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Fig. 1. Left: Our system decouples quantization schemes from computation, allowing programmers to improve simulation resolutions using lower-precision
(“quantized”) numerical data types that consume less memory. Programmers can easily switch between different quantization plans to rapidly explore
the design space of quantized simulators, to achieve a good balance between numerical precision and memory consumption. Our compiler is in charge of
optimization and code generation. Right: High-resolution simulation demos built by our system. All demos here run on a single GPU with ≤ 32 GB memory,
and each frame takes around one minute.
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High-resolution simulations can deliver great visual quality, but they are
often limited by available memory, especially on GPUs. We present a com-
piler for physical simulation that can achieve both high performance and
significantly reduced memory costs, by enabling flexible and aggressive
quantization. Low-precision (“quantized”) numerical data types are used and
packed to represent simulation states, leading to reduced memory space
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and bandwidth consumption. Quantized simulation allows higher resolution
simulation with less memory, which is especially attractive on GPUs. Imple-
menting a quantized simulator that has high performance and packs the data
tightly for aggressive storage reduction would be extremely labor-intensive
and error-prone using a traditional programming language. To make the
creation of quantized simulation practical, we have developed a new set of
language abstractions and a compilation system. A suite of tailored domain-
specific optimizations ensure quantized simulators often run as fast as the
full-precision simulators, despite the overhead of encoding-decoding the
packed quantized data types. Our programming language and compiler,
based on Taichi, allow developers to effortlessly switch between different
full-precision and quantized simulators, to explore the full design space of
quantization schemes, and ultimately to achieve a good balance between
space and precision. The creation of quantized simulation with our system
has large benefits in terms of memory consumption and performance, on
a variety of hardware, from mobile devices to workstations with high-end
GPUs. We can simulate with levels of resolution that were previously only
achievable on systems with much more memory, such as multiple GPUs. For
example, on a single GPU, we can simulate a Game of Life with 20 billion
cells (8× compression per pixel), an Eulerian fluid system with 421 million ac-
tive voxels (1.6× compression per voxel), and a hybrid Eulerian-Lagrangian
elastic object simulation with 235 million particles (1.7× compression per
particle). At the same time, quantized simulations create physically plausible
results. Our quantization techniques are complementary to existing acceler-
ation approaches of physical simulation: they can be used in combination
with these existing approaches, such as sparse data structures, for even
higher scalability and performance.

CCS Concepts: • Software and its engineering → Domain specific lan-
guages; • Computing methodologies → Parallel programming lan-
guages; Physical simulation.

Additional Key Words and Phrases: Domain-specific languages, GPU com-
puting, Quantized computation.

ACM Reference Format:
Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei
Xu, Qiang Dai, William T. Freeman, and Frédo Durand. 2021. QuanTaichi:
A Compiler for Quantized Simulations. ACM Trans. Graph. 40, 4, Article 1
(August 2021), 16 pages. https://doi.org/10.1145/3450626.3459671

1 INTRODUCTION
Computer graphics applications, such as physical simulation, require
high resolution for visual quality. Unfortunately, as simulations scale
up, they often run out of available memory to store the physical
states, especially when running on GPUs with hard memory space
limits. Existing techniques that scale up simulations are mostly
focused on improving computation performance. The space for
improving memory efficiency is largely underexploited.

Fortunately, many simulations do not need standard full-precision
IEEE 754 data types, such as float and double in the C programming
language. While these general-purpose floating-point formats are
usually the only formats supported by processors for computation,
we observe that, for storage, we can use more options, including
low-bit integers, truncated fixed-point real numbers, and tuples of
floating-point real numbers with shared exponents. This directly
motivates us to leverage low-precision data types in simulation to
save memory space and bandwidth1.
1Another way to save memory space is data compression, which is particularly useful
for streaming. Note that data compression algorithms, such as LZ77 [Ziv and Lempel
1977], rely on a data context (“sliding window”) to work, so they may not easily support

Fig. 2. Features of different approaches. Our compiler approach aims for
both productivity and performance.

While “using fewer bits in data types to save space” sounds like
a straightforward idea, doing this robustly and efficiently is a sig-
nificant challenge. Manually coding programs that operate on low-
precision and quantized data types is extremely laborious and error-
prone. For example, writing code to decode a low-precision float
point number into IEEE 754 float32 involves numerous low-level
bit operations and can easily make simulator code unreadable. Quan-
tized data type libraries may simplify development, but they often
result in unsatisfactory performance, since general-purpose compil-
ers may not easily optimize related memory operations that read
or write only part of a hardware-native integer type such as 32-
or 64-bit integers. See Fig. 2 for a high-level comparison between
different approaches to implementing quantized simulators.
Moreover, determining the right quantization scheme often re-

quires repeated trial-and-error. The most effective way to validate
a quantization scheme is to implement the simulator and actually
run it. Therefore, flexibly switching between different quantization
schemes is vitally important for practically developing quantized
simulators.
We introduce a language and compiler for quantized simulation,

where low-precision (“quantized”) numerical data types are used to
represent simulation states, leading to reduced memory space and
bandwidth consumption. In our system, developers write simulators
as if they are using a traditional parallel imperative programming
language, such as C++ and CUDA. When doing memory-space opti-
mization, they do not modify any of the computation code. Instead,
they use a simple language to specify numerical value quantization
schemes and flexibly explore quantized versions of the simulator.
Rapid experiments lead to properly compressed simulation states,
improved memory space and bandwidth efficiency. Note that in
memory-bound programs the overhead of encoding and decoding
quantized data types would be negligible, and quantization may
improve performance due to reduced memory bandwidth consump-
tion.
Our tailored programming interface and compiler can greatly

simplify the development of quantized simulators. Our system pro-
vides language-level abstraction and first-class compiler support
for quantized computations and domain-specific optimizations. Pro-
grammers can easily specify customized and quantized data types
for physical state storage. Since our system decouples quantization

random accesses. Since many physical simulation tasks heavily rely on random accesses,
in this work we do not consider data compression.
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schemes from computation kernels, developers can easily exper-
iment with different low-bit data formats, easily achieve a good
balance between precision and space via rapid experiments.
We summarize our contributions as follows:

(1) A simple programming interface for quantized simulation
that provides programmer bit-level control over numerical
data types. The numerical data type interface is orthogonal
to the actual computation, this allows the programmers to
rapidly experiment with different quantization schemes.

(2) A compilation system that automatically generates efficient
code for encoding/decoding quantized data types. Our system
supports x64, ARM64, CUDA, and Apple Metal backends.

(3) A suite of domain-specific compiler optimizations further
improves the memory performance of compiled quantized
computation. These optimizations bring 4.10× performance
improvement on our microbenchmarks and up to 1.58× on
the large-scale GPU simulators.

(4) Systematic evaluations of our system. We demonstrate that
our system pushes the resolution of physical simulations
to unprecedented resolutions. Under proper quantization,
we achieve 8× higher memory efficiency on each Game of
Life cell, 1.57× on each Eulerian fluid simulation voxel, and
1.7× on each material point method [Stomakhin et al. 2013]
particle. To the best of our knowledge, this is the first time
these high-resolution simulations can run on a single GPU.
Our system achieves resolution, performance, accuracy, and
visual quality simultaneously.

Our system is implemented as an extension to the open-source
Taichi programming language [Hu et al. 2019] (https://github.com/
taichi-dev/taichi). It is now officially a part of Taichi. The evalu-
ation suite is hosted at https://github.com/taichi-dev/quantaichi.
Commands to reproduce key experiments are included in this paper.

2 RELATED WORK

2.1 Bit-level compression
Compressed color formats in graphics and image processing. Com-

pressed data types have proven success in graphics. For example, the
16-bit color format “R5G6B5”, where 5, 6, and 5 bits are used to store
the red, green, and blue channels of a pixel, was widely adopted
for legacy LCDs and graphics APIs (e.g., GL_RGB565 in OpenGL).
The 32-bit RGBE format (used in the RADIANCE rendering sys-
tem [Ward 1994]) used 8 bits for red, green and blue channels each,
and a shared 8-bit exponent, providing larger dynamic ranges. In
modern production rendering, RGBE formats are used for saving
communication bandwidth. For example, Eisenacher et al. [2013]
used an RGB9e5 format for path tracing weights.

