
sian filter [18, 38, 45]. The filter kernel size is in the range
of [2,5]. We hnearly increase the kernel range from [2, 5]
to [0.8, 5.8] to cover more variations of the blurring degree
of the reflection images. Specifically, the augmented reflec-
tion layer R is generated by R = - K ® R, the reflection
rate 3 is the same parameter as in adding a ghosting effect.
We compose the processed reflection images with transmis-
sion images to synthesize I [45], and then perform gamma
correction for T, R and the composited image I.

Finally, we apply random rotation (90°,180°,270°) and
flipping to all the loaded images to obtain the final train-
ing images as the network’s inputs. The gamma correction
is not executed on captured real-world images. After 60
epochs, we reduce the Gaussian kernel size to [0.5, 3.5] and
the learning rate to 3e > for the fine-tuning of our network
on synthesized images with strong reflections.
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Figure 7. Qualitative comparisons between the proposed method and four latest state-of-the-arts.

5.1. Comparisons

To evaluate the performance of our method for SIRR,
we compare it to six state-of-the-art methods based on
deep learning, including Zhang et al. [45], BDN [42], RM-
Net [39], ERRNet [38], Kim et al. [13], and IBCLN [18].
We use PSNR and SSIM as metrics, where the higher metric
value means better performance. For fair comparisons, we
report their better performances either using their original
trained models or using models fine-tuned with our train-
ing images if their training codes are available. The fine-
tuned results are denoted with a suffix ”-F”. Note that we
do not fine-tune the RMNet [39], as it requires additional
alpha blending masks from a SynNet [39]. We also modify
the code of Kim et al. [ 13] to compute SSIM in RGB space.

Quantitative comparisons. We quantitatively compare
our model with the methods mentioned above on five real-
world datasets and report the statistics in Tab. 1. The first

three datasets are all from SIR? constructed in [34], and
the rest two datasets are from the evaluation set in Zhang et
al. [45] and the “Nature” test dataset in Li et al. [ 18] respec-
tively. In Tab. 1, it can be seen that our method is ranked as
top-1 on the Postcard, Wild, and Zhang et al. datasets and
top-2 (PSNR ranking) on the Object and Li et al. datasets.
However, for the top-2 PSNR ranking cases, our result is
comparable to the top 1 methods. Moreover, our method
achieves the best average PSNR and SSIM scores. This re-
sult verifies that our method can achieve superior perfor-
mance in various real-world scenarios.

Qualitative comparisons. Fig. 7 presents the reflec-
tion removal results of different models on corrupted im-
ages. These images are from the benchmark datasets
SIR? [34](rows 7-8), unaligned datasets of ERRNet [38]
(rows 4-6), the “Nature” test dataset in Li et al. [18](rows
1-3). It can be seen that there are difficult cases, such as a
large area of reflections and strong highlights, that are not
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Figure 8. Visualization of reflection removal results according to the ablation study in Tab. 2.

Model SIR? [34] Zhang et al.[45]  Lietal[18]
PSNR SSIM | PSNR SSIM | PSNR  SSIM
w/oRDM & TSM  23.237 0.881 | 22.784 0.800 | 22.607 0.778
w/o TSM 23304 0.882 | 22.139 0.805 | 23.088 0.799
w/o LSTM 23.808 0.887 | 21.040 0.760 | 22.721 0.794
C from I, 22595 0.888 | 21.747 0.792 | 22.283  0.792
MLSM — SLSM ~ 23.089 0.879 | 21.708 0.796 | 23.065 0.800
Fix MLSM 23.640 0.891 | 22.951 0.809 | 22.646 0.802
Laplacian — Edge 23.612 0.892 | 22.381  0.808 | 23234 0.798
Ours 24117 0.901 | 23.338 0.812 | 23.451 0.808

Table 2. Network structure ablation study. w/o RDM & TSM:
remove RDM and TSM. w/o TSM: remove TSM. w/o LSTM: re-
move the LSTM block. C from I f¢: disable MLSM in RDM and
predict the RCMap using the extracted features of I and T before
LSTM block. MLSM — SLSM: Change multi-scale Laplacian
to the single scale Laplacian. Fix MLSM: disable the fine-tuning
of Laplacian kernel parameters. Laplacian — FEdge: Change
Laplacian features to Edge features, namely the partial derivatives
of the image with respect to  and y according to Fig. 4, in RDM.

