Special Section on CAD & Graphics 2019

Parametric 3D modeling of a symmetric human body

Yin Chena, Zhan Songb, Weiwei Xuc, Ralph R. Martind, Zhi-Quan Chengb,d,*

aCollege of Defense Engineering, Army Engineering University of PLA, China
bShenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
cState Key Lab of CAD\&CG, Zhejiang University, China
dAvatar Science Company, China

\textbf{A R T I C L E I N F O}

Article history:
Received 7 March 2019
Revised 27 March 2019
Accepted 29 March 2019
Available online 15 April 2019

Keywords:
3D human body
Symmetry
Shape
Pose
Accuracy

\textbf{A B S T R A C T}

To realistically represent 3D human body shape in a mathematical way, the parametric model used should incorporate symmetry as displayed by real people. This paper proposes a symmetric parametric model called \textit{symmetricSCAPE}. It successfully incorporates symmetry into a parametric model of the 3D body, formulating body geometric variations of both shape and pose using a triangular mesh representation. The symmetry constraint is imposed on each symmetrically-related triangle pair of the body mesh. Mathematically, symmetry-related constraint matrices are derived, and applied during shape and pose deformation of triangle pairs. By accurately registering a pre-designed symmetrization template mesh to the training dataset, we learn how the \textit{symmetricSCAPE} model causes the body mesh to deform relative to the symmetry. Our experiments demonstrate that the \textit{symmetricSCAPE} model results in a better, more parsimonious, and more accurate parametric model of the 3D human body than traditional non-symmetry-aware representations.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

3D human body modeling is a classical problem in academia and industry. To realistically model the human body, digital full-body avatars need features matching those of real people. The expected parametric model should simultaneously represent a wide range of features to effectively characterize the 3D human body. Many efforts are ongoing, taking into account such features as geometry, texture appearance, articulation, symmetry, etc.

The pioneering SCAPE (\textit{Shape Completion and Animation of People}) parametric model \cite{1} represents geometric variations in both shape and pose of 3D human body, in term of articulated deformation. SCAPE has been improved in various ways to provide better articulated models, such as BlendSCAPE \cite{2}, RealtimeSCAPE \cite{3} and SMPL \cite{4}. Parametric 3D body models have further been extended to incorporate typical features of the 3D body, such as respiration \cite{5}, dynamic soft-tissue motion \cite{6}, and texture \cite{7}.

Symmetry \cite{8}, especially intrinsic reflective symmetry, is a fundamental property of the human body. Symmetry has been thoroughly studied in 3D and applied in geometry processing to tasks such as symmetrization \cite{9}, correspondence computation, segmentation, and geometry repair \cite{10}.

Articulation and symmetry are both particular geometric features of the human body, but their processing has mainly developed separately. It is thus a natural idea to combine both symmetry and articulation to better represent the 3D body. Note that a symmetric template is implicitly used by Hirschberg et al. \cite{2}, Loper et al. \cite{4} and Hasler et al. \cite{11}, but it still fails to take into account the relationship between the parametric model and symmetry of the human body. In our paper, a combined scheme is carefully used in a unified parametric model. In particular, symmetry of the human body is mathematically incorporated into the unified parametric model, to better express 3D human body shape.

We propose a symmetric parametric 3D body model, called \textit{symmetricSCAPE}, successfully incorporating both articulation and symmetry in a unified model. Our parametric model is built on BlendSCAPE \cite{2}, but the extension of BlendSCAPE to incorporate symmetry is not as simple as might be expected, and needs careful consideration. \textit{SymmetricSCAPE} requires reformulating the whole pipeline of BlendSCAPE, from the template and training-data preparation, to formulation of the parametric model in both shape and pose variations.

We focus here on parametric modeling of an ordinary 3D human body with typically symmetric features, and do not consider persons with incomplete bodies, e.g. missing legs or arms. In the implementation, \textit{symmetricSCAPE} model learning and data preparation are both performed during pre-processing. Afterwards,
symmetricSCAPE can rapidly reconstruct a complete 3D body mesh for a human body instance. Our symmetric template mesh has variable resolution: the face is represented in greater detail, which is important to provide compelling 3D avatars with visually convincing appearances. Parametric model learning is processed by registering the template to high-resolution 3D scans of different subjects in a wide variety of poses. Following Hirshberg et al. [2], during registration of the template to 3D scans, the symmetric-SCAPE model is simultaneously learned by using principal component analysis (PCA) on the aligned vertices. The key feature of our parametric model is that it is formulated to consistently encode both symmetry and articulation of the 3D body.