Quantized neural networks. In deep learning, quantized neural
networks (e.g., [Courbariaux et al. 2016; Hubara et al. 2017; Jacob
et al. 2018; Kim and Smaragdis 2016]) and specialized hardware
(e.g., [Jouppi et al. 2017b]) for them have been studied extensively,
to use quantized data formats to improve computation throughput.
Instead of using single-precision float32 data type, recent work
explores using low-bit data types such as fixed-point numbers, int8

and even 1-bit integers for deep neural network training and infer-
ence. See [Guo 2018] for a good survey.

Manipulating bits in programming languages. In programming
languages such as C/C++, bit-level compression is often imple-
mented using efficient bitwise operators, such as and “&”, or “|”,
and xor “^”. Meanwhile, C++ “bit fields”, whose behavior is not yet
standardized, can sometimes be used for basic bit-level compression
of integral types:
struct S {

// 3 bits: value of x
// 6 bits: value of y
// 2 bits: value of z
unsigned char x : 3, y : 6, z :2;

};

Although an extensive study has been conducted in quantized
computation, a domain-specific system for productively developing
high-performance simulators is missing. As a result, a developer
whowants quantized computation has to write low-level code that is
hard to maintain or resort to handcrafted libraries with performance
issues.

2.2 Floating-point formats
IEEE Standard for Floating-Point Arithmetic (IEEE 754)[IEEE 2008]
serves as the guideline of floating-point format and computation. No-
tably, the IEEE 754 single- and double- precision floating-point for-
mats (i.e., float and double in C), have been the prevalent floating-
point formats used in computer graphics and scientific computing.
They occupy 32 and 64 bits in memory, respectively. Floating-point
bits include a sign bit, a few exponent bits, and significand bits. Since
computing applications have different preferences between preci-
sion, compute throughput, memory bandwidth and space, many
variants of float-point numbers do exist. For example, when higher
precision is needed, C provides the non-standard long double for-
mat that usually comes with 80 bits, and the IEEE 754-2008 revision
also defines “quadruple” with 128 bits, and “octuple” with 256 bits,
both of which are rarely used. In fact, formats with lower precision
are more frequently used, a typical example being the 16-bit half-
precision format (5 bits for exponent and 10 bits for fraction). Re-
cently the Brain Floating Point (bfloat16, 8 bits for exponent and 7
bits for fraction) format has been introduced in Google TPUs [Jouppi
et al. 2017a] for deep learning. half and bfloat16 demonstrate inter-
esting trade-offs between dynamic range (number of exponent bits)
and accuracy (number of fraction bits, a.k.a. mantissa). See Fig. 3
for an depiction of these floating-point formats. A good survey on
mixed-precision arithmetic in numerical methods is [Abdelfattah
et al. 2020].
We provide a flexible programming interface for specifying cus-

tom floating- and fixed- point data types. Programmers can easily
switch between different data types to achieve a good balance be-
tween space and precision.

2.3 High-resolution simulations
Work in graphics explores high-resolution simulation on multicore
CPUs [Aanjaneya et al. 2017; Liu et al. 2018, 2016; McAdams et al.
2010; Setaluri et al. 2014] and massively parallel GPUs [Gao et al.
2018; Wang et al. 2020; Wu et al. 2015, 2018]. Corresponding sparse
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Fig. 3. Various floating-point data types.

data structures are proposed to support the underlying structured
grid, often with a certain degree of bit-compression [Hoetzlein 2016;
Houston et al. 2006; Museth 2013; Setaluri et al. 2014]. Most of these
attempts are based on manual low-level performance engineering
using C++ and CUDA. In our work, we use a programming language
approach for scaling up simulations, based on Taichi [Hu et al.
2019]. We focus on consumer-level computers with a single GPU
for simplicity, yet our techniques can be applied to multi-GPU and
multi-node settings as well.

Our system practically pushes the limit of simulation resolutions
by alleviating the memory space constraints. For example, with the
help of quantization, our single GPU MLS-MPM [Hu et al. 2018]
simulation of 235 million particles, has a higher resolution than the
existing highest resolution MPM simulation on 8 GPUs (134 million
particles, see [Wang et al. 2020]).

2.4 Programming systems for simulation
Engineering high-performance simulation systems can be a time-
consuming task since a lot of low-level performance engineering
is needed to fully exploit the capabilities of modern computer ar-
chitecture. Domain-specific languages (DSL) play an important role
in improving the productivity of simulation systems. One thread
of work provides a high-level graph-based abstraction for meshes
that discretize the domain. For example, Liszt [DeVito et al. 2011]
focuses on solving PDE on meshes. Several domain-specific lan-
guages exist for physical simulation. Simit [Kjolstad et al. 2016]
and Ebb [Bernstein et al. 2016] represent simulation problems using
sparse linear algebra and relational data models. Insightful discus-
sions on DSLs for simulation can be found in [Bernstein and Kjolstad
2016]. TACO [Chou et al. 2018; Kjolstad et al. 2017] is a sparse linear
algebra compiler that can be potentially useful for solving linear
systems in simulations.
More closely related to this work is the Taichi programming

language [Hu et al. 2019]. Taichi is a DSL with first-class support
for sparse data structures, a critical component of modern high-
performance physical simulators. Taichi also supports differentiable
programming [Hu et al. 2020; Huang et al. 2021], allowing developers
to evaluate gradients of physical simulators for machine learning
and optimization purposes. We will briefly cover key Taichi features
related to this work.

3 TAICHI BACKGROUND
We built our system on top of Taichi [Hu et al. 2019], a data-oriented
programming language designed for simulation applications. We
extend its type system, computation and data layout intermedi-
ate representation (IR), and code generator. Taichi supports spatial
sparsity and differentiable programming [Hu et al. 2020], and our
quantization system is orthogonal to these existing features of Taichi.
Our quantization system can also be implemented based on other
imperative programming languages, as long as the corresponding
compilers are available for modifications.

We partially reuse the LLVM code generation pipeline in Taichi,
for x64 and CUDA on consumer-level desktop computers. Taichi
also powers the physics engine on 500 million mobile devices in
the Kuaishou app, allowing users around the world to generate
AR effects augmented with physics. Therefore, we have also imple-
mented our system on the Apple Metal backend and evaluated its
performance on an iPhone (section 7.4).

The Taichi language has two parts: a computation language and
a data layout language. This decoupling allows users to freely ex-
plore data layouts without modifying computational kernels. This
work further allows programmers to freely switch data types of
numerical values. Existing data types supported in Taichi are ti.f32
/f64 (32/64-bit IEEE 754 floating-point number), ti.u8/16/32/64
(unsigned integers), and ti.i8/16/32/64 (signed integers)2. In our
system, users can flexibly define new data types for more compact
storage. See [Hu 2020] for a detailed introduction to the syntax of
Taichi.

Computation language. Although the frontend (computation lan-
guage) of Taichi is embedded in Python, Taichi will inspect the
input Python abstract syntax tree and compile them into high-
performance executable kernels on parallel devices. Taichi’s fron-
tend has a Python-style syntax, enhanced with automatic paral-
lelization, and leads to executables with comparable performance
to C++ or CUDA. Two simple Taichi kernels are shown below:
@ti.kernel
def saxpy(a: ti.f32):

for i in x:
# Parallel for loop over
# active indices of x
z[i] = a * x[i] + y[i]

@ti.kernel
def conditional_stencil():

for i, j in y: # 2D parallel for loop
if y[i, j] < 0:

y[i, j] = x[i-1, j] - 2*x[i, j] + x[i+1, j]

The Taichi computation language is expressive: programmers
can easily write a ray tracer with if branching and while loops in
Taichi.

