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a b s t r a c t 

To realistically represent 3D human body shape in a mathematical way, the parametric model used 

should incorporate symmetry as displayed by real people. This paper proposes a symmetric parametric 

model called symmetricSCAPE . It successfully incorporates symmetry into a parametric model of the 3D 

body, formulating body geometric variations of both shape and pose using a triangular mesh representa- 

tion. The symmetry constraint is imposed on each symmetrically-related triangle pair of the body mesh. 

Mathematically, symmetry-related constraint matrices are derived, and applied during shape and pose 

deformation of triangle pairs. By accurately registering a pre-designed symmetrization template mesh 

to the training dataset, we learn how the symmetricSCAPE model causes the body mesh to deform rela- 

tive to the symmetry. Our experiments demonstrate that the symmetricSCAPE model results in a better, 

more parsimonious, and more accurate parametric model of the 3D human body than traditional non- 

symmetry-aware representations. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

3D human body modeling is a classical problem in academia

and industry. To realistically model the human body, digital full-

body avatars need features matching those of real people. The ex-

pected parametric model should simultaneously represent a wide

range of features to effectively characterize the 3D human body.

Many efforts are ongoing, taking into account such features as ge-

ometry, texture appearance, articulation, symmetry, etc. 

The pioneering SCAPE ( Shape Completion and Animation of PEo-

ple ) parametric model [1] represents geometric variations in both

shape and pose of 3D human body, in term of articulated deforma-

tion. SCAPE has been improved in various ways to provide better

articulated models, such as BlendSCAPE [2] , RealtimeSCAPE [3] and

SMPL [4] . Parametric 3D body models have further been extended

to incorporate typical features of the 3D body, such as respira-

tion [5] , dynamic soft-tissue motion [6] , and texture [7] . 

Symmetry [8] , especially intrinsic reflectional symmetry, is a

fundamental property of the human body. Symmetry has been

thoroughly studied in 3D and applied in geometry processing to

tasks such as symmetrization [9] , correspondence computation,

segmentation, and geometry repair [10] . 
∗ Corresponding author at: Avatar Science Company, China. 
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Articulation and symmetry are both particular geometric fea-

ures of the human body, but their processing has mainly devel-

ped separately. It is thus a natural idea is to combine both sym-

etry and articulation to better represent the 3D body. Note that

 symmetric template is implicitly used by Hirshberg et al. [2] ,

oper et al. [4] and Hasler et al. [11] , but it still fails to take into

ccount the relationship between the parametric model and sym-

etry of the human body. In our paper, a combined scheme is

arefully used in a unified parametric model. In particular, sym-

etry of the human body is mathematically incorporated into

he unified parametric model, to better express 3D human body

hape. 

We propose a symmetric parametric 3D body model, called

ymmetricSCAPE , successfully incorporating both articulation and

ymmetry in a unified model. Our parametric model is built on

lendSCAPE [2] , but the extension of BlendSCAPE to incorporate

ymmetry is not as simple as might be expected, and needs

areful consideration. SymmetricSCAPE requires reformulating the

hole pipeline of BlendSCAPE, from the template and training-data

reparation, to formulation of the parametric model in both shape

nd pose variations. 

We focus here on parametric modeling of an ordinary 3D hu-

an body with typically symmetric features, and do not con-

ider persons with incomplete bodies, e.g. missing legs or arms.

n the implementation, symmetricSCAPE model learning and data

reparation are both performed during pre-processing. Afterwards,

https://doi.org/10.1016/j.cag.2019.03.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2019.03.013&domain=pdf
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ymmetricSCAPE can rapidly reconstruct a complete 3D body mesh

or a human body instance. Our symmetric template mesh has

ariable resolution: the face is represented in greater detail, which

s important to provide compelling 3D avatars with visually con-

incing appearances. Parametric model learning is processed by

egistering the template to high-resolution 3D scans of different

ubjects in a wide variety of poses. Following Hirshberg et al. [2] ,

uring registration of the template to 3D scans, the symmetric-

CAPE model is simultaneously learned by using principal compo-

ent analysis (PCA) on the aligned vertices. The key feature of our

arametric model is that it is formulated to consistently encode

oth symmetry and articulation of the 3D body. 

Our experiments show that our formulation results in a bet-

er, more parsimonious and more accurate parametric 3D model of

he human body than traditional non-symmetry-aware represen-

ations. The improved performance may be demonstrated in two

ays: (i) the symmetricSCAPE model results in meshes that are bet-

er reconstructed, and exhibit better symmetry across a database

f registered body shapes, and (ii) for a fixed number of parameter

oefficients, body reconstruction by symmetricSCAPE is more accu-

ate than when a non-symmetry-aware model is used. 