Our experiments show that our formulation results in a better, more parsimonious and more accurate parametric 3D model of the human body than traditional non-symmetry-aware representations. The improved performance may be demonstrated in two ways: (i) the symmetricSCAPE model results in meshes that are better reconstructed, and exhibit better symmetry across a database of registered body shapes, and (ii) for a fixed number of parameter coefficients, body reconstruction by symmetricSCAPE is more accurate than when a non-symmetry-aware model is used.

In the following, we review related work in Section 2, while the definition and training of the symmetricSCAPE model are considered in Sections 3 and 4. Body reconstruction is addressed in Section 5. Section 6 presents and analyzes experimental results, and conclusions are given in Section 7.

2. Related work

As a long-standing problem, 3D human body modeling has been studied both theoretically and algorithmically. Researchers aim to build reasonable and realistic 3D representations of the human body, providing concise descriptions of its basic features, such as its articulation, and intrinsic symmetry. In this review of related work, we focus on the most relevant topics: parametric modeling of the 3D human body, and its intrinsic symmetry.

2.1. Parametric modeling of the 3D human body

Parametric 3D modeling of the articulated human body began by studying geometric pose and shape separately, then considered unified models with additional advantages.

The linear blend skinning (LBS) method [12] can represent body pose deformation as a linear function of skinning weights and transformations of articulated bones. Based on this work, Allen et al. [13] used an articulated body model in various poses to fit scanned partial human 3D point clouds.

Considering the opposite problem, Allen et al. [14] proposed a parametric deformation model induced by shape, by fitting a template to 250 different scanned persons in the same pose. Applying PCA decomposition to the displacements of template vertices provided a model of the shape space. At the same time, Seo and Magenet-Thalmann [15] proposed another shape induced deformation model which decomposes shape deformation into rigid and non-rigid deformation separately. The non-rigid deformation is modeled by PCA of template vertex displacements.

The pioneering work of Anguelov et al. [1] captures correlations of shape deformations between different individual bodies as well as correlations of pose deformations, providing the fundamental unified SCAPE model. Many following works considered how to improve upon this model, aiming to provide highly flexible and realistic body models. The triangle deformation used in [1] is not rotation-invariant, meaning that the same shape is encoded differently depending on its orientation. To alleviate the problem, Hasler et al. [11] encodes each triangle with its three neighbors using a local rotation-invariant transformation, and introduces a statistical model of the 3D body with correlation between shape and pose using scans of several people in different poses. An alternative way of modeling the correlation between shape and pose is formulated in [16] using complex tensor multiplication. Although these two complex encoding approaches both experimentally generate consistent results, articulation of the 3D body is almost overlooked.

The template-to-scanning alignment scheme of [1] and [11] is a typical two-stage approach, in which one first aligns the template mesh to each training example, then builds a parametric model of the 3D body from the aligned data. Instead, Hirshberg et al. [2] integrates the registration process with the learning of this parametric model, and regularizes alignments using an articulated parametric model, in an approach termed BlendSCAPE. Each triangle's rigid rotation in BlendSCAPE is a linear blend of the rotations of the parts of the skeleton. It outperforms SCAPE in that every triangle within an articulated part has the same rotation. Realtime articulated SCAPE-based models have been proposed by Chen et al. [3], Loper et al. [4] and Ye et al. [17]. They share the same idea that the computation of the pose-dependent deformation can be accelerated by use of a linear skinning function. To realistically model respiration, a new model for breathing was introduced by Tsoli et al. [5]. The shape deformation of SCAPE is separated into the intrinsic personal shape and changes due to breathing; additionally, the pose is separated into a static pose and pose variations due to breathing. A similar shape and pose separation scheme was adopted by Pons-Moll et al. [6] to model dynamic soft-tissue deformations.