Data layout language. More closely related to this work is the
data layout language and IR. Taichi supports a flexible language to
specify data layouts (see [Hu et al. 2019] for more details). Here we
only introduce the concept of a Taichi field, which are essentially
multidimensional dense or sparse tensors. Each element of a field
2In this paper we will use a consistent format to refer to these standard data types, for
example f32 or float32 for 32-bit IEEE 754 floating-point number, i16 or int16
for 16-bit signed integer.
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can be a scalar (e.g., density), a small vector (e.g., velocity), or a small
matrix (e.g., stress tensor). No matter how the internal data layout
of a Taichi field is defined, in computational kernels (@ti.kernel),
field elements are always accessed via an x[i, j, k]-style syntax,
regardless of its data layout. The following code declares a field of
i32 elements, and then materializes along the i and j axes, each
dimension with 32 and 64 elements.

x = ti.field(dtype=ti.i32)
ti.root.dense(ti.ij, (32, 64)).place(x)
# Equivalent to int x[32][64] in C

4 QUANTIZED NUMERICAL DATA TYPES FOR
SIMULATIONS

In this section, we introduce quantized data types, which are often
customized to trade precision for memory efficiency. Our system
provides both customized integral data types (lossless) and real data
types (usually lossy).

4.1 Customized integral types
Integral data types are relatively easy to specify since they are
simply series of binary bits. For signed integral types, we pick the
classical two’s complement data format for negative numbers. We
provide to the user the following APIs to create signed (default) and
unsigned integral types:

i5 = ti.quant.int(bits=5)
u19 = ti.quant.int(bits=19, signed=False)

4.2 Custom real types
We offer both fixed-point and floating-point data types. Fixed-point
numbers have advantages when their range is strictly bounded in
the simulation. For example, when representing x-coordinates of
particles, if the boundary condition ensures their values are within
[−2, 2), then fixed-point real types can be safely used. They also
provide higher precision compared to floating-point types of the
same number of bits, since all the bits are used to represent the
fraction part. However, the limited dynamic range of fixed-point
types can be problematic when handling other physical properties,
such as velocity. Therefore, we also offer floating-point types, for
values with high dynamic ranges.

Fixed-point real numbers. This is the easiest way to represent a
real number using integral data types. In fact, we directly reuse a
custom integral type plus a real scaling factor to represent custom
fixed-point numbers. For example, if the range of the fixed-point
number is [−3.14, 3.14) and we have 17 bits, the value can be simply
represented by 𝑟 = 𝑠 × 𝑖 , where 𝑖 is a 17-bit signed integer and
𝑠 = 3.14/216. Note that there is one sign bit in the underlying
integer hence we use 216 instead of 217 as the denominator.

Fixed-point real numbers can be specified as follows:

fixed17 = ti.quant.fixed(frac=17, range=3.14)
# Range = [-3.14, 3.14)

ufixed5 = ti.quant.fixed(frac=5, signed=False, range=2)
# Range = [0, 2)

When the value is known to be always non-negative, the pro-
grammer can use signed=False to omit the sign bit and allow the
fraction part to have one more bit for higher precision.

Floating-point real numbers. For real numbers with improved
dynamic ranges, we allow exponent bits in real number data types:
f18 = ti.quant.float(exp=4, frac=14)
uf22 = ti.quant.float(exp=6, frac=16, signed=False)

Same as ti.quant.fixed, when we know the stored values must
be positive, the user can choose to save the sign bit for one more
significand bit and get a higher precision. Note that, different from
IEEE754 where the sign bit is the leading bit of the format, in our
system we include the sign bit as part of the fraction bits. This is
an intentional design to simplify the “shared exponent” case, as
introduced below.

Shared exponents. In simulations, real values often have physical
meanings, and components of a physically meaningful vector typi-
cally do not need the same amount of precision, when their absolute
values differ a lot. For example, in a 3D velocity vector ®𝑢 = (𝑢, 𝑣,𝑤)𝑇 ,
if we know the x-component 𝑢 has a much larger (absolute) value
compared to y- and z-components, then we probably do not care
about the exact value of 𝑣 and𝑤 . This motivates us to use a “shared
exponent” for all components, and leave more bits for components
with larger absolute values.

We illustrate the internal organization of the real number types
in Fig. 4. Note that for floating-point numbers with independent
exponents, we omit the leading “1” following IEEE 754. For shared-
exponent cases, we do need a leading “1” to mark the beginning of
the digits.

Fig. 4. Real number types representing a 2D vector (𝑥, 𝑦) . [Reproduce:
python3 misc/visualize_quant_types.py -c [0/1/2]].

Special cases. Currently, programs are compiled under “fastmath”,
and we assume no nan or inf is generated during computation. We
do not support subnormal numbers, and underflowing real numbers
are flushed to zero. Overflowing is undefined behavior. It is possible
to implement a “debug mode” that can detect these special cases on
the fly, at the cost of performance.
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4.3 Compute types
Since most of the custom data types are not natively supported on
hardware, we usually have to resort to decoding/encoding mecha-
nisms to translate between representations that are storage-friendly
and those that are computation-friendly (Fig. 5, top). This means
we have to specify a compute type for each custom data type:
i21 = ti.quant.int(bit=21, compute=ti.i64)
bfloat16 = ti.quant.float(exp=8, frac=8, compute=ti.f32)

By default, the system will use i32 and f32 as compute types for
integral and real types. A loud compilation error will be emitted if
the storage type has more bits than the compute type.

For performance considerations, it may be occasionally profitable
to directly operate on the custom types without encoding/decoding,
especially when the hardware supports related operations (Fig. 5,
bottom). We show a few usages of this type of quantization in
sections 7.2 and 7.4.

Fig. 5. Two types of quantization investigated in our work. Note that “Type
B” quantization may not be always possible and profitable compared to
“Type A”, since not all custom data types can be directly manipulated by
hardware.

4.4 Bit adapters
Loading and storing data with custom types are typically not na-
tively supported on hardware, so we need two types of bit adapters
to pack custom data types into hardware supported data types with
bit width 8, 16, 32, 64:
• Bit structs allow users to pack custom data types into hardware-
native types. For example, a u16 bit struct may contain u5, u6, u5
as components.

• Bit arrays pack repeated data types. For example, users can use
a 32-bit bit array to store 32 × u1 types or 8 × i4 types.
We extend the data layout language of Taichi [Hu et al. 2019].

Bit adapters are extensions to the existing Taichi Structural Node
(SNode) system. We refer the readers to [Hu et al. 2019] for more
details on SNodes, which are not a prerequisite to the remaining of
this manuscript.
A bit struct serves similarly to a struct, but has bit-level gran-

ularity. The following code declares two fields of quantized data
types, and materialize them into two 2D 4 × 2 arrays:
u4 = ti.quant.int(num_bits=4, signed=False)
i12 = ti.quant.int(num_bits=12)

p = ti.field(dtype=u4)
q = ti.field(dtype=u4)

ti.root.dense(ti.ij, (4, 2))
.bit_struct(num_bits=16)
.place(p, q)

The p and q fields are laid in an array of structure (AOS) order in
memory. Note the containing bit struct of a (p[i, j], q[i, j]) is
16-bit wide.

Let’s now look at a more practical example. In a 3D Eulerian fluid
simulation, a voxel may need to store a 3D vector for velocity, and an
integer value for “cell category” with three possible values: “source”,
“Dirichlet boundary”, and “Neumann boundary”. The developer can
then use a single 32-bit bit_struct to store all information on a
voxel:

velocity_component_type =
ti.quant.float(exp=6, frac=8, compute=ti.f32)

velocity = ti.Vector(3, dtype=velocity_component_type)

# Since there are only three cell categories,
# 2 bits are enough
cell_category_type =

ti.quant.int(bits=2, signed=False, compute=ti.i32)
cell_category = ti.field(dtype=cell_category_type)

# The bit struct for 512x512x256 voxels
voxel = ti.root.dense(ti.ijk, (512, 512, 256))

.bit_struct(num_bits=32)

# Place three components of velocity into the voxel,
# and let them share the components.
voxel.place(velocity, shared_exponent=True)
# Place the 2-bit cell category
voxel.place(cell_category)

The compression scheme above allows us to store 13 bytes (4𝐵 ×
3 + 1𝐵) into just 4 bytes. Note that users can still use velocity and
cell_category in the computation code, as if they are float32 and
uint8.