In the following, we review related work in Section 2 , while

he definition and training of the symmetricSCAPE model are con-

idered in Sections 3 and 4 . Body reconstruction is addressed in

ection 5 . Section 6 presents and analyzes experimental results,

nd conclusions are given in Section 7 . 

. Related work 

As a long-standing problem, 3D human body modeling has

een studied both theoretically and algorithmically. Researchers

im to build reasonable and realistic 3D representations of the hu-

an body, providing concise descriptions of its basic features, such

s its articulation, and intrinsic symmetry. In this review of related

ork, we focus on the most relevant topics: parametric modeling

f the 3D human body, and its intrinsic symmetry. 

.1. Parametric modeling of the 3D human body 

Parametric 3D modeling of the articulated human body began

y studying geometric pose and shape separately, then considered

nified models with additional advantages. 

The linear blend skinning (LBS) method [12] can represent

ody pose deformation as a linear function of skinning weights

nd transformations of articulated bones. Based on this work,

llen et al. [13] used an articulated body model in various poses

o fit scanned partial human 3D point clouds. 

Considering the opposite problem, Allen et al. [14] proposed

 parametric deformation model induced by shape, by fitting a

emplate to 250 different scanned persons in the same pose. Ap-

lying PCA decomposition to the displacements of template ver-

ices provided a model of the shape space. At the same time, Seo

nd Magnenat-Thalmann [15] proposed another shape induced de-

ormation model which decomposes shape deformation into rigid

nd non-rigid deformation separately. The non-rigid deformation is

odeled by PCA of template vertex displacements. 

The pioneering work of Anguelov et al. [1] captures correla-

ions of shape deformations between different individual bodies as

ell as correlations of pose deformations, providing the fundamen-

al unified SCAPE model. Many following works considered how

o improve upon this model, aiming to provide highly flexible and

ealistic body models. The triangle deformation used in [1] is not

otation-invariant, meaning that the same shape is encoded differ-

ntly depending on its orientation. To alleviate the problem, Hasler

t al. [11] encodes each triangle with its three neighbors using a

ocal rotation-invariant transformation, and introduces a statistical
odel of the 3D body with correlation between shape and pose

sing scans of several people in different poses. An alternative way

f modeling the correlation between shape and pose is formulated

n [16] using complex tensor multiplication. Although these two

omplex encoding approaches both experimentally generate con-

istent results, articulation of the 3D body is almost overlooked.

he template-to-scan alignment scheme of [1] and [11] is a typical

wo-stage approach, in which one first aligns the template mesh to

ach training example, then builds a parametric model of the 3D

ody from the aligned data. Instead, Hirshberg et al. [2] integrates

he registration process with the learning of this parametric model,

nd regularizes alignments using an articulated parametric model,

n an approach termed BlendSCAPE. Each triangle’s rigid rotation

n BlendSCAPE is a linear blend of the rotations of the parts of the

keleton. It outperforms SCAPE in that every triangle within an ar-

iculated part has the same rotation. Realtime articulated SCAPE-

ased models have been proposed by Chen et al. [3] , Loper et al.

4] and Ye et al. [17] . They share the same idea that the compu-

ation of the pose-dependent deformation can be accelerated by

se of a linear skinning function. To realistically model respiration,

 new model for breathing was introduced by Tsoli et al. [5] . The

hape deformation of SCAPE is separated into the intrinsic personal

hape and changes due to breathing; additionally, the pose is sep-

rated into a static pose and pose variations due to breathing. A

imilar shape and pose separation scheme was adopted by Pons-

oll et al. [6] to model dynamic soft-tissue deformations. 

The recent SMPL (Skinned Multi-Person Linear) model [4] does

ot use the triangle-deformation scheme of SCAPE-based ap-

roaches, but a unique vertex-based model. SMPL applies 3D dis-

lacements directly to vertices to model body changes, avoiding

he stitching step needed by SCAPE-based triangle deformation.

he generality of linear blend SMPL provides an extensible foun-

ation, e.g. for modeling cloth [18] , motion [19] , hands [20] , inte-

ration with sparse IMU sensors [21] , physical simulation of soft

issue [22] , and single-view realtime dynamic body reconstruc-

ion [23] . SMPL is compatible with standard graphics software ap-

roaches to skinning of vertices. 

.2. Symmetry of the human body 

In addition to (linear) skinning articulation, symmetry is an-

ther important feature of the 3D body. It is an interesting ques-

ion whether symmetry should be incorporated into 3D paramet-

ic models of the human body. Symmetry of the human body is

f long-standing interest, as attested by the recent survey by Mi-

ra et al. [8] of symmetry research. 