The recent SMPL (Skinned Multi-Person Linear) model [4] does not use the triangle-deformation scheme of SCAPE-based approaches, but a unique vertex-based model. SMPL applies 3D displacements directly to vertices to model body changes, avoiding the stitching step needed by SCAPE-based triangle deformation. The generality of linear blend SMPL provides an extensible foundation, e.g. for modeling cloth [18], motion [19], hands [20], integration with sparse IMU sensors [21], physical simulation of soft tissue [22], and single-view realtime dynamic body reconstruction [23]. SMPL is compatible with standard graphics software approaches to skinning of vertices.

2.2. Symmetry of the human body

In addition to (linear) skinning articulation, symmetry is another important feature of the 3D body. It is an interesting question whether symmetry should be incorporated into 3D parametric models of the human body. Symmetry of the human body is of long-standing interest, as attested by the recent survey by Mitra et al. [8] of symmetry research.

Global (approximate) intrinsic symmetry is a salient feature of the human body. In the presence of global symmetry features, stable transformations exist that map the whole body to itself. Furthermore, the human body always undergoes approximately isotropic deformations, so use of intrinsic symmetry via measurements in geodesic space is an appropriate approach. Global intrinsic symmetry of the human body can be detected and computed by use of eigenfunctions of Laplace Beltrami operators [24]. Voting for planar reflective symmetry transforms of symmetric triangle pairs provides a symmetry extraction algorithm [10], which can detect partial intrinsic reflectional symmetry of the body. Utilizing unique Möbius transform determination allows stable global intrinsic symmetry detection for the 3D body [25].

In [2,4,11], the hand-created template constructed is (implicitly) symmetric. Indeed, Loper et al. [4] goes further and also uses a symmetry regularization term in the pose-related training process. These papers implicitly use the intuitive idea that enforcing symmetry produces models that are visually more pleasing, although specific experiments were not made to validate this assumption. Indeed, previous 3D parametric body models failed to
explicitly formulate the relationship between the parametric model and symmetry of the 3D body in such a way as to take most advantage of symmetry.

In our paper, symmetry is mathematically incorporated in the 3D parametric modeling of the human body. Furthermore, symmetry is enforced on the data: both the template and training data are prepared using symmetrization [9].

3. Model formulation

SCAPE [1] is a decoupled deformation model which separately accounts for body shape variation between different people, and pose changes. Pose changes are further separated into rigid rotation and non-rigid pose-dependent deformation. In the original SCAPE method, unnatural discontinuities rarely appear at the joints between rigid parts, like the knees, hips and shoulders. To achieve smoother joints, [2] proposed an optimized BlendSCAPE model. Each triangle’s rigid rotation in BlendSCAPE is a linear blend of the rotations of those of articulated parts. It outperforms SCAPE, in which every triangle within a rigid part has the same rotation.

Like SCAPE [1] and BlendSCAPE [2], symmetricsCAPE parameterizes the 3D body using shape and pose factors. Unlike SCAPE and BlendSCAPE, we take into account symmetry of the 3D body and incorporate symmetry constraints into the parametric model.

We assume that a human body can be represented by a mesh with a set of triangular faces \(F = \{ f_1, \ldots, f_n \} \), \(|F| = 30,260 \) with corresponding vertices \(V = \{ v_1, \ldots, v_m \} \), \(|V| = 15,132 \). Parametric modeling of 3D body shape aims to build a descriptive model \(\lambda(\beta, \theta; \Phi) \) to represent a given human body. A vector of variable parameters specific to the subject indicate both the subject’s body pose \(\theta \) and shape \(\beta \), while learned model parameters \(\Phi \) which are constant across all individuals are determined from the training dataset. These variable and learned parameters are given particular values to reconstruct a specific 3D body, by deforming a pre-designed template mesh \(T \) which exists in a standard (zero) pose. The template is symmetrized and manually pre-segmented into \(|B| = 17 \) articulated parts in a kinematic tree structure.

