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Accelerated Complex Finite Difference for Expedient Deformable
Simulation
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Fig. 1. We present an accelerated complex finite difference algorithm, which efficiently computes highly accurate numerical derivative. This method can be
coupled with the Cauchy-Riemann formula to allow us to fully exploit existing (real-valued) linear algebra libraries to evaluate derivative of tensor-valued
functions. This figure reports an example of designing the vibration frequency of a bridge model (21, 414 elements) by changing its geometry. The goal
vibration frequency is visualized on a rectangular beam. Given an external force field, the bridge oscillates under the same frequency as the beam model does.

In deformable simulation, an important computing task is to calculate the
gradient and derivative of the strain energy function in order to infer the
corresponding internal force and tangent stiffness matrix. The standard
numerical routine is the finite difference method, which evaluates the target
function multiple times under a small real-valued perturbation. Unfortu-
nately, the subtractive cancellation prevents us from setting this perturbation
sufficiently small, and the regular finite difference is doomed for computing
problems requiring a high-accuracy derivative evaluation. In this paper, we
graft a new finite difference scheme, namely the complex finite difference
(CFD), with physics-based animation. CFD is based on the complex Taylor
series expansion, which avoids the subtraction for the first-order derivative
approximation. As a result, one can use a very small perturbation to calculate
the numerical derivative that is as accurate as its analytic counterpart. We
significantly accelerate the original CFD method so that it is also as efficient
as the analytic derivative. This is achieved by discarding high-order error
terms, decoupling real and imaginary calculations, replacing costly functions
based on the theory of equivalent infinitesimal, and isolating the propaga-
tion of the perturbation in composite/nesting functions. CFD can be further
augmented with the multicomplex Taylor expansion and Cauchy-Riemann
formula to handle higher-order derivatives and tensor-valued functions. We
demonstrate the accuracy, convenience, and efficiency of this new numerical
routine in the context of deformable simulation – one can easily deploy a ro-
bust simulator for general hyperelastic materials, including user-crafted ones
to cater specific needs in different applications. Higher-order derivatives
of the energy can be readily computed to construct modal derivative bases
for reduced real-time simulation. Inverse simulation problems can also be
conveniently solved using gradient/Hessian based optimization procedures.
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1 INTRODUCTION
As an essential computing task in physics-based simulation, the
evaluation of various derivatives like total derivative, partial de-
rivative, directional derivative, second- or high-order derivatives,
etc. often stands out as a significant technical or implementation
obstacle. Normally, people incline to infer an exact formula of de-
rivative functions, which gives the best efficiency and accuracy.
However, there are also many situations where a closed-form ex-
pression of the target function is not available (e.g. the function is
given as a program sub-routine [Hahn et al. 2012]), or deriving its
actual derivative is too involved for just performing preliminary
proof-of-concept trials. The numerical derivative is then preferred.
The commonly used strategy for numerical derivative is the fi-

nite difference method. For instance, the forward difference scheme
estimates the derivative as:

f ′(x0) = lim
∆x→0

f (x0 + ∆x) − f (x0)
∆x

≈
f (x0 + h) − f (x0)

h
, (1)

where a small perturbationh ∈ R is used to approximate lim∆x→0(·).
It appears that the smaller h is, the better approximate Eq. (1) de-
livers. However, we are not allowed to make h arbitrarily small to
improve the precision of Eq. (1). This is because the subtraction
between two nearly equal numbers, such as f (x0 + h) − f (x0) in
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Eq. (1) when h is very small, could eliminate many of their signifi-
cant digits and contaminate the result. This issue is often known as
the subtractive cancellation. During the simulation, finite difference
would accumulate numerical errors along the time integration and
crash the solver quickly.

Fortunately, this numerical instability can be averted using the so-
called complex-step finite difference [Abreu et al. 2018; Martins et al.
2003; Squire and Trapp 1998]. The trick is to apply the perturbationh
in the imaginary domain after promoting f to be a complex function.
The subtraction between the first-order terms is skipped in the
complex Taylor series expansion [Lyness 1968], andwe canmake the
perturbation h very small to accurately approximate the derivative
without worrying about the subtractive cancellation. In this paper,
we simply refer to this numerical differentiation method as the
complex finite difference or CFD. CFD allows us to conveniently
obtain a highly accurate numerical derivative without deriving its
actual formulation, which could be otherwise tedious and error-
prone.