Fig. 6. The bit_struct for a 3D smoke simulation voxel. Three components
of velocity (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 ) share one common exponent which is placed in
the highest 6 bits. The fractions of velocity occupy 24 following bits. The
cell_category is placed in the lowest 2 bits.

Bit arrays are micro data structures that reinterpret hardware-
native data types into arrays of low-bit types. For example, a pro-
grammer may want to store 8 × u4 values in a single u32 type, to
represent bin values of a histogram (Fig. 7):

bin_value_type = ti.quant.int(num_bits=4, signed=False)

# The bit array for 512x512 bin values
array = ti.root.dense(ti.ij, (512, 64))

.bit_array(ti.i, 8, num_bits=32)

# Place the unsigned 4-bit bin value into the array
array.place(bin_value_type)
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Fig. 7. The bit array for bin values of a histogram. Eight 4-bit components
are packed in a single u32.

4.5 Decoupling numerical formats from computation
Similar to Halide [Ragan-Kelley et al. 2012] that decouples schedul-
ing from algorithms, our system decouples numerical formats from
computation.
This decoupling has crucial practical benefits in quantized sim-

ulations: it is challenging to predict how many bits are required
for a numerical type in simulation, and the only way to confirm
a quantization scheme does not cause too much truncation error,
is to get the simulation running and observe the simulation result,
quantitatively or qualitatively. This means the search for the opti-
mal quantization scheme is, unfortunately, repeated trial-and-error.
Real simulation code is much more complex, the only way to allows
users to rapidly experiment with different quantization schemes is
through a system design that separates numerical formats from the
computation.

5 CODE GENERATION
In this section, we present a basic implementation of our compilation
system, which mechanically translates the operations on custom
data types to executable instructions on processors. We leave dis-
cussions on possible domain-specific optimizations to section 6.

Our system is implemented based on Taichi, which has a hierar-
chical static-single assignment (SSA) intermediate representation
(IR) system. Our system runs on x64, ARM64, CUDA, and Apple
Metal devices. For x64, ARM64 and CUDA, code is just-in-time com-
piled using LLVM; for Apple Metal, Taichi emits Metal Shading
Language source files and then leverages the Metal runtime system
to launch GPU kernels.

5.1 Type system
We replaced the original type system of Taichi, which only supports
primitive data types such as int32 and float32. We developed a new
type system in the form of a hierarchical data structure composition
system, internally implemented using a shallow tree of data types.
See Fig. 8 for illustrations.

5.2 Loading and storing custom integers
Loading a custom integer type from memory needs addressing and
decoding. For addressing, we introduce bit pointers that precisely
represent the starting bit of a custom integer type.Decoding is simply
zero extension for unsigned integers and signed extension for signed
ones. Similarly, custom integer stores need addressing and encoding
(truncation).

Bit pointers. Classical pointers only have byte granularity (“byte
pointers”, such as char * in C), but in our system we want a finer-
resolution pointer at bit granularity, denoted as “bit pointer”. A bit
pointer has two components:

Fig. 8. Illustration of our new type system. Here we show 3 examples of
16-bit bit_structs/bit_arrays. Top: One 6-bit custom integer (“ci” in
short) and a floating-point number with 5-bit exponent and 5-bit fraction
are placed in the bit_struct. Middle: There are one 8-bit fixed-point
number and one 8-bit custom integer placed in the bit_struct. Bottom:
A 16-bit bit_array is composed of four 4-bit custom integers.

(1) a classical byte pointer that points to a byte or any other
primitive types such as i32, i64;

(2) an offset value that specifies a bit-level offset within the prim-
itive type.

See Fig. 9 for an illustration.

Loading from and storing to bit pointers. Hardware-native load/s-
tore instructions can only operate at u8, u16, u32, u64 granularity.
Therefore, to load or store data addressed by a bit pointer, we have
to “simulate” partial bit loads and stores using hardware-supported
memory operations and a series of bit operations (such as shifting)
to extract or insert the bits we want.

Loading is relatively easy. We simply load the entire bit struct and
use simple bit operations to extract the needed bits. For example,
to extract the [5, 8) bits from a 32-bit bit struct 𝑠 , we can simply let
the code generator emit (s>>5)&7.

Fig. 9. Byte pointers “∗” and bit pointers “ˆ”. Top left: A traditional byte
pointer only has a byte-level resolution. Bottom: Bit pointers have a bit-
level resolution, and can easily point to components of bit structs and bit
arrays.
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Storing to a bit pointer means partially writing of these primitive
types. This can be done via a load, a series of bit operations (Fig. 10),
and finally a store. It is worth noting that sometimesmultiple threads
may write to the same bit struct, so we need the following read-
modify-write operation to be atomic for thread safety. Note that the
atomic read-modify-write (atomicRMW) has to be implemented via
a while loop plus atomic compare-and-swap (atomicCAS), and is
relatively expensive. We implement corresponding compiler opti-
mizations to avoid atomicRMW as much as possible when thread
safety is not a concern (section 6). Our implementation of an atomi-
cRMW add operator is included in the following pseudocode.

// 32-bit atomicRMW for partial bits addition
u32 atomicRMW_partial_add32(u32 *ptr, u32 offset, u32

bits, u32 value) {
u32 mask = ((~(u32)0) << 32 - bits)) >> (N - offset

- bits); // create a bit mask
u32 new_value = 0;
u32 old_value = *ptr;
do {

// read
old_value = *ptr;
// modify
new_value = old_value + (value << offset);
new_value = (old_value & (~mask)) | (new_value &

mask);
}while ( // write via atomicCAS
!__atomic_compare_exchange(ptr, &old_value, &

new_value, true, std::memory_order::
memory_order_seq_cst, std::memory_order::
memory_order_seq_cst));

return old_value;
}

Fig. 10. An illustration of storing bits partially in a bit struct. Here we show
the process of inserting a 3-bit custom integer placed in an 8-bit bit struct,
using a series of cheap bit-wise operations.

5.3 Efficiently decoding and encoding real numbers
Fixed-point numbers. Since fixed-point numbers are simply inte-

gers multiplied by a compile-time constant scaling factor, after we
load the underlying integer, the real number can be easily decoded
by multiply the integer by the scaling factor. Encoding is the exact
reverse process.
On fixed-point atomic adds, we override the decode-compute-

encode cycle. We directly scale the real increment into an integer
increment, and then use an atomic add on the integer type instead.
This allows us to use atomic adds on integer to replace atomic adds
on real numbers. In some cases, such as on OpenGL ES and Metal
where only integral atomic adds are supported via the API and
hardware, using integral instead of floating-point atomic add leads
to a significant performance improvement (section 7.4).

Rounding. We adopt the round to nearest scheme when casting
the scaled real number to an integer. Enforcing the current rounding
scheme is critically important and has a direct impact on simulation
results. See Fig. 11 for a comparison between different rounding
schemes.
Floating-point numbers have exponent and fraction bits, which

we handle independently. For the fraction part, we simply adopt
an integer truncation with rounding to nearest. The exponent part,
however, cannot be simply truncated. It is worth noting that the
exponent format of IEEE 754 floating-point numbers does not use
two’s complement for negative numbers3, hence we need an integer
to add operation before we truncate. Overflowing exponent bits
are currently treated as undefined behavior, and in practice, we do
not find this to be a problem as long as enough exponent bits are
reserved.