Similar to BlendSCAPE [2], symmetricsCAPE is Mathematically formulated by combining a transformation for each triangle, modeling the triangle deformation induced by the body pose, and the shape changes between different individuals. For each triangle face \(f \), the deformation that transforms it from the template mesh \(T \) to the target mesh \(T \) is given by:

\[
\begin{equation}
\mathbf{f}_{\beta} = \left(\sum_{b=1}^{\text{|B|}} \mathbf{w}_{f,b} R_b(\theta) \right) \mathbf{S}_{\theta}(\beta) Q_{\theta}(\theta) \mathbf{f}_T.
\end{equation}
\]

where \(w_{f,b} \) is the blend weight for rotation \(R_b(\theta) \) of the \(b \)th articulated part, following Hirshberg et al. [2], and \(R_b(\theta) \) is parameterized in terms of the relative joint angles \(\theta \). The non-rigid pose and shape deformations of the face \(f \) are encoded as matrices \(Q_{\theta}(\theta) \) and \(S_{\theta}(\beta) \) respectively. Following SCAPE [1], \(Q_{\theta}(\theta) \) (or \(Q_{\theta} \) for short) is approximated, by principle-component-analysis linearization, as \(Q_{\theta} = Q_{\theta}^0 + \sum_{q=1}^{20} \lambda_q Q_{\theta}^q \), where \(\lambda_q^2 \) is the \(q \)th element of the pose vector \(\theta \) for face \(f \). Vectors \(Q_{\theta}^q \) and \(Q_{\theta}^0 \) contain related coefficients for all faces. \(S_{\theta}(\beta) \) (\(S_{\beta} \) for short) can be also approximated by a linear subspace: \(S_{\theta} = S_{\theta}^0 + \sum_{q=1}^{20} S_{\theta}^q \). The learned parameters include pose-related weights \(W = [w_{1,1}, \ldots, w_{f,b}, \ldots, w_{f,|B|}] \in \mathbb{R}^{|F| \times |B|} \), and shape-related coefficients \(S = [S_{\theta}^0, \ldots, S_{\theta}^q, \ldots] \). and shape-related coefficients \(S = [S_{\theta}^0, \ldots, S_{\theta}^q, \ldots] \).

4. Model training

Training the symmetricsCAPE model requires computation of the learned parameters \(\Phi \) from the prepared data. In Section 4.1 we explain how both template and training datasets are prepared, then in Sections 4.2 and 4.3 respectively how the pose-related and shape-related parameters are learned.

4.1. Training data preparation

Firstly, the template (mesh) is prepared using a symmetrization with respect to the reflectional plane \(x = 0 \). For any vertex \(v \), symmetrization guarantees that a corresponding symmetric vertex \(v' \) exists on the mesh, related by reflection in the plane \(x = 0 \). In addition, the symmetric template mesh has variable resolution in which the face is represented in greater detail, which is important
to ensure a compelling 3D avatar with visually intuitive appearance.

We train the \textit{symmetricsCAPE} model parameters by minimizing reconstruction error on two datasets: a multi-pose dataset, and a multi-shape dataset. The multi-pose dataset is built using the SMPL dataset \cite{loper2015smpl}, consisting of 1786 registrations of 40 individuals (891 for 20 females, and 895 for 20 males); The multi-shape dataset is built using the CAESAR dataset \cite{bogo2016keep} with 1500 males and 1500 females. Each mesh in these training datasets has the same topology as our template, since it was formed by aligning the template to a high-quality 3D scan in the SMPL or CAESAR dataset. Note that each set of training data in the CAESAR dataset was also symmetrized by the same method as the pre-designed template.

4.2. Pose-related training

During pose-related training, we learn the weights \(W \) and coefficients \(Q = [Q_1, \ldots, Q_{|M_L|}] \in \mathbb{R}^{3 \times 3 \times (1 + 3 \times |B| \times |M_Q|)} \), where \(|M_Q|\) is the number of registered meshes in the multi-pose dataset.

Given a specific individual, pose-related training is performed on each face \(f \) with vertices \((v_1, v_2, v_3)\) with known shape-related parameters \((S_f)\). Following Anguelov et al. \cite{anguelov2005smpl}, the deformation of all poses works on vertex-difference vectors. Specially, we formulate the pose-related training as minimizing a non-linear least-squares error:

\[
\begin{align*}
\min_{W_f} \sum_{j=1}^{M_L} \left(\sum_{b=1}^{3} \left(\sum_{k=1}^{2,3} \| |B| \sum_{b=1}^{3} W_{f,b} R_b(\theta) S_f Q_f(\theta) \tilde{e}_{f,k} - e_{f,k} \|^2 \right) + \| \sum_{b=1}^{3} W_{f,b} R_b(\theta) S_f Q_f(\theta) \tilde{e}_{f,k} - e_{f,k} \|^2 \right)
\end{align*}
\]

such that \(\sum_{b=1}^{3} W_{f,b} = 1, \forall W_{f,b} > 0 \). \hfill (5)