On the downside, CFD has several fundamental limitations. First
of all, promoting a real-valued function to be a complex-valued
one induces significant computation overhead. A naïve CFD imple-
mentation as in existing literature [Martins et al. 2003; Squire and
Trapp 1998] is often orders-of-magnitude slower than the analytic
derivative. Secondly, complex-version Taylor expansion only cir-
cumvents the subtractive cancellation of the first-order derivative.
Second- and higher-order derivatives still suffer with this issue and
cannot be robustly approximated. In many simulation problems, we
also need to deal with tensor functions, whose outputs are based
on complicated numerical routines like Cholesky decomposition
or SVD. Original CFD becomes awkward as those numerical proce-
dures are difficult to be explicitly formulated. Promoting such tensor
functions is rather involving, if not impossible. As an echo to those
drawbacks, we augment the classic CFD scheme making it more
efficient, generalizable, and robust. While our extensions utilize
some known techniques like multicomplex number [Fleury et al.
1993; Price 1991] and Cauchy–Riemann equation [Ahlfors 1973],
to the best of our knowledge, we are the first to introduce CFD
to the graphics community, engineer it to be a handy off-the-shelf
numerical solution to derivative evaluation for physics animation,
and thoroughly validate its feasibility in the context of deformable
simulation. Specifically, we summarize our contributions as follows:

• Analysis CFD is a relatively new numerical method, and it is
not fully exploited by the graphics community yet. We provide an
extensive explanation of its numerical mechanism, error source,
and theoretical foundation.

• Acceleration We systematically optimize the original CFD
scheme. Without losing accuracy, we obtain multifold speedups,
and our accelerated CFD is as efficient as the analytic derivative.
This is achieved by discarding high-order error terms, decoupling
real and imaginary calculations, replacing expensive functions
(e.g. trigonometric functions), and isolating the propagation of
the perturbation in composite and nesting functions.

• Adaptation Instead of resorting to high-order Taylor expan-
sion or Fourier expansion, we choose to promote a real-valued

function with multicomplex arithmetic, which leads to a mul-
ticomplex finite difference scheme (MCFD) for high-order finite
difference. Our acceleration techniques naturally synergize with
this generalization without extra implementation efforts. In addi-
tion, we leverage the Cauchy-Riemann formula to further adapt
CFD/MCFD for tensor-valued functions.

• Application We thoroughly validate CFD/MCFD in both nu-
merical experiments as well as in complicated nonlinear de-
formable simulations. Without knowing the actual formulation
of the internal force and the tangent stiffness matrix, nonlin-
ear deformation can be robustly and accurately simulated with
CFD/MCFD. First- and second-order modal derivative bases can
also be constructed for sophisticated materials. Many challenging
inverse simulation problems now can be easily tackled using the
standard gradient/Hessian-based optimization approaches such
as Newton’s method (e.g. see Fig. 1).

2 RELATED WORK
Calculating the differentiation of a function is an important compu-
tational procedure inmany graphics research problems. For instance,
in physics-based animation [Witkin 1997], such as rigid body dy-
namics [Baraff 1989, 1991], fluid/smoke animation [Bridson 2015],
and cloth simulation [Baraff andWitkin 1998; Goldenthal et al. 2007]
etc, the key challenge is to solve the unknown ordinary/partial dif-
ferential equations, and one needs to use numerical approaches to
discretize the differential operation. In computational fabrication,
the optimal design is often obtained via following the gradient direc-
tion of the inverse simulation [Chen et al. 2014; Schulz et al. 2017;
Yan et al. 2018], not to mention a vast volume of research involv-
ing various optimization procedures, many of which rely on the
information of the gradient and/or Hessian of the objective function.
Evaluating the derivative is also a key ingredient in deformable

simulation [Terzopoulos et al. 1987] especially for hyperelastic mod-
els [Bonet and Wood 1997]. Those materials are fully characterized
by the strain energy density E(F) of the local deformation gradient
F. Modeling such materials requires the first- and/or second-order
spatial derivatives of E to establish the equilibrium equation. Dy-
namic simulation can also be casted as an optimization problem of
the variational form [Liu et al. 2013; Stern and Desbrun 2006]. New-
ton’s method [Capell et al. 2002], quasi-Newton method [Liu et al.
2017] or gradient descent method [Wang and Yang 2016] can then
be used when the gradient information is provided. The closed-form
formulation of derivatives of E for some materials can be found
in the literature [Bonet and Wood 1997; Sifakis and Barbic 2012;
Smith et al. 2018]. However, for other more complicated models
like phenomenological and user-crafted materials [Koyama et al.
2012; Martin et al. 2011], obtaining the analytic derivative is non-
trivial and labor-intensive. For principal stretch based nonlinear
materials, such as Ogden and spline-based materials [Xu et al. 2015],
careful numerical thresholding is required, even at the rest config-
uration, to obtain the actual tangent stiffness matrix for implicit
integration. Deriving those derivatives analytically could be tedious
and seemingly unworthy, if the user just wants to toy with a new
hyperelastic energy to see how it behaves in a given animation
scenario. Even with the help of symbolic differentiation packages
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like Mathematica [Wolfram et al. 1996] and Maple [Maple 1994],
the implementation efforts are still considerable. Besides, there are
also many cases where the target function’s formulation is not even
accessible, and one has to use the numerical derivative to infer the
underlying kinematics [Barbič et al. 2012; Hahn et al. 2012, 2013]. In
model reduction, it is known that linear modes are not sufficient to
capture large nonlinear deformation, and modal derivative [Barbič
and James 2005; Yang et al. 2015] should be used. Those derivative
modes are computed through evaluating the third-order gradient of
the energy function (i.e. the Hessian of the internal force), which
makes this technique less popular for more sophisticated materials
other than the St. Venant-Kirchhoff (StVK) model.