Subnormal numbers. Our system does not support subnormal
floating-point numbers. These numbers are directly treated as zeros
when encoding. To simplify and accelerate the decoding/encoding
process, we turn on the “flush to zero” (FTZ) flags on CPU and GPUs
float32 data types.

Shared exponents. Floating-point numbers with a shared expo-
nent need special treatment. Suppose now we are encoding a set of
float32 numbers into binary bits. Denote the numbers as exponent-
fraction pairs (𝑒𝑖 , 𝑓𝑖 ), where 𝑒𝑖 and 𝑓𝑖 can be extracted from the IEEE
754 floating-point compute type via cheap bit-wise operations. The
encoding process works as follows:

3For example, the exponent of the float32 type has range [−126, 128) instead of
[−128, 128) . The exponent of the represented floating-point number is 2𝑒−127 , where
𝑒 is the unsigned integer represented by the exponent bits.

Fig. 11. Rounding scheme matters. In this 2D MLS-MPM experiment [Hu
et al. 2018] we use 16-bit fixed-point numbers for the deformation gradient
variable on each particle. We stick to the “round to nearest” scheme, which
ensures a close approximation to the float32 reference. Note that the
“round up” scheme leads to a shearing artifact to the elastic material (red),
and that “round towards zero” results in an expanding volume.
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(1) Compute the maximum exponent of all floating-point num-
bers, 𝑒 = max{𝑒𝑖 }. Encode 𝑒 to the exponent type format of
the shared exponent type.

(2) Each number now has an exponent offset 𝑜𝑖 = 𝑒 − 𝑒𝑖 . For
𝑒𝑖 ≠ 0, we have to prepend the fraction part with 𝑒𝑖 zeros.
The padding zeros may lead to a precision degradation on
values with small 𝑒𝑖 , but having a small 𝑒𝑖 itself implies the
value is less important compared to the largest value sharing
the same exponent.

(3) Insert the shared exponent 𝑒 and fractional bits into the bit
struct.

When decoding we need to reconstruct the exponent offset 𝑜𝑖
from each fraction bits. 𝑜𝑖 can be reconstructed via a call into
__builtin_clz, which computes the leading zeros of the fraction
part 4.

In practice, the decoding/encoding procedures for custom floating-
point formats are tricky to get right, since there are a lot of vari-
ants such as signed v.s. unsigned, normal v.s. FTZ, shared v.s. non-
shared exponents. Our implementations are included in the taichi
/codegen/codegen_llvm_quant.cpp file.

6 DOMAIN-SPECIFIC OPTIMIZATIONS
Theoretically, everything we have described so far can be imple-
mented via a C++ library, with heavy operator overloading and
templated data type classes. A “quantization library” in C++ may
not be easy to use, but if zero-cost abstractions are properly used,
it would have no performance difference from our domain-specific
language. In this section, we show that, apart from usability, our
compiler-based approach also has fundamental performance advan-
tages over the library-based approach. This is because our tailored
compilation system can conduct domain-specific optimizations that
general-purpose compilers (such as gcc and clang) are not capable
of.

Bit structs and bit arrays are first-class citizens of our compilation
pipeline. The optimizer can easily analyze and optimize memory
operations on their containing data types, leading to higher perfor-
mance.
Before we detail our automatic optimizations, we stress that, if

the data types are implemented via a “quantization library”, a pro-
grammer can do all these optimizations manually through tedious
low-level engineering. However, these optimizations are highly
coupled with the underlying data layout and format, and manual
optimization locks the code to a particular quantization scheme,
leading to a “leaky abstraction”. Since seeking the optimal quan-
tization scheme needs repeated trial and error and even making
problem-specific adjustments, manually doing the optimizations is
not practical.
In this work we introduce three effective optimizations: 1) bit

struct store fusion, 2) thread safety inference, and 3) bit array vector-
ization. The first two optimizations, which we cover below, help to
improve performance on a broad range of simulationworkloads. The

4The most straightforward way to compute the exponent offset is to use a std::log(
float) function call. However, this is too expensive in practice. Therefore we heavily
use bit-wise operations that are much cheaper.

third optimization, bit array vectorization, covered in the supplemen-
tal document, may create significant performance improvements
on computations using 1-bit data types, such as Game of Life and
bitwise neural networks [Kim and Smaragdis 2016]. Benchmarks
that validate the effectiveness of these optimizations are detailed in
section 7.1 and 7.2.

6.1 Bit struct store fusion
In real-world applications, fields in a single bit struct are often
accessed together, so it is highly possible that different components
of a bit struct get stored by multiple statements in a single kernel.
In this case, we can use a single atomicRMW for all the stores into
that bit struct.
We introduce a new statement, namely BitStructStoreStmt(

addr, field1, field2, ...), in extension to the original general-
purpose GlobalStoreStmt(addr, field) in Taichi IR, for domain-
specific optimizations on bit struct stores.
We also add a few tailored optimization passes. The first pass

converts GlobalStoreStmt into BitStructStoreStmt for easier anal-
ysis, and the second pass merges related BitStructStoreStmt into
a single equivalent BitStructStoreStmt. See our supplemental doc-
ument for a real-world example of this IR optimization.

Note that BitStructStoreStmt takes multiple field inputs. In the
code generator, we additionally implemented a multi-field version
of the partial bit storing procedural. This improves performance
since the expensive atomicRMW is now amortized by all the fields
to store into that bit struct.
We only optimize bit struct stores, because bit struct loads (load

from an address and then extract the bits) are relatively easy to
analyze and optimize by a general-purpose optimizer, such as the
LLVM target-independent optimizer we are using. In contract, bit
struct stores involve atomicRMW and general-purpose optimizers
tend to be conservative regarding optimization. This is likely due to
the difficulty of aliasing analysis and the optimizer’s lack of thread-
safety knowledge. Another reason could be that, in their IR, a single
atomicRMW statement would have been lower into quite a few
non-trivial basic blocks with complex control flow connecting them.

6.2 Thread safety inference
Take one step further, when there is certainly no data race on the
bit struct stores, we can fully replace the atomicRMW with a much
cheaper non-atomic version. Our compiler searches for two patterns
for this optimization:

Element-wise accesses. In parallel simulators, many operations
happen in an “element-wise” manner: each independent thread pro-
cesses one particle or voxel at a time. Memory loads/stores related
to the particle or voxel are then completely free from data races. In
this case, we can safely demote the atomicRMW by a non-atomic
version. For example, in the following 2D grid boundary velocity
projection code,
@ti.kernel
def project_velocity():

for i, j in v:
if j < 3 and v[i, j][0] <= 0:

v[i, j][0] = 0
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Table 1. An ablation study on three microbenchmark programs. “Demotion” means atomic demotion, and “fusion” means bit struct store fusion.

Cases Backend All optimizations off Demotion only Fusion only All optimizations on No quantization

Store x64 688.570 ms 680.164 ms 571.710 ms 338.451 ms 312.925 ms
CUDA 3.741 ms 3.729 ms 1.874 ms 0.623 ms 0.623 ms

Partial store x64 882.831 ms 332.785 ms 536.609 ms 309.125 ms 345.032 ms
CUDA 5.619 ms 2.759 ms 2.888 ms 2.762 ms 2.751 ms

Matmul x64 272.056 ms 76.015 ms 185.773 ms 76.349 ms -
CUDA 9.704 ms 1.705 ms 5.410 ms 1.705 ms -

our optimizer will safely infer that the store to the first component
of the velocity vector at v[i, j] (a bit struct) does not need any
atomic operation since no other thread will access the same bit
struct.

Storing the entire bit struct. Recall that the reason why we need
atomicRMW instead of the non-atomic version is to prevent over-
writing other parts of the bit struct, which may be written simultane-
ously by another thread. However, it may be the case that the entire
bit struct is stored in a single BitStructStoreStmt, then we do not
need to worry about overwriting, since this thread is writing to
the whole bit struct anyway. We find this pattern to be particularly
frequent on particle and grid simulations.