2 14, 1S : )
Model SIR” [34] Zhang et al. [45] Lietal [18]

PSNR SSIM | PSNR SSIM | PSNR SSIM

w/o Lyizer 23365 0.888 | 22.113  0.788 | 21.587 0.788
w/o Lssry 15653 0.673 | 17.652  0.746 | 15.197 0.642
wlo Lp 22,725 0.880 | 22.219 0.804 | 22.778 0.812
W/0 Leomp 23774 0.894 | 22453 0.807 | 23.036 0.801
w/o Loqn  23.571  0.889 | 22.480 0.803 | 23.240 0.800

Complete  24.117 0901 | 23.338 0.812 | 23.451 0.808

Table 3. Loss term ablation study. We remove each of the five loss
terms and evaluate the corresponding re-trained model to check its
influence on the reflection removal results.

well handled by other methods. In contrast, our method
can remove most undesirable reflections while keeping the
high-frequency details of the transmission layer at the same
time. However, when the strong reflection regions are not
correctly detected, our method still lacks information to re-
move such reflections. For instance, there are remained re-
flected highlights in our result in the fifth row of Fig. 7. As
shown in Fig. 9, the two oval strong highlights are not to-
tally detected in RCMap for this image. Hence, they still ap-
pear in the removal result. Although there are hard bound-
aries in the inverse Laplacian map for these highlights, we
speculate that the error is because there is no enough context

[ ]

@ '? (b) RCMap (c) Inverse Laplacian map
Figure 9. A failure case. The oval reflected highlights are not cor-

rectly detected for the corrupted image in the fifth row of Fig. 7.

information for the network to classify such oval highlights
as reflections. Besides, this image is un-aligned with the
transmission image, but we did not train our network on the
un-aligned reflection removal dataset from ERRNet [38].

5.2. Ablation Study

To better analyze the architecture of our network and
evaluate the importance of the loss functions, we perform
the ablation study by changing the model structure and re-
moving each loss function. The statistics of PSNR and
SSIM are obtained by evaluating the re-trained models in
these experiments. In Tab. 2, we firstly show the effective-
ness of RDM, TSM, and LSTM blocks in our network (first
three rows). We can found that each module contributes
to the SIRR performance. Secondly, we test four different
choices in the design of RDM (last four rows, see captions
of Tab. 2 for the descriptions). It can be seen that our cur-
rent design choice of RDM leads to the highest PSNR and
SSIM scores. In addition, the visualization of the reflec-
tion removal results in the evaluation of network structure
is shown in Fig. 8. In Tab. 3, we show that each loss term
contributes to the network’s performance. We speculate that
the large drop of PSNR and SSIM after removing Lss7s is
because the weight of SSIM loss is much larger than pixel
loss in L. Removing L om, also degrades the perfor-
mance but not as large as Lgg7ps. Thus, with the rest loss
terms, the network can learn to predict RCMap in a self-
supervised manner to some extent.

6. Conclusion

We proposed a location-aware SIRR network in this pa-
per to improve the quality of SIRR results substantially. The



network has an RDM to detect reflections roughly. The pre-
dicted RCMap is used to control the features flow of the
network for restoring the transmission and reflection layers.
Such design enables the network to learn to encode reflec-
tion information adaptively and is beneficial to removing
strong reflections, such as reflected highlights. In the future,
we plan to simplify our network’s design further to save the
number of parameters and improve the inference speed for
its application on the mobile computing platform.
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