The finite difference method is a standard procedure of computing
the numerical derivative [Renardy and Rogers 2006]. Its variances in-
clude forward difference (FD), backward difference (BD), and central
difference (CD). CD is twice expensive of FD or BD, but it is also the
most accurate among them. Nevertheless, all of these schemes suffer
from the subtractive cancellation issue: decreasing the magnitude
of the perturbation does not make the finite difference converging,
and the result will oscillate around the correct value and explode
eventually [Brezillon et al. 1981]. This numerical behavior prevents
the adoption of the finite difference method for applications that
are sensitive to the accuracy of the differentiation.
On the other hand, CFD is a powerful finite difference scheme

but often overlooked in classic numerical analysis textbooks [Squire
and Trapp 1998]. It is sometimes also known as the complex-step
derivative [Martins et al. 2003]. This method is based on the complex
version of Taylor series expansion of the function, which dates
back to the 1960s [Lyness 1967]. Unlike regular finite difference
method, CFD obviates the subtractive cancellation problem (in the
first-order approximation) so that a very small perturbation (e.g.
1×10−40 or even smaller) can be usedmaking the resulting derivative
approximation highly accurate. Indeed, we show that CFD is able
to completely replace the analytic gradient without any accuracy
concerns in deformable simulation. Due to its superior accuracy,
CFD has been gradually recognized and used for the sensitivity
analysis [Anderson et al. 2001; Butuk and Pemba 2003; Montoya
et al. 2014; Voorhees et al. 2011]. For nonlinear finite element method
(FEM) simulation with high-order shape functions, CFD has also
been used to obtain numerical tangent stiffness matrix [Kim et al.
2011; Lebofsky 2013; Pérez-Foguet et al. 2000].
Because the target function is promoted to be a complex one, a

naïve implementation of CFD involves much heavier computations
than the real-valued finite difference. We show that this limitation
can be ameliorated by carefully manipulating the promoted target
function and discarding high-order perturbation terms. Our results
show that we are able to achieve a multifold speedup, making CFD
nearly as efficient as using the exact derivative. Instead of refer-
ring to the Fourier differentiation [Bagley 2006; Lai and Crassidis
2008], we use the multicomplex step finite difference [Lantoine et al.
2012] to handle high-order derivative. Doing so allows our accelera-
tion scheme to be seamlessly integrated for high-order numerical
derivatives.

CFD vs. automatic differentiation Another relevant and widely
known differentiation technique is the automatic differentiation

(AD) [Griewank and Walther 2008; Nocedal and Wright 2006; Rall
1981], which decomposes complicated functions with the chain
rule. AD has been used in graphics [Grinspun et al. 2003; Guenter
2007; Mitchell and Hanrahan 1992]. Indeed, the back propagation
optimization [Hecht-Nielsen 1992] commonly used from neural
network training is a special implementation of the reverse AD.

A key difference between CFD andAD lies in the fact that “AD uses
exact formulas along with floating-point values” [Neidinger 2010],
and it is “NOT numerical differentiation” [Baydin and Pearlmutter
2014]. CFD, on the other hand, is a numerical approach seeking for
the derivative approximate. AD is more sensitive to the smoothness
of the function and could fail at discontinuities. CFD behaves more
robustly in such cases: it always calculates the derivative as long
as the target function exists. AD also has practical difficulties for
high-order generalization [Margossian 2018]. For instance, some
existing AD packages (e.g. Adept [Hogan 2014]) only deals with the
first-order derivative. While one may perform first-order differenti-
ation multiple times to obtain a high-order derivative. It has been
argued that recursively applying AD leads to inefficient and numeri-
cally unstable code [Betancourt 2018; Margossian 2018]. High-order
AD is seldom well supported and could be extremely slow. On the
other hand,MCFD extension seamlessly generalizes our acceleration
scheme to high-order cases with excellent robustness and accuracy.
Our accelerated CFD/MCFD is over 30× faster than commonly used AD
packages even for the first-order case. Tensor-valued functions that
involving complicated numerical procedures are also problematic
with AD. It remains unclear if the Cauchy–Riemann generaliza-
tion [Ahlfors 1973] can be applied in AD. Our accelerated CFD is
orthogonal to and complements the AD technique. Because CFD is
highly accurate (as accurate as the analytic result), it is possible to
deploy CFD/MCFD for calculating derivatives along the chain rule
that could be otherwise troublesome to AD. More comprehensive
comparisons between CFD/MCFD and AD can be found in Sec. 8.