The subproblem is now:

\[
\begin{align*}
\min_{Q_f} \sum_{j=1}^{M_L} \left(\sum_{b=1}^{3} \left(\sum_{k=1}^{2,3} \| |B| \sum_{b=1}^{3} W_{f,b} R_b(\theta) S_f Q_f(\theta) \tilde{e}_{f,k} - e_{f,k} \|^2 \right) + \| \sum_{b=1}^{3} W_{f,b} R_b(\theta) S_f Q_f(\theta) \tilde{e}_{f,k} - e_{f,k} \|^2 \right)
\end{align*}
\]

such that \(Q_f = \Omega Q_{f} \). \hfill (6)

The training algorithm iterates these 2 steps until convergence. Following Bogo et al. \cite{bogo2016keep}, if we sort pose directions according to their eigenvalues and plot the cumulative explained variance, we observe that the explained variance saturates rather rapidly. Instead of using all elements of \(Q \) (there are thousands of them), we reduce the number of pose-related elements used to about 300 coefficients, resulting in a mean absolute vertex distance error (\(M_{abs} \)) less than 3 mm between the deformed template and registered mesh.

4.3. Shape-related training

Shape-related training aims to compute the learned parameters \(S = |S_0, \ldots, S| \in \mathbb{R}^{3 \times 3 \times |B| \times |M_S|} \), where \(|M_S|\) is the number of registered meshes in the multi-shape dataset, modeling the nonlinear deformation at each triangle across different individuals. With known pose deformation information (weight \(w_{f,b} \), rigid rotation \(R_b(\theta) \), and coefficient \(Q_f(\theta) \)), the computation of \(S \) on face \(f \) may be formulated as:

\[
\arg \min_{S} E(S) = E_1 + \lambda_1 E_2 + \lambda_2 E_3,
\]

where \(\lambda_1 \) and \(\lambda_2 \) are weights experimentally set to 0.1 and 1000, and the terms \(E_1, E_2 \) and \(E_3 \) are defined as follows:

- \(E_1 \) measures matching between the template and the registered mesh \(j \) in the multi-shape dataset:

\[
E_1 = \sum_{j=1}^{M_S} \sum_{b=1}^{3} \left(\sum_{f=1}^{M} \left(\sum_{k=1}^{2,3} \| |B| \sum_{b=1}^{3} W_{f,b} R_b(\theta) S_f Q_f(\theta) \tilde{e}_{f,k} - e_{f,k} \|^2 \right) + \| \sum_{b=1}^{3} W_{f,b} R_b(\theta) S_f Q_f(\theta) \tilde{e}_{f,k} - e_{f,k} \|^2 \right).
\]

- \(E_2 \) is a regularization constraint to enforce smoothness between adjacent faces \(\text{adj}(f_i, f_j) \):

\[
E_2 = \sum_{\text{adj}(f_i, f_j)} \| S_{f_i} - S_{f_j} \|^2.
\]

- \(E_3 \) represents the symmetry constraint for symmetrically-related faces \(\text{sym}(f_i, f_j) \):

\[
E_3 = \sum_{\text{sym}(f_i, f_j)} \| S_{f_i} - \Omega S_{f_j} \|^2.
\]

As for the pose-related coefficients, the number of shape-related elements used is also reduced to about 300 coefficients, so that \(M_{abs} \) is less than 3 mm.

5. 3D body reconstruction

Like SCAPE \cite{anguelov2005smpl} and BlendSCAPE \cite{bogo2015coherent}, \textit{symmetricsCAPE} can reconstruct both a complete 3D body mesh \(\mathbf{T} \) representing both shape and pose, from 3D scanned data \(Z = \{z_1, \ldots, z_{|Z|}\} \), even given incomplete single-view data.