7 APPLICATIONS AND EVALUATIONS
In this section, we showcase the applications of our system and
evaluate its performance and accuracy under memory space con-
straints. We set up three microbenchmarks (each round 50 lines of
code) and three large-scale benchmarks (100 to 1500 lines of code).
The large-scale simulation statistics are listed in Table 2.

7.1 Microbenchmarks
Optimizations. We set up a suite of microbenchmarks to unit-

test our domain-specific optimizations and study their impact on
performance. Details and code of the benchmark cases are in the
supplemental document.
The numbers obtained with “all optimizations off” mimics the

performance of a library-based approach: via template metapro-
gramming and operator loading, the member functions of quantized
data type classes directly emits operations to a general-purpose
compiler, LLVM in our case. LLVM will not be able to merge the
bit struct stores, since it lacks a high-level understanding of the bit
struct stores.
The benchmark results (Table 1) validate that a compiler-based

approach is substantially beneficial compared to a more traditional
library-based approach. Computing the geometric mean of running
time of all the cases on CPUs and GPUs, turning on store fusion leads
to 1.43× (x64 CPU)/1.91× (CUDA) speed up, and further turning on
atomic demotion leads to another 1.93× (x64 CPU)/2.15× (CUDA)
speed up.

Encoding/decoding overheads. We evaluated custom floating-point
value encoding and decoding overheads on a classical saxpy kernel.
We compared the performance of kernels using native float32 and
customized “float30” quantized data type, for the x and y arrays.

On GPU, the quantized version is only 1% slower than the native
version. We believe this is because the processor is waiting for
memory accesses instead of waiting for the additional computation
due to encoding/decoding. On CPU, however, the quantized version
is 20% slower than the native version. The larger slow down on
CPU than GPU, is likely because our non-vectorized CPU program
is more sensitive to additional computations than the GPU program,
since relatively more memory bandwidth are available for each
non-vectorized CPU thread than a GPU thread. Note that in saxpy,
computation is almost minimized, and the majority of computation
would be decoding and encoding: this is an extreme-case analysis,
especially on CPUs.

7.2 Game of Life
We first test our system on the classical Conway’s Game of Life,
a 2D grid-based simulation that is extremely simple to code but
computational hungry at a high resolution. Each cell (𝑖, 𝑗) can have
two states, either live (𝑙𝑖, 𝑗 = 1) or dead (𝑙𝑖, 𝑗 = 0). The cell states follow
a set of simple evolution rules, depending on its 3× 3 neighborhood:
• Birth: each dead cell with exactly three neighbors becomes a live
cell;

• Survival: each live cell with two or three live neighbors continues
to be a live cell;

• Overpopulation: each live cell with four or more live neighbors
dies;

• Isolation: each live cell with zero or one live neighbor dies.
Essentially, the next-step cell state 𝑙 ′

𝑖, 𝑗
is defined as

𝑙 ′𝑖, 𝑗 = 𝑓
©«

𝑖+1∑
𝑥=𝑖−1

𝑗+1∑
𝑦=𝑗−1

𝑙𝑥,𝑦
ª®¬ ,

where 𝑓 maps the number of active neighbors into the cell state of
the next time step.

Storage. We created two copies of the grid, namely 𝑙 ′ and 𝑙 , and
iterate back and forth. We use two hierarchical grids to store the
current and next frames. Using bit arrays that pack 32 u1 (1-bit
unsigned integer) type into a single u32, each cell takes only 1 bit
in each grid, leading to a 2 bit/cell total storage footprint. Note that
in traditional languages such as C, programmers will have to use
the char (u8) type for each cell, unless they manually pack/unpack
the states. In our system, users can effortlessly improve storage
efficiency by 8×, without any modification of the computation code.
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Table 2. Statistics of our large-scale demos. The Game of Life demo adopts more steps per frame as the camera zooms out, and the numbers here are the
maximum steps per frame after the camera fully zooms out. For the memory allocated, note that the memory allocator of Taichi maintains auxiliary data
structure and enforces padding, leading to more memory allocated than actual used, especially on the Game of Life and MLS-MPM demos. See our video for
more visual results.

Solver Demo Frames Steps/ Seconds/
Δ𝑡 Grid Active cells Particles Byte/element GPU GB

frame frame Full Quant allocated

Game of Life Fig. 1 720 1024 30.2 - 131, 0722 10, 487, 808, 100 - 2 0.25 3080 4.0
Fig. 12 720 1024 53.0 - 262, 1442 20, 554, 956, 900 - 2 0.25 3080 7.0

Eulerian Fluids Fig. 14 (top) 300 1 68.8 3 × 10−2 2, 0483 421, 134, 336 - 110 70 V100 29.3
Fig. 14 (bottom) 280 1 58.3 3 × 10−2 2, 0483 421, 134, 336 - 110 70 V100 29.7

MLS-MPM Fig. 17 240 129 76.2 7.8 × 10−5 4, 0963 72, 392, 832 234,527,481 68 40 3090 16.6

Fig. 12. The evolution of the 15 × 15 galaxy pattern. Each cell is a 20482

OTCA metapixel, and a metapixel step is 32768 Game of Life time steps.
Each metapixel evolves following the Game of Life rules when zoomed out.
[Reproduce: cd gol && python3 galaxy.py -a [cpu/cuda] -o output]

Initialization. To demonstrate the capability of our Game of Life
simulator, we initialize the grid using tiled OTCA metapixels5. An
OTCA metapixel consists of 2048 × 2048 cells, and it has an inter-
esting behavior: when looking at a distance, the whole 2048 × 2048
metapixel behaves like a single 1 × 1 Game of Life cell (Fig. 12). We
also set up a Game of Life pattern with words “Quant Sim” using
70 × 70 OTCA metapixels, reaching over 20 billion cells in a single
simulation (Fig. 1). For a high-resolution visualization of this demo,
please refer to our video and supplemental material.

The effectiveness of bit vectorization. In each time step of Game of
Life, a cell loads its 3×3 neighborhood states from the old state buffer
and stores its new state to a new state buffer. Bit array vectorization
improves performance by simultaneously handling 32 cells in a
single thread. We compare the running time between three different
implementations:

(1) QuickLife from Golly6, a fast algorithm leveraging sparsity
in Game of Life. The implementation in Golly is highly opti-
mized on CPUs.

(2) Ours, without bit vectorization. Since this implementation
only utilizes 1/32 of the bitwidth and leads to excessive atom-
icRMW, we do not expect it to deliver satisfactory perfor-
mance.

5https://www.conwaylife.com/wiki/OTCA_metapixel
6http://golly.sourceforge.net/

Table 3. Per step running time of three different implementations, on CPUs
and GPUs. The benchmark is initialized using a random pattern with 416902

active cells with 50% live cells. We run CPU benchmarks on an Intel i7
processor (six cores each at 2.6 GHz) and 16GB of memory. We run GPU
benchmarks on an NVIDIA RTX 3080 GPU with 10GB of GPU memory.

Implementation Time per step (CPU) Time per step (GPU)

QuickLife 318.5 ms N/A
Non-vectorized brute-force 9313.4 ms 546.0 ms

Vectorized brute-force 417.2 ms 3.4 ms

(3) Ours, with bit vectorization. This is essentially (2) with a extra
ti.bit_vectorize(32) pragma. Our compilation passes do
the vectorization job automatically.

As expected, the performance of our non-vectorized implementa-
tion ismuchworse thanQuickLife onCPU,while the same algorithm
achieves comparable performance with the significant optimization
of bit vectorization on CPU. The effectiveness of bit vectorization is
further verified on GPU where the vectorized version is more than
150× faster than its non-vectorized counterpart (Table 3).

Our implementations do not utilize spatial sparsity yet, and com-
pared to QuickLife it does more work. This partially explains why
our vectorized simulator is 31% slower than QuickLife on CPUs.

7.3 Eulerian fluid simulation
We developed a sparse-grid-based advection-reflection [Zehnder
et al. 2018] fluid solver to evaluate our system on grid-based physical
simulators.