3 BACKGROUND
In order to make the paper more self-contained, we start our discus-
sion with a brief review of the error source of the finite difference
method and the numerical issue of the subtractive cancellation.
Suppose that the function f : R → R is differentiable around

x = x0. After a small perturbation h is applied, it can be Taylor
expanded as:

f (x0 + h) = f (x0) + f ′(x0) · h +
1
2 f

′′(x0) · h
2 + · · ·

= f (x0) + f ′(x0) · h + O(h2),
(2)

leading to the forward difference of Eq. (1). Eq. (2) also suggests that
h should be as small as possible for a good approximation. In the
meantime, because the total number of bits used to represent a real
number is limited on a computer, all the floating-point arithmetics
have the round-off error [Ueberhuber 2012], which is a small relative
error also known as machine epsilon ϵ . For the double precision of
IEEE 754 floating-point standard [IEEE 1985], ϵ ≈ 1.11 × 10−16.
Normally, the round-off error does not seriously impair the stability
or the accuracy of a numerical procedure. However, when h gets
smaller, f (x0 + h) and f (x0) become nearly equal to each other.
Subtraction between them would eliminate many significant digits,
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and the result after the rounding could largely deviate from the
actual value of f (x0 + h) − f (x0).
We elaborate this issue using a simple decimal floating-point

system with the precision of four. Here, a real number a = 1999.99
is represented as ã = 1.999 × 103 because we only have four digits
for the mantissa, and we use (̃·) to denote a digitalized number in a
floating-point system. In this example, we just choose the round-
by-chop rule that discards all the out-of-precision digits, and the
corresponding round-off error is:

Eround =
|a − ã |

|a |
=

|1999.99 − 1.999 × 103 |
|1999.99| ≈ 4.95 × 10−4. (3)

Now, let b = 1998.88, which is represented as b̃ = 1.998 × 103. The
error of calculating a − b with this toy floating-point system is:

Esubtraction =
|(ã − b̃) − (a − b)|

|a − b |

=
|(1.999 − 1.998) × 103 − (1999.99 − 1998.88)|

|1999.99 − 1998.88|
≈ 0.1.

(4)
We can see from Eqs. (3) and (4) that the rounding loses us the least
important significant digit, and it only yields an error at the order
of the floating-point precision (10−4). However, the subtraction
between ã and b̃ eliminates three leading significant digits, which
yields a much more substantial error. If we set b even closer to a
as b = 1999.88, Esubtraction increases to 100% as all the significant
digits are eliminated. This is why the cancellation of subtracting
numbers of similar magnitude is also called catastrophic cancellation.

Some numerical literature (e.g. [Nocedal andWright 2006]) shows
that CD with the form of:

f ′(x0) ≈
f (x0 + h) − f (x0 − h)

2h , (5)

has a better accuracy with a quadratic error term of O(h2), while
FD and BD have an error term of O(h). This conclusion is based on
the assumption that subtractive cancellation does not occur. As to
be discussed in the next section, CD could be even more sensitive
to smaller h (because of its faster convergent rate).

4 COMPLEX FINITE DIFFERENCE
CFD is based on the complex Taylor series expansion [Lyness 1968].
Let (·)∗ denote a complex variable, and suppose f ∗ : C → C is
differentiable around x∗0 = x0 + 0i . If a perturbation h is applied at
the imaginary domain, f ∗ can be expanded as:

f ∗(x0 + hi) = f ∗(x∗0 ) + f ∗
′

(x∗0 ) · hi +
1
2 f

∗′′(x∗0 ) · (hi)
2 · · ·

= f ∗(x∗0 ) + f ∗
′

(x∗0 ) · hi + O(h
2).

(6)

Since f ∗ is promoted from a real-valued function f , both f ∗(x∗0 ) =

f (x0) ∈ R and f ∗
′

(x∗0 ) = f ′(x0) ∈ R do not have imaginary parts.
Taking the imaginary part of both sides of Eq. (6) leads to Im

(
f ∗(x0+

hi)
)
= Im

(
f ∗(x∗0 ) + f ∗

′

(x∗0 ) · hi
)
+ O(h3), where Im(x + yi) = y ∈ R.

We can then have the first-order CFD approximation as:

f ′(x0) =
Im

(
f ∗(x0 + hi)

)
h

+ O(h2) ≈
Im

(
f ∗(x0 + hi)

)
h

. (7)
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Fig. 2. We use FD, CD, and CFD to calculate the first-order derivative of
f (x ) = ex /(x 4 + x 2 + 1) at x = 4. The resulting numerical derivative
is compared with the analytic derivative, and the relative error is plotted
against the size of the perturbation, ranging from 2−2 to 2−63.

Compared with Eq. (1) or Eq. (5), we can see that Eq. (7) does not
have a subtractive numerator meaning it only has the round-off
error regardless of the size of the perturbation h. In addition, the
operation of Im(·) removes the (hi)2 term in Eq. (6), making the
actual approximation error O(h2). Thus, we can employ a very
small h to obtain a highly accurate numerical derivative.