The full 3D body mesh \(\mathbf{T} \) is deformed from the template \(\hat{T} \) to best fit the input scanned data, while also being consistent with the \textit{symmetricsCAPE} model. The learned parameters \(\Phi \), including \(W, Q, \) and \(S \), have already been determined during training. The remaining unknown variables are the positions of vertices \(v_f \) in \(\mathbf{T}, \beta \),
and \(\theta\), which are determined by minimizing the objective function:

\[
\arg \min_{\mathbf{V}, \beta, \theta} (E_{\text{cost}} + \lambda_2 \sum_{i=1}^{\mathcal{F}} \| v_{\text{closest}}(z_i) - z_i \|^2),
\]

(11)

where \(E_{\text{cost}}\) is defined by:

\[
\sum_{j=1}^{\mathcal{F}} \sum_{k=2.3}^{\mathcal{B}} \Bigg(\sum_{b=1}^{\mathcal{B}} \bigg(\| w_{f,b} \mathbf{R}(\theta) \mathbf{S}_{f,k} \mathbf{Q}_{f,k} (\theta) \mathbf{\bar{e}}_{f,k} - e_{f,k} \|^2 \bigg) \Bigg).
\]

(12)

Here, \(\lambda_2\) are marker weights, and \(v_{\text{closest}}(z_i)\) is the closest vertex to \(z_i\) in the reconstructed mesh \(\mathbf{T}\). The unknown variables are found using an iterative process, which optimizes each of the three sets of parameters \((\mathbf{V}_f, \beta, \theta)\) separately in turn, keeping the others fixed. This optimization process converges to a local optimum of Eq. (11).

6. Experimental results and discussion

So far, we have focused on the symmetricSCAPE model formulation and the training scheme. In this section, we firstly evaluate the symmetricSCAPE model by showing results qualitative and quantitative results, then give a further discussion.

6.1. Results

We evaluate qualitative and quantitative results obtained by fitting the symmetricSCAPE model to various meshes representing new people and poses. Fitting involves both shape-based and pose-based deformations, optimizing variable parameters of shape \(\beta\) and pose \(\theta\) to find the best fitting mesh \(\mathbf{T}\) as given by Eq. (11). For clarity, the fitted mesh is denoted by \(\mathbf{T}(\beta, \theta)\), while the reconstructed mesh purely related to shape is expressed as \(\mathbf{T}(\beta)\). For comparison, a comparable non-symmetry-aware model (e.g. SCAPE, BlendSCAPE) was also trained on the symmetrized template and training data, as described in Section 4.1.

Fig. 2 shows meshes reconstructed by symmetricSCAPE, and non-symmetric BlendSCAPE models for a typical instance. The template is unique as shown in Fig. 1. One instance, processed by symmetricSCAPE and non-symmetric BlendSCAPE models respectively, is shown in Fig. 2, including one single input scanned data (left) and final reconstructed results (center). The left side shows the real data, which was not used during training of the parametric models. The left-center column indicates the fit between the reconstructed mesh and data; it demonstrates that both models do a good job of fitting the data. The center gives the reconstructed results \(\mathbf{T}(\beta, \theta)\), showing desirable appearance. The right-center shows the estimated pure-shape results \(\mathbf{T}(\beta)\) without pose information. It is easy to notice salient visual differences between the magnified face regions for different models, especially around the nose. The reconstructed nose result from the BlendSCAPE model lacks symmetry in its visible appearance. A comparison of pure-shape results is shown after alignment, which makes it easier to see that the symmetry results from symmetricSCAPE are much more acceptable than those from the non-symmetry-aware BlendSCAPE.

For the specific set of symmetrized data illustrated in Fig. 3 (with line of symmetry shown in red), symmetricSCAPE and non-symmetric BlendSCAPE models were used to reconstruct intermediate examples using the first ten principal components (PCs) of shape-related coefficients. For this specific instance, the initial template and final registration ground-truth result are both symmetrized data, so effects of non-symmetric deformation (especially pose-related) are greatly alleviated. The reconstructed results are shown in Fig. 3, to demonstrate the effects of symmetry-preserving functionality on our symmetricSCAPE model. To evaluate the ability of the model to fit a mesh, the error was measured as absolute vertex-to-vertex distances between the intermediate examples \(T(\beta, \theta)\) and the registration ground-truth. This distance is rendered in pseudo-color for each vertex. For symmetricSCAPE, the mean absolute vertex-to-vertex distance \(M_{\text{abs}}\) error is 5.7 mm, with a maximal error \(\text{maxError}\) of 12.83 mm, and a minimal error \(\text{minError}\) of 0.11 mm. In comparison, for non-symmetry-aware BlendSCAPE, \(M_{\text{abs}}\), \(\text{maxError}\), and \(\text{minError}\) are respectively 6.2 mm, 15.74 mm, and 0.15 mm. The pseudo-color results show clearly that BlendSCAPE does not perfectly preserve symmetry (especially on the cheeks and legs), while symmetricSCAPE does.
shape-related coefficients used for reconstruction. Generally, the error between the examples and final $T(\beta, \theta)$ gradually decreases with the number of principal components. symmetricSCAPE performs better than SCAPE, BlendSCAPE, and SMPL for this instance data.