For advection, we use the MacCormack scheme [Selle et al. 2008],
with RK3 path integration. For projection (“reflection”), we usemulti-
grid preconditioned conjugate gradients (MGPCG) [McAdams et al.
2010] to solve the Poisson problem. We follow the MGPCG solver
design in [Hu et al. 2019]. We use two-level pointer grids (ti.root.
pointer(ti.ijk, ...).pointer(ti.ijk, ...).dense(ti.ijk, ...)
.place(...)) for each level of the grid hierarchy.
The majority of memory consumption comes from the top level

of the grid hierarchy. This is because the second level only has
1/8 voxels due to multigrid coarsening. Also note that physical
properties such as dye density (𝑅,𝐺, 𝐵) and velocity (𝑢, 𝑣,𝑤) only
exist at the top level, and we need to store multiple copies of them
for the MacCormack advection scheme.
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Quantization scheme. We focus our quantization on the advection
solver, since it costs the majority of memory space (84 out of 110
B). By representing each component of velocity (𝑢, 𝑣,𝑤) using a
21-bit fixed-point number, we pack them in a single 64-bit bit struct.
Also, we managed to pack three channels of dye density in a 32-bit
bit struct by using floats with shared exponents: we use 9 bits for
fractions and 5 bits for exponent, which adds up to 32 bits. Since
we adopt a MacCormack advection solver, we use three bit structs
to store 𝑣𝑡 , 𝑣𝑡+1 and an auxiliary 𝑣𝑡+1 respectively. Similarly, the
dye density needs three bit structs. Note that another bit struct is
used as the velocity after the reflection operator being applied. In
this way, each voxel occupies 44 bytes, while using float32 needs 84
bytes (Fig. 13).

Fig. 13. Eulerian smoke simulation quantization scheme. For each voxel,
we pack velocity (𝑢, 𝑣, 𝑤) in a 64-bit bit struct by three 21-bit fixed-point
numbers. Dye density (𝑅,𝐺, 𝐵) is represented by 32-bit shared-exponent
numbers with 5 bits for exponent and 9 bits for fraction. In this way, our
smoke advectionmemory consumption is reduced by 48% from 84 bytes to 44
bytes. Considering 26 B from the MGPCG solver, the memory consumption
per voxel for the entire fluid solver is reduced from 110B to 70B, a 1.57×
improvement.

The effectiveness of shared exponents. To prove the effectiveness
of shared exponents, we compare shared exponent, non-shared
exponent and fixed-point using a 2D smoke simulation. All of these
experiments use one 32-bit bit struct to store dye density (𝑅,𝐺, 𝐵)
channels. In contrast, the uncompressed float32 reference uses
96-bits per voxel.

For the simulation with shared exponent, we use 5 bits for expo-
nent and 9 bits for fraction. The non-shared exponent simulation
also uses 5 bits for exponent, but only 5 bits for fractions for each
channel. The fixed-point simulation uses 10-bit fixed-point numbers
per channel. .
Note that there is an exponential decay of density in the simu-

lation, and ultimately density on each cell will decay into zero.To
quantitatively study the preciseness of the decaying behavior us-
ing different data formats, we sum up all the cell density (Table 4)
and find that among all quantization schemes, the shared exponent
version has the closest total density compared to the float32 ref-
erence simulation. The non-shared exponent floating-point format
has fewer fraction bits, leading to a lower precision. The fixed-point
format has a smaller dynamic range compared to the shared ex-
ponent floating-point format. This indicates that shared-exponent
floating-point formats achieve both good precision and dynamic
range, compared to non-shared exponent floating-point formats and

Table 4. Total density comparison. Note that since the decaying factor is
a constant on all pixels and channels, the total density is a predictable
value over the simulation, regardless of the turbulent nature of the fluid
simulation. This experiment runs on a GTX 1080 Ti GPUwith 11 GBmemory.
[Reproduce: cd eulerian_fluid && python3 run_shared_exp.py –data-type
[0/1/2/3] -o outputs ]

Data Type Total density

float32 15425.828
shared exponent: exp5 + frac9 17072.586

fixed-point: 10 24662.654
non-shared exponent: exp5 + frac5 41368.633

Table 5. Performance comparison of Eulerian fluid advection. This experi-
ment also runs on a GTX 1080 Ti GPU with 11 GB memory. [Reproduce: cd
eulerian_fluid && python3 run_benchmark.py -e [0/1/2] ]

Data Type TimeVelocity Dye density

float32 float32 25.052 s
shared exponent: exp5 + frac9 fixed-point 10 31.776 s

fixed-point 10 fixed-point 10 24.760 s

fixed-point formats. For a visual comparison and analysis, please
see our supplemental document.

Performance of quantized simulations. Finally, we compare the
performance of our quantized simulator against the float32 refer-
ence implementation. We find the quantization scheme using shared
exponent to be roughly 27% slower than the full-precision version,
likely because encoding/decoding floats with shared exponent takes
some additional computation. Interestingly, the all-fixed-point ver-
sion is slightly faster than the reference version, despite needing
more floating-point multiplications to encode/decode. Since the ad-
vection kernel is memory-bound, the quantized version consumes
less memory bandwidth, hence running faster.

7.4 Moving Least Squares Material Point Method
To test our system on hybrid Lagrangian-Eulerian methods where
both particles and grids are used, we implemented the Moving
Least Squares Material Point Method [Hu et al. 2018] with G2P2G
transfer [Wang et al. 2020].

In MPM simulation, storing per-particle data is very memory- and
bandwidth-consuming. Note that in MLS-MPM over 70% storage
is for particles. A 40963 background sparse grid is used, leveraging
the first-class spatially sparse data structure support in the original
Taichi system. We use a 43 leaf block size.

When simulating elastic objects, we store position, velocity, and
deformation gradients on each particle. After a few trial-and-error,
we end up with a quantization scheme that compressed 68 B particle
attributes to 40 B, a 1.7× improvement. Note that in MPM we also
need to store the grids and other acceleration structures such as
the particle list, which is not quantized here. The overall memory
efficiency improvement is 1.3×. See Fig. 15 for more details on

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.



QuanTaichi: A Compiler for Quantized Simulations • 1:13

Fig. 14. Two quantized smoke simulations. We use the quantization scheme described in section 7.3. Both simulation run on a 20483 sparse grid with 421M
active voxels. Top: Smoke initialized from two bunny meshes. Bottom: Smoke emitting from a spherical source. [Reproduce: cd eulerian_fluid && python3
run.py –demo [0/1] -o outputs ]

Fig. 15. MLS-MPM particle attribute quantization scheme. For each par-
ticle, we store position (𝑥, 𝑦, 𝑧) using 21-bit fixed-point numbers, velocity
(𝑢, 𝑣, 𝑤) using floating-point numbers with 17 fraction bits a shared 7-bit
exponent. For deformation gradient 𝐹3×3, we use 16-bit fixed-point numbers.
We also store material and color information. This brings down a particle
storage footprint from 68 bytes to 40 bytes (1.7× fewer).

the quantization scheme. A 235M-particle visual demo is shown in
Fig. 17.

Performance. In a GPU MLS-MPM simulator, the performance is
limited by memory bandwidth and available FLOPs. Using quantiza-
tion increases the amount of computation due to the need for encod-
ing/decode, yet at the same time it reduces the memory bandwidth.
We conduct a systematic performance study on our system, scanning
all possible combinations of quantization, optimization, and particle-
grid transfer scheme (separate P2G/G2P and fused G2P2G [Wang
et al. 2020])7. Results are listed in Table 6. Interestingly, we find
our quantized simulator runs 1.03× (G2P2G)/1.14×(P2G+G2P) faster
than the full-precision simulator, likely because the quantized sim-
ulator saves memory bandwidth. We get higher speed up on the
P2G+G2P transfer scheme, because this version with two kernels
needs more memory bandwidth. Our domain-specific optimizations
7“P2G” means “scattering particle data to grid” and “G2P” means “gather grid data to
particles”. “G2P2G” is a fused version, where grid data are first gathered to particles
and then scattered to the next-time-step grid.