Fig. 2 reports a numerical experiment of f (x) = ex /(x4 + x2 + 1).
We compute the first-order numerical derivative at x = 4 using FD,
CD and CFD. The analytic derivative of this simple function can be
easily derived as: f ′(x) = (x4−4x3+x2−2x+1)ex /(x4+x2+1)2, and
f ′(4) = 0.006593183194438 is considered as the ground truth. In this
example, both f (x) and f ′(x) are well scaled, and the issue of sub-
tractive cancellation starts to take place when h ≈ 2−26 ∼ 1.0×10−8
with FD andh ≈ 2−17 ∼ 1.0×10−6 with CD.We do see CD converges
faster than FD before hitting the threshold of subtractive cancella-
tion. However, both CD and FD explode quickly after the cancel-
lation occurs. When h becomes smaller than 2−47 ∼ 1.0 × 10−15,
the subtractive cancellation eliminates all the significant digits mak-
ing f (x0 + h) − f (x0) and f (x0 + h) − f (x0 − h) vanished by the
rounding. In this case, we cannot obtain any useful information of
the derivative out of the finite difference approximation, and the
relative error stays 100%. In real applications, f typically takes a
high-dimension vector x as the dependable variable. f and ∂ f /∂xi
may also be badly scaled. These circumstances make subtractive
cancellation happen much earlier before h reaches ∼ 1.0 × 10−6. As
a result, the numerical derivative of FD and CD is highly fallible: a
conservative h has a big approximation error, while an aggressive
h could be even worse due to the cancellation. In physics-based
simulations, FD/CD is always problematic and often the cause of
the numerical instability. On the other hand, CFD shows a superior
performance in terms of both convergence rate and numerical sta-
bility. As CFD does not have the subtractive cancellation problem,
the relative error decreases consistently with smaller h. When h is
sufficiently small (i.e. h < 2−26 ∼ 1.0 × 10−8), CFD delivers a result
with a relative error below 1.0× 10−15. Note that the “ground truth”
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itself also has a round-off error at the order of 10−16. In other words,
CFD is as accurate as the analytic derivative for sufficiently small h.

Complex function promotion In order to apply CFD, we must
promote the real function f (x) to be a complex one f ∗(x∗).While the
specific form of f (x) could be complicated, it is always constructed
with binary operators of +, −, ×, ÷ and unary operators including
power function (xa ), exponential function (ex ), logarithmic function
(lnx), and trigonometric functions (sinx etc.). The promotion of
these elementary functions follows the standard complex number
arithmetic [Ablowitz and Fokas 2003]. For a quick reference, we
also list the complex promotion of some commonly used functions
in Appendix A.
If the efficiency is not the primary concern, CFD can be quickly

implemented via overloading existing floating-point arithmetic op-
erators with the corresponding complex version. C++ Template
provides a flexible mechanism for this purpose: one can code f (x)
using a generic data type and choose the complex-type template
specialization when CFD is needed, or the real-type template spe-
cialization if only the value of f (x) suffices. Standard C++ STD library
has a collection of stable complex number routines. Besides, there
are also a few third-party opensource complex number libraries such
as Boost [Schäling 2011] and Eigen [Guennebaud et al. 2014]. Nev-
ertheless, such naïve CFD implementation induces a significant com-
putation overhead. In many cases, CFD runs orders-of-magnitude
slower than the analytic derivative. One of our major contributions
is to optimize the CFD computation to regain the efficiency of the
finite difference. This is to be detailed in the next section.

5 CFD ACCELERATION
Using general-purpose complex number arithmetic to promote f (x)
is actually “overkill” for just computing CFD for numerical deriva-
tives. We show that CFD approximation can be substantially sim-
plified and accelerated, and our accelerated CFD is as efficient as
using the analytic derivative. Our strategy is based on the following
three important observations:

• According to Eq. (7), it is clear that calculating the real part of
f ∗ is unnecessary for CFD, therefore nearly half of computation
brought by the complex promotion can be discarded.

• CFD complex number arithmetic is quite different from a general
complex operation. The imaginary part of f ∗ comes from the
applied perturbation hi , which is a very small value (i.e. h <
1.0 × 10−20). Many calculations can be simplified by treating h as
an infinitesimal: for instance we can have sinh ∼ h to avoid the
expensive evaluation of the trigonometric function of sinh.

• Because h appears as the denominator of Eq. (7), all the quadratic
or higher-order terms of h in Im

(
f ∗(x0 + hi)

)
can be discarded,

which only leads to an approximation error up to O(h).

5.1 Accelerate CFD of a Single Elementary Function
We start our discussion by assuming that f (x) is an elementary
function (i.e. listed in Appendix A).We take f (x) = x1/m an example
to show how it can be much more efficiently evaluated for CFD.
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Fig. 3. Our fast CFD implementation has good numerical stability and
accuracy. The relative error converges as quickly as the regular CFD and
remains at the order of machine epsilon after h is sufficiently small.