Using 71 poses from the SCAPE dataset, we tested pose-related reconstruction, to evaluate the ability to generalize a shape of an individual to new poses of the same person. We took the first pose to estimate body shape, then used this parametric model to fit the same subject in different poses without readjusting shape parameters. Fig. 5 demonstrates some reconstructed results produced by the symmetricSCAPE model.

Fig. 6 shows variation in pose-related M_{abs} error, primarily to test how well the reconstructed pose-related meshes fit the scanned mesh in the given pose. Results show that symmetricSCAPE performs better than BlendSCAPE on this test.

We now consider the run time of the body reconstruction algorithms for both symmetricSCAPE and BlendSCAPE models, using a desktop PC with a 3.3 GHz Intel Core i9 processor, without GPU acceleration. To produce the result in Fig. 2 from the given 3D point cloud, the symmetricSCAPE model takes about 12.5 s while BlendSCAPE takes 12.3 s to finish the fitting process. Both approaches use the same number (200) of iterations to converge to the final optimum of Eq. (11). For the multi-pose SCAPE dataset, symmetricSCAPE and BlendSCAPE models take more or less the same time on average, 31 ms, to compute each individual result. For the pose testing application, shape-related processing is done once and the shape is then kept fixed for pose deformation, so the cost of animating the mesh is just that for the pose-related computation: real-time performance can be achieved by use of the linear skinning scheme.

6.2. Discussion

Note that we only consider a general 3D symmetric body with complete parts. In practice, some people are very clearly not at all symmetric, e.g. having lost an arm or leg in an accident. A direct application of symmetricSCAPE in such cases is to recover the missing parts and restore the body's symmetry, as in [10].

Less drastically, even ordinary people typically display slight asymmetry of their body parts. In particular, enforcing too much symmetry on the face region can result in quite visible modifications to a person's appearance. Ideally a modeling approach should remove local, point- or triangle-wise, random differences in symmetrically related parts of the body, but at the same time preserve small coherent differences which occur across regions (left
and right cheeks for example), to preserve such asymmetry. A suitable model to capture this idea needs further consideration, and is a topic for future research.

As noted in Section 2, parametric 3D body modeling generally relies on triangle-based SCAPE-like schemes or vertex-based SMPL-like schemes. Our formulation in Eqs. (1)–(3) captures geometric variations in both shape and pose using a triangular mesh representation. Our approach to symmetry could also be incorporated in other methods also using triangle-based SCAPE-like schemes, e.g. SCAPE [1], BlendSCAPE [2], RealtimeSCAPE [3]. However, doing so in SMPL [4] is still a challenging problem, since it is a vertex-based scheme. A symmetry regularization term is used in its pose-related training process, but is not clearly expressed in the basic SMPL model. Despite our attempts, we have been unable to appropriately capture and enforce symmetry mathematically in the SMPL model in a unified way.

Recently, Zuffi et al. [27] extended SMPL to model the 3D shapes and poses of animals. This extension could also be applied to triangle-based SCAPE-like methods, implying that our symmetricSCAPE could be likewise extended to other symmetric living things such as animals, and beyond.

7. Conclusions

Previous models of 3D human body shape have had the ability to represent a range of identity-dependent body shapes, and to deform them naturally into various poses, even exhibiting soft-tissue motions. However, they have failed to integrate that symmetry which is typically inherent in a human body.

This paper has successfully formulates a symmetric 3D parametric model of the human body, which we call symmetricSCAPE. Symmetry-related constraint matrices are applied during shape and pose deformation of triangle pairs to ensure symmetry is preserved when modeling the human body.