Table 6. Domain-specific optimization ablation study on the MLS-MPM
benchmark, with and without the G2P2G optimization [Wang et al. 2020].
Results are collected on a RTX 3090 GPU. We seed 16,777,216 particles in
a 2563 domain. [Reproduce: python3 quan_mpm_benchmark.py [--no-
ad] [--no-fusion] [--no-quant] [--no-g2p2g]]

Optimizations G2P2G Time (s) P2G+G2P Time (s)

No optimization 16.52 28.43
Store fusion only 15.99 17.19
Atomic demotion only 16.36 16.69
All optimizations on 15.09 15.77
No quantization 15.57 17.96

leads to 1.09× (G2P2G) and 1.80×(P2G+G2P) higher performance on
the quantized simulator. Compared to Wang et al. [2020], a CUDA
MLS-MPM solver heavily engineered towards performance, our
quantized version is 3× slower, most likely due to the fact that we
did not implement the AOSOA data layout optimization. However,
regarding memory consumption our system is 5.7× more efficient
(1.4GB ours v.s. 8GB [Wang et al. 2020]). Note that the memory
efficiency gap is a combination of our quantization scheme and
the fact that [Wang et al. 2020] is optimized towards performance
instead of memory.

Quantization on mobile devices. Since mobile devices have rel-
atively limited computing power and a strong need for real-time
response, typically only small-scale simulations run there and stor-
age is not really an issue. Surprisingly, we still find using quantized
data types on the background grid to be beneficial: since mobile
GPUs usually only have high-performance native atomicAdd sup-
port for i32 but not for f32, using ti.quant.fixed(fraction=32) on
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Fig. 17. A 235M-particle MLS-MPM simulation. (1) 4, 693 elastic tubes
fall down, (2, 3) form an interesting mountain structure, and (4, 5) ul-
timately collapse due to instability. Note the tubes are lengthy along
the camera direction. [Reproduce: cd mls_mpm && python3 -m de-
mos.demo_quantized_simulation_letters -o outputs]

the grids converts software-emulated f32 atomicAdd to hardware-
native i32 atomicAdd significantly improves P2G performance in
our MLS-MPM program on an iPhone XS (Fig. 16). See our supple-
mental video for more visual comparisons.

Fig. 16. A benchmark of 36, 000 MLS-MPM particles with 256 × 256 grid
nodes, on an Apple iPhone Xs. Using our ti.quant.fixed(fraction=32)
types on the grid nodes (right) improves FPS by 1.4× compared to native
float32 (left). Note that the fixed32 version is captured at a later simula-
tion stage since it has a higher FPS.

Table 7. Quantitative error analysis of each scheme against float64. The
simulation using each scheme runs five times. We report the average value
(and standard deviation) of MSEs collected for each scheme.

Quantization Scheme Particle position MSE

float32 reference 2.69(±0.6) × 10−11

Quantize position 1.68(±0.3) × 10−8

Quantize position
& velocity 1.79(±0.01) × 10−3

Quantize position, velocity
& deformation gradient 1.87(±0.01) × 10−3

Quantitative quantization error analysis. To quantitatively ana-
lyze quantization errors, we conduct a 2D elastic object collision
experiment using MLS-MPM.We used double precision (float64) as
the reference solution, and computed the mean squared error (MSE)
of corresponding particle positions in the float64 and quantized
simulations. The simulation lasts 200 frames. For quantized simula-
tions, we used 20-bit fixed-point numbers for particle positions, and
floating-point numbers with 10 fraction bits and 6 exponents bits for
particle velocity. Four 16-bit fixed-point numbers are used for parti-
cle deformation gradients. We compare the error of four schemes:
1) full precision (float32), 2) quantize position only, 3) quantize po-
sition & velocity, and 4) quantize position, velocity & deformation
gradient. The results are shown in Table 7 and Figure 18.
Clearly, MSEs go up as more physical properties are quantized.

In long-running simulations like this, tiny quantization errors ac-
cumulate and may result in a visually noticeable difference in the
final state. Still, the simulations remain physically plausible. Interest-
ingly, we find that using fixed16 instead of float32 for deformation
gradients does not introduce more quantization error, leading to
a 2× higher memory efficiency on the most memory-consuming
physical property on each particle at no cost of precision. See our
supplemental video for more details.

7.5 Visual comparisons
To investigate how much visual difference quantization injects
into the simulator, we collected five groups of simulation videos.
Each group has three videos: two of them are generated using full-
precision float32 simulators 8, and one is generated using quan-
tized simulators. Visually, after quantization the simulations remain
physically plausible. Five cases are presented in Fig. 19. See our
supplemental document and video for more details on visual com-
parisons.

7.6 Discussions
Productivity. Thanks to our decoupling of numerical data formats

from numerical computation, the amount of code modified to trans-
form a traditional full-precision physical simulator into a quantized
simulator is no bigger than 3% of the total solver code. For example,

8Two runs of the same full-precision simulations may lead to slightly different results.
This is because parallel floating-point computations (e.g., parallel reduction of floating-
point numbers) intrinsically have fluctuations. Note that floating-point add is not
associative and the result depends on the CPU/GPU thread scheduler.
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Fig. 18. Visual results of our quantitative error analysis experiments. Two
elastic balls fall under gravity. Our quantized simulation is physically plau-
sible, despite the errors shown in Table 7.

Fig. 19. Five visual comparison cases used to qualitatively compare quan-
tized and full-precision simulators.

the whole MLS-MPM solver has roughly 1000 lines of code, while
specifying a single quantization scheme takes only 30 lines of code
(3%). To quantize the 900-line fluid simulator, no more than 20 (2.2%)
lines of code are added.

Failure cases. It is not uncommon that using data types that have
too low precision or dynamic range leads to simulation artifacts.
Fortunately, our system which allows rapid trial-and-error, and al-
lows programmers to simply use more bits in this case. For example,
we found using 16-bit fixed-point numbers for fluid volume ratio
𝐽 = 𝑉𝑡/𝑉0 [Tampubolon et al. 2017] leads to a clear volume gain. This
can be easily fixed by letting 𝐽 have 23 bits instead of 16 (Fig. 20).

8 CONCLUSION
In order to make quantized simulation practically programmable, we
have developed a tailored programming interface, compilation sys-
tem, and domain-specific optimizations. Our system is orthogonal
to many of the existing work to accelerating simulations, includ-
ing sparse data structures [Hoetzlein 2016; Hu et al. 2019; Museth
2013; Setaluri et al. 2014]. Using our system, programmers can ef-
fortlessly switch between different quantization schemes, leading to
1.57 ∼ 8.00× memory space efficiency improvement. A user study

Fig. 20. A 12M-particle MLS-MPM fluid simulation with volume ratio 𝐽 on
each particle quantized. Note that using fixed16 leads to an unrealistic
volume gain compared to the float32 reference. The programmer can easily
fix this by adding 7 more bits to the variable and use fixed23 instead.

shows that 3D quantized simulation results are indistinguishable
from full-precision ones. Our system is performant and easy to use:
by modifying no more than 3% of the simulator code, a developer
can quantize a MLS-MPM or Eulerian fluid simulator, running at a
comparable speed to the full-precision version.

Future work. Currently, programmers still have to manually ex-
periment with different quantization schemes. It would be helpful to
have a system that automatically figures out suitable quantization
schemes. Regarding engineering, adding a debugging system that
detects overflowing of fixed- and floating- point numbers can help
programmers more easily diagnose issues in a quantization scheme.
Although our discussions are focused on a shared-memory envi-
ronment, our quantization compiler can also help multi-GPU and
distributed memory computation, since quantized physical states
can significantly reduce communication overhead in those scenarios.
Combining our system with emerging low-precision computation
hardware, such as NVIDIA TensorCores, is a meaningful future
direction.
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