First, the standard complex promotion (Eq. (44)) gives us:
Im

(
f ∗(x0 + hi)

)
h

=
1
h

(
r

1
m · sin ϕ

m

)
. (8)

Here, r (cosϕ + sinϕi) is the polar form of x0 + hi . Recalling that h
is a very small quantity, we have:

sinϕ = h

r
⇒ ϕ =

h

r
, (9)

because ⟨sina ∼ a⟩ is a pair of equivalent infinitesimals when a → 0.
With Eq. (9), the RHS of Eq. (8) can be greatly simplified as:

1
h

(
r

1
m · sin ϕ

m

)
=

1
h

(
r

1
m ·

ϕ

m

)
=

1
h

(
r

1
m ·

h

rm

)
=

r
1
m

rm
. (10)

Eq. (44) Eq. (8) Eq. (10) Analytical
13.1 s 9.49 s (1.4×) 0.056 s (233×) 0.064 s

Table 1. Time statistics of using the optimized CFD formulations (i.e. Eqs. (8)
and (10)) and the naïve CFD implementation (Eq. (44)) of the exponential
function f (x ) = x 1/m for 100 million times. The computation time using
analytical derivative is also reported for the reference. Our CFD simplifica-
tion is over 200× faster than the naïve implementation. In this example, it
is even faster than using the analytical derivative. The relative error is at
the order of the machine epsilon (10−16).

The performance improvement of Eq. (10) is substantial. We
record the computation time of running Eqs. (44), (8), and (10) re-
spectively as well as directly calculating the analytical derivative
of

(
x

1
m
) ′
=

1
m
x

1
m −1 for 100 million times on an Intel i7 laptop.

The result is reported in Tab. 1. As expected, we can see from the
table that Eq. (8) modestly improves the calculation efficiency by
discarding the real part computation. The most significant speedup
originates from the equivalent infinitesimal based simplification,
which frees us from performing the expensive trigonometric func-
tion calculation. In this example, CFD is even faster than using the
analytic derivative because Eq. (10) has a simpler exponential term
of (·)

1
m than the exponential term in the analytic derivative: (·)

1
m −1.

Meanwhile, our accelerated CFD retains all the favored advantages
of CFD. As shown in Fig. 3, fast CFD implementation has the same
convergency and accuracy. For small h, the relative error reaches
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the machine epsilon stably. Interestingly, if one further simplifies
r such that r =

√
x20 + h

2 = x0 when h → 0, Eq. (10) converges to
the analytic derivative formulation. This finding reveals that, unlike
regular finite difference, the actual derivative of the function is es-
sentially hidden in its complex promotion. This is another important
reason that explains why CFD is able to achieve such high accuracy.
The strategy of the leveraging equivalent infinitesimals can be

readily applied to all the elementary functions. For instance for
trigonometric functions, the most expensive arithmetic is the evalu-
ation of e±h . Again, because h is an infinitesimal, we exploit the fact
that ⟨e±h ∼ 1 ± h⟩ is also a pair of equivalent infinitesimals. This
simplification brings another orders-of-magnitude speedup.

5.2 Accelerate CFD of Composite Binary Operators
In reality, f (x) houses a chain of binary operators such that:

f (x) = f1(x) ◦ f2(x) ◦ f3(x) ◦ · · · ◦ fk (x) ◦ · · · ◦ fN (x), (11)

for ◦ ∈ {+,−,×,÷}. Each fk (x) could also be a nesting composite of
multiple unary functions: fk (x) = fk ,1(fk ,2(fk ,3(...))). We defer the
discussion of nesting operators to the next subsection and assume
that the promoted form of each function along the chain is known.

Eq. (11) may be split into several sub-chains according to different
parenthesizations and the operator priority. For instance, the exam-
ple used in Fig. 2 can be understood as f (x) = f1(x)/

(
f2(x)+ f3(x)+

f4(x)
)
, where f1(x) = ex is an exponential function; f2(x) = x4 and

f3(x) = x2 are power functions; and f4(x) = 1 is a constant. If a
sub-chain only consists of addition and subtraction operators, which
are independent for real and imaginary parts, we just evaluate the
imaginary part of each promoted function f ∗k along the chain for
CFD approximation and ignore the calculation for the real part.
However, if the sub-chain is concatenated with multiplication

and/or division operators, we cannot simply discard the real part of
each function because the real and imaginary parts are coupled in the
multiplication operation – one can easily verify that the imaginary
part of f ∗1 (x

∗) · f ∗2 (x
∗) contains the information of both real and

imaginary parts of f ∗1 (x
∗) and f ∗2 (x

∗). Division is similar, which is
regarded as the multiplication of the conjugate of the dividend.

We show that evaluating a multiplication chain can also be signifi-
cantly accelerated based on the binary branching concisely encoded
with a binary number. Let each promoted function on the chain
f ∗k (x

∗) = ak + bk , where the second addend bk is an imaginary
quantity. Our base case is the chain of a single promoted function
f ∗(x∗) = f ∗1 (x

∗) = a1 + b1 with two addends. Putting an additional
multiplying function after it leads to f ∗(x∗) = f ∗1 (x

∗) · f ∗2 (x
∗) =

(a1 + b1)a2 + (a1 + b1)b2. In other words, each item of a1 and b1 is
multiplied by a2 and b2 respectively. The multiplication of f ∗2 (x

∗)

thus doubles the total number of addends. This procedure can also
be visualized with a binary tree shown in Fig. 4. Each complex func-
tion f ∗k (x

∗) along the chain increments the height of the tree by
one, and we have 2N addends at the bottom level for a chain of N
functions. Recall that imaginary parts of bk correspond to a very
small perturbation bk = hi ∼ 0, and we can discard all addends that
are quadratic or higher-order of bk . The key question here is how
can we directly identify those addends without actually expanding
the multiplication chain?