Global (approximate) intrinsic symmetry is a salient feature of

he human body. In the presence of global symmetry features, sta-

le transformations exist that map the whole body to itself. Fur-

hermore, the human body always undergoes approximately iso-

etric deformations, so use of intrinsic symmetry via measure-

ents in geodesic space is an appropriate approach. Global intrin-

ic symmetry of the human body can be detected and computed

y use of eigenfunctions of Laplace Beltrami operators [24] . Vot-

ng for planar reflective symmetry transforms of symmetric trian-

le pairs provides a symmetry extraction algorithm [10] , which can

etect partial intrinsic reflectional symmetry of the body. Utilizing

nique Möbius transform determination allows stable global intrin-

ic symmetry detection for the 3D body [25] . 

In [2,4,11] , the hand-created template constructed is (implic-

tly) symmetric. Indeed, Loper et al. [4] goes further and also uses

 symmetry regularization term in the pose-related training pro-

ess. These papers implicitly use the intuitive idea that enforc-

ng symmetry produces models that are visually more pleasing,

lthough specific experiments were not made to validate this as-

umption. Indeed, previous 3D parametric body models failed to
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Fig. 1. Template mesh symmetrization. Left: the template used by SCAPE [1] . Right: 

our symmetrization version. 
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explicitly formulate the relationship between the parametric model

and symmetry of the 3D body in such a way as to take most ad-

vantage of symmetry. 

In our paper, symmetry is mathematically incorporated in the

3D parametric modeling of the human body. Furthermore, symme-

try is enforced on the data: both the template and training data

are prepared using symmetrization [9] . 

3. Model formulation 

SCAPE [1] is a decoupled deformation model which separately

accounts for body shape variation between different people, and

pose changes. Pose changes are further separated into rigid ro-

tation and non-rigid pose-dependent deformation. In the original

SCAPE method, unnatural discontinuities rarely appear at the joints

between rigid parts, like the knees, hips and shoulders. To achieve

smoother joints, [2] proposed an optimized BlendSCAPE model.

Each triangle’s rigid rotation in BlendSCAPE is a linear blend of

the rotations of those of articulated parts. It outperforms SCAPE,

in which every triangle within a rigid part has the same rotation. 

Like SCAPE [1] and BlendSCAPE [2] , symmetricSCAPE parameter-

izes the 3D body using shape and pose factors. Unlike SCAPE and

BlendSCAPE, we take into account symmetry of the 3D body and

incorporate symmetry constraints into the parametric model. 

We assume that a human body can be represented by a mesh

with a set of triangular faces F = { f 1 , . . . , f | F | } , | F | = 30 , 260 with

corresponding vertices V = { v 1 , . . . , v | V | } , | V | = 15 , 132 . Parametric

modeling of 3D body shape aims to build a descriptive model

M (β, θ ;�) to represent a given human body. A vector of variable

parameters specific to the subject indicate both the subject’s body

pose θ and shape β , while learned model parameters � which

are constant across all individuals are determined from the train-

ing dataset. These variable and learned parameters are given par-

ticular values to reconstruct a specific 3D body, by deforming a

pre-designed template mesh T̄ which exists in a standard (zero)

pose. The template is symmetrized and manually pre-segmented

into | B | = 17 articulated parts in a kinematic tree structure. 

Similar to BlendSCAPE [2] , symmetricSCAPE is Mathematically

formulated by combining a transformation for each triangle, mod-

eling the triangle deformation induced by the body pose, and the

shape changes between different individuals. For each triangle face

f , the deformation that transforms it from the template mesh T̄ to

the target mesh T is given by: 

f T = 

( | B | ∑ 

b=1 

w f,b R b (θ ) 

) 

S f (β) Q f (θ ) f T̄ , (1)

where w f,b is the blend weight for rotation R b ( θ ) of the b th ar-

ticulated part, following Hirshberg et al. [2] , and R b ( θ ) is parame-

terized in terms of the relative joint angles θ . The non-rigid pose

and shape deformations of the face f are encoded as matrices Q f ( θ )

and S f ( β) respectively. Following SCAPE [1] , Q f ( θ ) (or Q f for short)

is approximated, by principle-component-analysis linearization, as

Q f = Q 

0 
f 

+ 

∑ 

q Q 

q 

f 
θq 

f 
, where � θq 

f 
is the q th element of the pose vec-

tor � θ for face f ; vectors Q 

0 and Q 

q contain related coefficients for

all faces. S f ( β) ( S f for short) can also be approximated by a linear

subspace: S f = S 0 
f 
+ 

∑ 

s S 
s 
f 
βs 

f 
, where βs 

f 
is the s th element of the

pose vector β for face f ; vectors S 0 and S s contain related coeffi-

cients for all faces. All matrices Q 

0 
f 
, Q 

q 

f 
, S 0 

f 
, and S s 

f 
have size 3 × 3.