In future, we expect research efforts to be devoted towards development of more plausible parametric models, which realistically model a 3D body, including the notion that symmetry is only approximate. More generally, a unified deformation model was recently proposed by Joo et al. [28] for the markerless capture of multiple scales of human movement, including facial expressions, body motion, and hand gestures. Various deep learning methods have also been tried for 3D body modeling, producing reasonable results. More importantly, novel applications are needed to make good use of these models. An ideal modeling result would be realistically clothed, detailed and textured, making it appropriate for many more applications.

Acknowledgment

This work was supported by the Shenzhen Science and Research Plan (JCYJ20170818180448602 and KQJSX20170731165108047), Shenzhen Scientific and Technological Innovation Project (2018-320), Natural Science Foundation of China (61602507 and 61732016), China Postdoctoral Science Foundation (2016M602555).

Appendix: the symmetry matrices

A.1. The pose-constraint matrix

In the symmetrized template, the pose deformation of two symmetrically-related faces f_l (the left, red, triangular face in Fig. 7(a)) and f_r (right, blue, faces in Fig. 7(a)) satisfies $f_r = Af_l$, where A is a transformation matrix representing reflection in the plane $x = 0$:

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$ \hfill (A.1)

When the template is deformed by the pose-related variable parameters θ as shown by the left model in Fig. 7(b), pose deformation acts on face f_l with vertices (v_{11}, v_{12}, v_{13}). Consider for example the vertex-difference vector $\tilde{e}_1 = v_{12} - v_{11}, \tilde{e}_1$ with a non-rigid deformation $\tilde{e}_1 = Qf(\theta)e_1$. The face f_l has symmetric pose θ_{sym} for θ, with $\tilde{e}_1 = Qf(\theta_{sym})e_1$, resulting in the right-hand model

$$...$$

![Fig. 6. Variation in mean absolute vertex (M_{abs}) error for the reconstructed results from BlendSCAPE (blue) and symmetricSCAPE (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image-url)
in Fig. 7(b). The vertex-difference vector \hat{e}_i for pose θ and the vector \hat{e}_i for pose θ_{sym} are also symmetric about the plane $x = 0$. This means that:

$$\hat{e}_i = A \hat{e}_i.$$ \hfill (A.2)

Substituting \hat{e}_i and \hat{e}_i into the former Eq. (14) gives:

$$Q_f(\theta_{\text{sym}}) e_r = A Q_f(\theta) e_r.$$ \hfill (A.3)

Then, substituting $e_r = Ae_l$, we obtain:

$$Q_f(\theta_{\text{sym}}) Ae_l = A Q_f(\theta) Ae_l.$$ \hfill (A.4)

In order to satisfy above equation, we must have:

$$Q_f(\theta_{\text{sym}}) = A Q_f(\theta) A^{-1}.$$ \hfill (A.5)

so:

$$Q_f(\theta_{\text{sym}}) = \Omega Q_f(\theta),$$

where Ω is

$$\Omega = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}.$$ \hfill (A.6)

A.2. The shape-constraint matrix

As for the pose case, the shape-constraint matrix is derived using symmetrically-related faces f_l and f_r in the template, which satisfy $f_l = Af_r$ with reflectional symmetry about plane $x = 0$. Using example vertex-differences e_l and e_r again, shape deformation transforms them as $\hat{e}_l = S_f(\beta) e_l$ and $\hat{e}_r = S_f(\beta_{\text{sym}}) e_r$, respectively, as shown in Fig. 7(c). \hat{e}_l and \hat{e}_r are still related by reflectional symmetry, and have the property $\hat{e}_l = A \hat{e}_r$. By substituting \hat{e}_l, \hat{e}_r, and $e_r = Ae_l$ as before, we can derive the following equation:

$$S_f(\theta_{\text{sym}}) Ae_l = A S_f(\theta) e_l.$$ \hfill (A.7)

Thus:

$$S_f(\theta_{\text{sym}}) = A S_f(\theta) A^{-1},$$ \hfill (A.8)

so:

$$S_f(\theta_{\text{sym}}) = \hat{\Theta} S_f(\theta),$$

where $\hat{\Theta}$ is

$$\hat{\Theta} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}.$$ \hfill (A.9)

References