∗( ∗)

1 1

1 2 1 2 1 2 1 2

1 2 … −1 , 1 2 … −1 , 1 2 … −1…

…

= 0

= 1

= 2

=

00 … 00 00 … 01 11 … 11

Fig. 4. The procedure of evaluating a chain of multiplications (and divisions)
can be visualized with a binary tree. The leaf nodes can be concisely encoded
by a binary number. As a result, we can discard higher-order infinitesimals
that have two or more 1s (e.g. 011) at the bottom level.

From Fig. 4, we can see that each extra multiplication induces
a binary branch towards the next level. A left branch appends an
ak after an existing addend while a right branch appends a bk .
The final form of a leaf addend depends on how many left and
right branches at which levels it takes along the path from the root.
Clearly, the leftmost and rightmost leaves are alwaysa1a2...aN−1aN
and b1b2...bN−1bN . The second leftmost leaf differs from the left-
most one because it takes a right branch at the last level. Accordingly,
its final form becomes a1a2...aN−1bN . Interestingly, this branching
mechanism mimics the ripple-carry addition of binary numbers. If
we encode ak with 0 and bk with 1, all the addends at the bottom
level, from left to right, can be concisely represented as a sequence
of binary numbers B0,B1,B2, ...,B2N −1 such that Bk = (k)binary is
the binary representation of the decimal index k . For instance, if we
have three functions along the chain, the eight leaf addends from
B0 to B7 are: 000, 001, 010, 011, 100, 101, 110 and 111. The number of
ones in Bk implies the order of h. Since anything higher-order than
h2 can be safely discarded, we only sum up addends with exact one
1-digit (the leftmost leaf is a real number, which is also discarded)
such that: Im

(
f ∗(x∗)

)
= a1a2b3 + a1b2a3 + b1a2a3 + O(h2). From

Eq. (6), we can also understand that f (x0) = Re
(
f ∗(x0+hi)

)
+O(h2)

meaning replacing ak by fk (x) only induces an approximation error
of O(h2). As a result, we can stick with our acceleration strategy of
ignoring the real part of a promoted function. In practice, we also
pre-compute the product among all the ak as:

A = ΠN
k=1ak = ΠN

k=1ak fk (x) + O(h
2). (12)

Therefore, a leaf node, say a1b2a3 for instance, can be efficiently
computed at O(1) time as:

a1b2a3 = Re
(
f ∗1 (x

∗)
)
·Im

(
f ∗2 (x

∗)
)
·Re

(
f ∗3 (x

∗)
)
≈

A

f2(x)
·Im

(
f ∗2 (x

∗)
)
.

(13)
The timing benchmark shows that our strategy brings CFD approx-
imation an additional 5× boost. After the value of each fk (x) is
computed, the naïve implementation uses 21 ms to calculate the
first-order CFD derivative for N = 100 , while our method only
needs 4ms on an i7 laptop.

5.3 Accelerate CFD of Composite Unary Operators
Real-world functions may also be in the nesting form of multiple
unary operators:

f (x) = fN (fN−1(fN−2(· · · f2(f1(x))))), (14)
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where each fk for 1 ≤ k ≤ N could be a power, exponential, loga-
rithmic, or trigonometric function. We stick with the notation of
f ∗k (x

∗) = ak + bk , where bk is an imaginary value, and x0 + hi =
a0 +b0 is the input of f ∗1 , the innermost function. Note that the CFD
approximation of f ′(x) is actually the ratio between bN and b0:

f ′(x) ≈
Im

(
f ∗N

)
h

=
Im

(
f ∗N

)
i

hi
=

Im
(
aN + bN

)
i

hi
=
bN
b0
. (15)

Similar to the multiplication case, the real and imaginary parts of an
outer function are also coupled with the input real and imaginary
parts from its inner function. The algebraic relation between bN
and b0 could be complicated, and expanding the entire composite
equation to compute the actual value of bN is expensive.
Fortunately we notice that in order to compute f ′(x) with CFD,

only the ratio between bN and b0 is needed, and their exact values
are of less interest. Therefore, we convert bN /b0 to be:

bN
b0
=
b1
b0

·
b2
b1

·
b3
b2

· ... ·
bN
bN−1

. (16)

A multiplicand in RHS of Eq. (16), bk/bk−1, describes how the imag-
inary perturbation is changed through f ∗k . An important obser-
vation here is the imaginary part of a promoted function remains
infinitesimally small after being applied with an infinitesimal imagi-
nary perturbation. This can be easily verified by the complex Tay-
lor expansion: f ∗(x0 + hi) ≈ f ∗(x∗0 ) + f ∗

′

(x∗0 ) · hi , which leads to
Im

(
f ∗(x0 + hi)

)
≈ f ′(x0) · h = O(h) ∼ h. In other words, all the bk

in Eq. (16) are small imaginary perturbations of the same order of hi .
Therefore, we re-set each intermediate perturbation of bk−1 as h. In
the meantime, its real part input ak−1 can be efficiently computed
as fk−1 without resorting to f ∗k−1 as:

bk
bk−1

=
Im

(
f ∗k (ak−1 + bk−1)

)
i

bk−1

≈
Im

(
f ∗k (ak−1 + hi)

)
h

≈
Im

(
f ∗k (fk−1 + hi)

)
h

.