Formally, Eq. (1) is similar to the approach used in [2] , but

the formulation is substantially different. In the symmetricSCAPE

model, (intrinsic) symmetric deformation constraints are imposed

on the part weights w f,b , and linear coefficients Q f and S f , so

that the deformed mesh is also intrinsically symmetric. Specifically,

given a pair of symmetrically-related triangle faces f and f r in the
l 
ody mesh, f l being located in (left) part b and f r in right part d ,

e have: 

w f l ,b 
= w f r ,d 

Q f l 
= Q Q f r 

S f l = S S f r 

(2)

here parts b and part d are symmetrically-related, Q and S are

he same 3 × 3 matrices given by: 

 = S = 

[ 

1 −1 −1 

−1 1 1 

−1 1 1 

] 

. (3)

lease see the Appendix for the derivation of how the two ma-

rices Q and S encode symmetry constraints on pose and shape

eformation. 

Eqs. (1) and (2) together define the symmetricSCAPE model. We

eed to learn the model in Eq. (1) with respect to the constraints

n Eq. (2) . 

Specifically, symmetricSCAPE is a parametric model represent-

ng a given symmetric body, using variable parameters specific

o the subject and constant learned parameters. The variable

arameters represent pose θ = [ θ1 , . . . , θ | θ | ] T ∈ R 

3 ×| B | and shape

= [ β1 , . . . , β | β| ] T ∈ R 

3 ×3 ×| V | . The learned parameters include

ose-related weights W = [ w 1 , 1 , . . . , w f,b , . . . , w | F | , | B | ] ∈ R 

| F |×| B | co-

fficients Q = [ Q 

0 
0 
, . . . , Q 

q 

f 
, . . . ] , and shape-related coefficients S =

 S 0 
0 
, . . . , S s 

f 
, . . . ] . 

. Model training 

Training the symmetricSCAPE model requires computation of the

earned parameters � from the prepared data. In Section 4.1 we

xplain how both template and training datasets are prepared,

hen in Sections 4.2 and 4.3 respectively how the pose-related and

hape-related parameters are learned. 

.1. Training data preparation 

Firstly, the template (mesh) is prepared using a symmetriza-

ion method [9] . As shown in Fig. 1 , the template is symmetrized

ith respect to the reflectional plane x = 0 . For any vertex v , sym-

etrization guarantees that a corresponding symmetric vertex v ′
xists on the mesh, related by reflection in the plane x = 0 . In

ddition, the symmetric template mesh has variable resolution in

hich the face is represented in greater detail, which is important
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o ensure a compelling 3D avatar with visually intuitive appear-

nce. 

We train the symmetricSCAPE model parameters by minimizing

econstruction error on two datasets: a multi-pose dataset, and

 multi-shape dataset. The multi-pose dataset is built using the

MPL dataset [4] , consisting of 1786 registrations of 40 individu-

ls (891 for 20 females, and 895 for 20 males); The multi-shape

ataset is built using the CAESAR dataset [26] with 1500 males and

500 females. Each mesh in these training datasets has the same

opology as our template, since it was formed by aligning the tem-

late to a high-quality 3D scan in the SMPL or CAESAR dataset.

ote that each set of training data in the CAESAR dataset was also

ymmetrized by the same method as the pre-designed template. 

.2. Pose-related training 

During pose-related training, we learn the weights W and co-

fficients Q = [ Q 

0 
0 
, . . . , Q 

| M Q | 
3 ×| B | ] ∈ R 

3 ×3 ×(1+3 ×| B | ) ×| M Q | , where | M Q | is

he number of registered meshes in the multi-pose dataset. 

Given a specific individual, pose-related training is performed

n each face f with vertices ( v 1 , v 2 , v 3 ) with known shape-related

arameters ( S f ). Following Anguelov et al. [1] , the deformation of

ll poses works on vertex-difference vectors. Specially, we formu-

ate the pose-related training as minimizing a non-linear least-

quares error: 

min 

W,Q 

| M Q | ∑ 

j=1 

∑ 

k =2 , 3 

‖ ( 

| B | ∑ 

b=1 

w f,b R b (θ )) S f Q f (θ ) ̄e f,k − e j 
f,k 

‖ 

2 (4) 

here j indicates the pose index of the specific individual, ē f,k =
¯
 k −v̄ 1 and e 

j 

f,k 
= (v j 

k 
−v j 

1 
) are known vertex-difference vectors, and

ertex v̄ in the template corresponds to vertex v in the registered

esh of a given pose instance. The pose deformation values θ and

 b ( θ ) are already known, so the unknown parameters are the pose-

elated weights and coefficients. 

The minimization problem in Eq. (4) is solved by alternating

ptimization of the weight w f,b and Q f ( θ ) for each face f with sym-

etric constraints: 

• We fix the transformation Q f ( θ ) and optimize the weight w f,i .

We minimize the weights for symmetrically-related triangles f l 
and f r at the same time, since these 2 weights should be equal.

This can be formulated as: 

min 

w f l ,b 

| M Q | ∑ 

j=1 

∑ 

k =2 , 3 

(‖ ( 

| B | ∑ 

b=1 

w f l ,b 
R b (θ )) S f l Q f 1 (θ ) ̄e f l ,k − e j 

f r ,k 
‖ 

2 

+ ‖ ( 

| B | ∑ 

b=1 

w f l ,b 
R i (θ )) S f r Q f r (θ ) ̄e f r ,k − e j 

f r ,k 
‖ 

2 ) 

such that 

| B | ∑ 

b=1 

w f l ,b 
= 1 , w f l ,b 

> 0 . 

(5) 

The weights for both triangles are represented by the same op-

timization variable w f l ,i 
to enforce weight equality. 

• We fix the weights and optimize for Q f ( θ ) under the symmetry

constraint to obtain the linear coefficients Q . Again, symmetric

triangles f and f r are considered simultaneously in this step.
l 
The subproblem is now: 

min 

Q f l 
,Q f r 

| M Q | ∑ 

j=1 

∑ 

k =2 , 3 

(‖ ( 

| B | ∑ 

b=1 

w f l ,b 
R i (θ )) S f l Q f l 

(θ ) ̄e f l ,k − e j 
f l ,k 

‖ 

2 

+ ‖ ( 

| B | ∑ 

d=1 

w f r ,d R d (θ )) S f r Q f r (θ ) ̄e f r ,k − e j 
f r ,k 

‖ 

2 ) 

such that Q f l 
= Q Q f r 

(6) 

The training algorithm iterates these 2 steps until convergence. 

Following Bogo et al. [7] , if we sort pose directions according

o their eigenvalues and plot the cumulative explained variance,

e observe that the explained variance saturates rather rapidly. In-

tead of using all elements of Q (there are thousands of them), we

educe the number of pose-related elements used to about 300 co-

fficients, resulting in a mean absolute vertex distance error ( M abs )

ess than 3 mm between the deformed template and registered

esh. 

.3. Shape-related training 

Shape-related training aims to compute the learned parameters

 = [ S 0 
0 
, . . . , S 

| M S | | F |×| M S | ] ∈ R 

3 ×3 ×| F |×| M S | , where | M S | is the number of

egistered meshes in the multi-shape dataset, modeling the nonlin-

ar deformation at each triangle across different individuals. With

nown pose deformation information (weight w f,b , rigid rotation

 b ( θ ), and coefficient Q f ( θ )), the computation of S on face f may be

ormulated as: 

rg min 

S 

E(S) = E 1 + λ1 E 2 + λ2 E 3 , (7)

here λ1 and λ2 are weights experimentally set to 0.1 and 10 0 0,

nd the terms E 1 , E 2 and E 3 are defined as follows: 

• E 1 measures matching between the template and the registered

mesh j in the multi-shape dataset: 

E 1 = 

| M S | ∑ 

j=1 

∑ 

k =2 , 3 

‖ ( 

| B | ∑ 

b=1 

w f,b R b (θ )) S f (β) Q f (θ ) ̄e f,k − e j 
f,k 

‖ 

2 . (8) 

• E 2 is a regularization constraint to enforce smoothness between

adjacent faces adj ( f l , f r ): 

E 2 = 

∑ 

adj( f l , f r ) 

‖ S f l − S f r ‖ 

2 . (9)

• E 3 represents the symmetry constraint for symmetrically-

related faces sym ( f l , f r ) : 

E 3 = 

∑ 

sym ( f l , f r ) 

‖ S f l − S S f r ‖ 

2 . (10)

As for the pose-related coefficients, the number of shape-

elated elements used is also reduced to about 300 coefficients, so

hat M abs is less than 3 mm. 

. 3D body reconstruction 

Like SCAPE [1] and BlendSCAPE [2] , symmetricSCAPE can recon-

truct both a complete 3D body mesh T representing both shape

nd pose, from 3D scanned data Z = { z 1 , . . . , z | Z| } , even given in-

omplete single-view data. 

The full 3D body mesh T is deformed from the template T̄ to

est fit the input scanned data, while also being consistent with

he symmetricSCAPE model. The learned parameters �, including

 , Q , and S , have already been determined during training. The re-

aining unknown variables are the positions of vertices V T in T , β ,
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Fig. 2. Model fitting results. Using the instance data (gray, left), we fit both sym- 

metricSCAPE (above) and non-symmetry-aware BlendSCAPE (below) models to re- 

constructed meshes T ( β , θ ) (center) by optimizing pose and shape. The fits between 

the reconstructed meshes and input data are shown in the left-center column. The 

right-center column shows the estimated pure-shape results T ( β) without pose in- 

formation, parts of the face are magnified and there is a clear difference especially 

in the nose region. The alignment between them is shown in the right column. It is 

easy to see that symmetry of the body is preserved better by the symmetricSCAPE 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Reconstructions produced using 10 shape-related components from symmet- 

ricSCAPE and BlendSCAPE models for the symmetrized data on the left (line of sym- 

metry shown in red). Absolute vertex-to-vertex distance for each vertex is rendered 

in pseudo-color. It is clear that symmetry is not perfectly preserved in the non- 

symmetry-aware BlendSCAPE result, especially on the cheeks and legs. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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and θ , which are determined by minimizing the objective function:

arg min 

V T ,β,θ

(E cost + λZ 

| Z| ∑ 

i =1 

‖ v closest (z i ) − z i ‖ 

2 ) , (11)

where E cost is defined by: 

| F | ∑ 

f=1 

∑ 

k =2 , 3 

‖ ( 

| B | ∑ 

b=1 

w f,b R b (θ )) S f Q f (θ ) ̄e f,k − e f,k ‖ 

2 . (12)

Here, λZ are marker weights, and v closest (z i ) is the closest vertex to

z i in the reconstructed mesh T . 

The unknown variables are found using an iterative process,

which optimizes each of the three sets of parameters ( V T , β , and

θ ) separately in turn, keeping the others fixed. This optimization

process converges to a local optimum of Eq. (11) . 

6. Experimental results and discussion 

So far, we have focused on the symmetricSCAPE model formula-

tion and the training scheme. In this section, we firstly evaluate the

symmetricSCAPE model by showing results qualitative and quanti-

tative results, then give a further discussion. 

6.1. Results 

We evaluate qualitative and quantitative results obtained by

fitting the symmetricSCAPE model to various meshes representing

new people and poses. Fitting involves both shape-based and pose-

based deformations, optimizing variable parameters of shape β
and pose θ to find the best fitting mesh T as given by Eq. (11) .

For clarity, the fitted mesh is denoted by T ( β , θ ), while the re-

constructed mesh purely related to shape is expressed as T ( β). For

comparison, a comparable non-symmetry-aware model (e.g. SCAPE,

BlendSCAPE) was also trained on the symmetrized template and

training data, as described in Section 4.1 . 

Fig. 2 shows meshes reconstructed by symmetricSCAPE , and

non-symmetric BlendSCAPE models for a typical instance. The tem-

plate is unique as shown in Fig. 1 . One instance, processed by sym-
etricSCAPE and non-symmetric BlendSCAPE models respectively,

s shown in Fig. 2 , including one single input scanned data (left)

nd final reconstructed results (center). The left side shows the real

ata, which was not used during training of the parametric models.

he left-center column indicates the fit between the reconstructed

esh and data; it demonstrates that both models do a good job

f fitting the data. The center gives the reconstructed results T ( β ,

), showing desirable appearance. The right-center shows the es-

imated pure-shape results T ( β) without pose information. It is

asy to notice salient visual differences between the magnified face

egions for different models, especially around the nose. The re-

onstructed nose result from the BlendSCAPE model lacks symme-

ry in its visual appearance. A comparison of pure-shape results is

hown after alignment, which makes it easier to see that the sym-

etry results from symmetricSCAPE are much more acceptable than

hose from the non-symmetry-aware BlendSCAPE. 

For the specific set of symmetrized data illustrated in

ig. 3 (with line of symmetry shown in red), symmetricSCAPE and

on-symmetric BlendSCAPE models were used to reconstruct inter-

ediate examples using the first ten principal components (PCs)

f shape-related coefficients. For this specific instance, the initial

emplate and final registration ground-truth result are both sym-

etrized data, so effects of non-symmetric deformation (especially

ose-related) are greatly alleviated. The reconstructed results are

hown in Fig. 3 , to demonstrate the effects of symmetry-preserving

unctionality on our symmetricSCAPE model. To evaluate the abil-

ty of the model to fit a mesh, the error was measured as ab-

olute vertex-to-vertex distances between the intermediate exam-

les ( T ( β , θ )) and the registration ground-truth. This distance is

endered in pseudo-color for each vertex. For symmetricSCAPE , the

ean absolute vertex-to-vertex distance ( M abs ) error is 5.7 mm,

ith a maximal error ( maxError ) of 12.83 mm, and a minimal er-

or ( minError ) of 0.11 mm. In comparison, for non-symmetry-aware

lendSCAPE, M abs , maxError , and minError are respectively 6.2 mm,

5.74 mm, and 0.15 mm. The pseudo-color results show clearly

hat BlendSCAPE does not perfectly preserve symmetry (especially

n the cheeks and legs), while symmetricSCAPE does. 

Fig. 4 demonstrates how M abs error varies for the instance data

n Fig. 3 as a function of the number principal components of
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Fig. 4. Variation in mean absolute vertex ( M abs ) error for five typical models with varying numbers of principal components representing shape-related coefficients, for the 

instance data in Fig. 3 . Errors were measured with 2, 5, 10, 20, 50, 10 0, 20 0, and 30 0 components. 

Fig. 5. Reconstructed results produced by the symmetricSCAPE model using the multi-pose SCAPE dataset. 
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hape-related coefficients used for reconstruction. Generally, the

rror between the examples and final T ( β , θ ) gradually decreases

ith the number of principal components. symmetricSCAPE per-

orms better than SCAPE, BlendSCAPE, and SMPL for this instance

ata. 

Using 71 poses from the SCAPE dataset, we tested pose-related

econstruction, to evaluate the ability to generalize a shape of an

ndividual to new poses of the same person. We took the first pose

o estimate body shape, then used this parametric model to fit the

ame subject in different poses without readjusting shape param-

ters. Fig. 5 demonstrates some reconstructed results produced by

he symmetricSCAPE model. 

Fig. 6 shows variation in pose-related M abs error, primarily

o test how well the reconstructed pose-related meshes fit the

canned mesh in the given pose. Results show that symmetricSCAPE

erforms better than BlendSCAPE on this test. 

We now consider the run time of the body reconstruction algo-

ithms for both symmetricSCAPE and BlendSCAPE models, using a

esktop PC with a 3.3 GHz Intel Core i9 processor, without GPU ac-

eleration. To produce the result in Fig. 2 from the given 3D point

loud, the symmetricSCAPE model takes about 12.5 s while Blend-

CAPE takes 12.3 s to finish the fitting process. Both approaches

se the same number (200) of iterations to converge to the final
 s  
ptimum of Eq. (11) . For the multi-pose SCAPE dataset, symmetric-

CAPE and BlendSCAPE models take more or less the same time

n average, 31 ms, to compute each individual result. For the pose

esting application, shape-related processing is done once and the

hape is then kept fixed for pose deformation, so the cost of ani-

ating the mesh is just that for the pose-related computation: re-

ltime performance can be achieved by use of the linear skinning

cheme. 

.2. Discussion 

Note that we only consider a general 3D symmetric body with

omplete parts. In practice, some people are very clearly not at all

ymmetric, e.g. having lost an arm or leg in an accident. A direct

pplication of symmetricSCAPE in such cases is to recover the miss-

ng parts and restore the body’s symmetry, as in [10] . 

Less drastically, even ordinary people typically display slight

symmetry of their body parts. In particular, enforcing too much

ymmetry on the face region can result in quite visible modifica-

ions to a person’s appearance. Ideally a modeling approach should

emove local, point- or triangle-wise, random differences in sym-

etrically related parts of the body, but at the same time pre-

erve small coherent differences which occur across regions (left
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Fig. 6. Variation in mean absolute vertex ( M abs ) error for the reconstructed results from BlendSCAPE (blue) and symmetricSCAPE (red). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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and right cheeks for example), to preserve such asymmetry. A suit-

able model to capture this idea needs further consideration, and is

a topic for future research. 

As noted in Section 2 , parametric 3D body modeling generally

relies on triangle-based SCAPE-like schemes or vertex-based SMPL-

like schemes. Our formulation in Eqs. (1) –(3) captures geometric

variations in both shape and pose using a triangular mesh repre-

sentation. Our approach to symmetry could also be incorporated in

other methods also using triangle-based SCAPE-like schemes, e.g.

SCAPE [1] , BlendSCAPE [2] , RealtimeSCAPE [3] ). However, doing so

in SMPL [4] is still a challenging problem, since it is a vertex-based

scheme. A symmetry regularization term is used in its pose-related

training process, but is not clearly expressed in the basic SMPL

model. Despite our attempts, we have been unable to appropriately

capture and enforce symmetry mathematically in the SMPL model

in a unified way. 

Recently, Zuffi et al. [27] extended SMPL to model the 3D

shapes and poses of animals. This extension could also be applied

to triangle-based SCAPE-like methods, implyings that our symmet-

ricSCAPE could be likewise extended to other symmetric living

things such as animals, and beyond. 

7. Conclusions 

Previous models of 3D human body shape have had the abil-

ity to represent a range of identity-dependent body shapes, and

to deform them naturally into various poses, even exhibiting soft-

tissue motions. However, they have failed to integrate that symme-

try which is typically inherent in a human body. 

This paper has successfully formulates a symmetric 3D para-

metric model of the human body, which we call symmetricSCAPE .

Symmetry-related constraint matrices are applied during shape

and pose deformation of triangle pairs to ensure symmetry is pre-

served when modeling the human body. 

In future, we expect research effort s to be devoted towards de-

velopment of more plausible parametric models, which realistically

model a 3D body, including the notion that symmetry is only ap-
roximate. More generally, a unified deformation model was re-

ently proposed by Joo et al. [28] for the markerless capture of

ultiple scales of human movement, including facial expressions,

ody motion, and hand gestures. Various deep learning methods

ave also been tried for 3D body modeling, producing reasonable

esults. More importantly, novel applications are needed to make

ood use of these models. An ideal modeling result would be re-

listically clothed, detailed and textured, making it appropriate for

any more applications. 

cknowledgment 

This work was supported by the Shenzhen Science and Research

lan (JCYJ20170818160448602 and KQJSCX20170731165108047),

henzhen Scientific and Technological Innovation Project (2018–

20), Natural Science Foundation of China ( 61602507 and

1732016 ), China Postdoctoral Science Foundation ( 2016M602555 ). 

ppendix: the symmetry matrices 

.1. The pose-constraint matrix 

In the symmetrized template, the pose deformation of two

ymmetrically-related faces f l (the left, red, triangular face in

ig. 7 (a)) and f r (right, blue, faces in Fig. 7 (a)) satisfies f r = A f l ,

here A is a transformation matrix representing reflection in the

lane x = 0 : 

 = 

[ −1 0 0 

0 1 0 

0 0 1 

] 

. (A.1)

When the template is deformed by the pose-related variable

arameters θ as shown by the left model in Fig. 7 (b), pose de-

ormation acts on face f l with vertices ( v l 1 , v l 2 , v l 3 ). Consider for

xample the vertex-difference vector e l = v l 2 − v l 1 , ˆ e l with a non-

igid deformation ˆ e l = Q f l 
(θ ) e l . The face f r has symmetric pose

sym 

for θ , with ˆ e r = Q f r (θsym 

) e r , resulting in the right-hand model

https://doi.org/10.13039/501100004763
https://doi.org/10.13039/501100002858
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Fig. 7. Deformation with symmetry constraint. (a) Left (red) and right (blue) symmetrically-related faces in the template, (b) changes under pose deformation, (c) changes 

under shape deformation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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n Fig. 7 (b). The vertex-difference vector ˆ e l for pose θ and the vec-

or ˆ e r for pose θ sym 

are also symmetric about the plane x = 0 . This

eans that: 

ˆ 
 r = A ̂

 e l . (A.2) 

ubstituting ˆ e l and ˆ e r into the former Eq. (14) gives: 

 f r (θsym 

) e r = A Q f l 
(θ ) e l . (A.3)

hen, substituting e r = Ae l , we obtain: 

 f r (θsym 

) Ae l = A Q f l 
(θ ) e l . (A.4)

n order to satisfy above equation, we must have: 

 f r (θsym 

) = A Q f l 
(θ ) A 

−1 , (A.5)

o: Q f r (θsym 

) = Q Q f l 
(θ ) , where Q is 

 = 

[ 

1 −1 −1 

−1 1 1 

−1 1 1 

] 

. (A.6) 

.2. The shape-constraint matrix 

As for the pose case, the shape-constraint matrix is derived us-

ng symmetrically-related faces f l and f r in the template, which

atisfy f l = A f r with reflectional symmetry about plane x = 0 . Us-

ng example vertex-differences e l and e r again, shape deformation

ransforms them as ˆ e l = S f l (β) e l and ˆ e r = S f r (βsym 

) e r respectively,

s shown in Fig. 7 (c). ˆ e l and ˆ e r are still related by reflectional sym-

etry, and have the property ˆ e r = A ̂  e l . By substituting ˆ e l , ˆ e r , and

 r = Ae l as before, we can derive the following equation: 

 f r (θsym 

) Ae l = A S f l (θ ) e l . (A.7)

hus: 

 f r (θsym 

) = A S f l (θ ) A 

−1 , (A.8)

o: S f r (θsym 

) = S S f l (θ ) , where S is 

 = 

[ 

1 −1 −1 

−1 1 1 

−1 1 1 

] 

. (A.9) 
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