(17)

Eq. (17) literally breaks the coupling of the imaginary parts along
the nesting chain – when computing bk/bk−1, the imaginary values
from the inner functions are not required, and the propagation of
the initial imaginary perturbation b0 = hi is isolated.

Discussion Eq. (16) should look immediately similar to the chain
rule, which forms the foundation of AD techniques. Indeed, one may
also understand Eq. (17) as breaking Eq. (14) using the chain rule
and applying CFD to approximate each intermediate derivative af-
terwards (i.e. by setting bk−1 = hi and ak−1 = fk−1). In other words,
Eq. (16) is practically equivalent to augmenting AD with accelerated
CFD without referring to differentiation rules. Regular AD packages
(e.g. CppAD [Bell 2012] and Adept [Hogan 2014]) mainly aim on first-
or second-order derivatives, and their generalization to high-order
derivative is nonintuitive and inefficient, if not impossible. However,
as we will see in the next section, CFD can be elegantly generalized
to handle high-order derivatives. All the acceleration techniques
discussed in this section are naturally inherited.

6 MULTICOMPLEX PERTURBATION
Regular finite difference evaluates high-order derivative by recur-
sively applying the first-order approximation of Eq. (1). For instance,

the second-order derivative is approximated as:

f ′′(x0) =
f (x0 + h) − 2f (x0) + f (x0 − h)

h2
+ O(h2), (18)

which requires two extra function evaluations for both f (x0 + h)
and f (x0 − h). The complex Taylor series expansion of Eq. (6) gives
a real second-order term (with a factor of i2), which yields:

f ′′(x0) =
2
(
f (x0) − Re

(
f ∗(x0 + hi)

) )
h2

+ O(h2). (19)

Eq. (19) only needs one extra function evaluation of f ∗(x0 + hi): its
imaginary part can be used for the first-order CFD while its real part
is being used for the second-order CFD. However, both schemes
suffer with the subtractive cancellation. Besides, computing f ∗(x0 +
hi) could be even slower than computing both f (x0+h) and f (x0−h)
due to the extra complexity induced by the promotion. Therefore,
second-order CFD is less appealing to us. A more numerical stable
approach is based on Fourier differentiation [Bagley 2006], which
generalizes the complex Taylor expansion to Fourier expansion by
not retaining the perturbation on the imaginary axis:

f ∗(x0+he
θ i ) = f ∗(x∗0 )+ f

∗′(x∗0 ) ·he
θ i + f ∗

′′

(x∗0 ) ·
h2

2 e2θ i · · · . (20)

High-order derivative can be computed by using different argument
angles of θ to cancel out unwanted terms. For instance, setting
θ = π/4 and π + π/4 leads to one possible second-order approxima-
tion [Lai and Crassidis 2008]:

f ∗
′′

(x∗0 ) =
Im

(
f ∗(x0 + h · i

1
2 ) + f ∗(x0 − h · i

1
2 )
)

h2
+ O(h2). (21)

While Fourier differentiation may be able to avoid the subtractive
cancellation with carefully chosen θ , its formulation is quite differ-
ent from the first-order CFD1. In practice, users have to use distinct
implementations for different differentiation orders, and most cal-
culations among them cannot be shared.
Alternatively, there is a more concise formula that generalizes

the perturbation to be a multicomplex quantity, and we refer to this
method as multicomplex finite difference (MCFD). The theoretic
development of multicomplex algebra can be found in existing nu-
merical analysis literature [Lantoine et al. 2012; Nasir 2013], which
allows a complex number to have multiple imaginary directions.
A multicomplex number is defined recursively: the base cases are
the real number R and the regular complex number C, which are
considered as the zero and first order multicomplex sets C0 and
C1. The complex number set C1 extends the real set by adding an
imaginary unit i as: C1 = {x + yi |x,y ∈ C0}, and the multicomplex
number up to an order of n is defined as:

Cn =
{
z1 + z2in |z1, z2 ∈ Cn−1

}
. (22)

1The fact is Fourier differentiation still has the subtractive cancellation issue. Explicitly
avoiding the subtraction is not the real cure of the cancellation. This is out of scope of
this paper, but numerical experiment clearly verifies this.
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The order of a multicomplex number matches the number of its
imaginary directions, and all the imaginary units in have the prop-
erty of i2n = −1. Fully expanding the recurrence of Eq. (22) yields:

Cn = x0 + x1i1 + x2i2 + · · · + xnin
+x1,2i1i2 + · · · + xn−1,nin−1in
+x1,2,3i1i2i3 + · · · + xn−2,n−1,nin−2in−1in
...

+x1,2, ...,ni1i2 · · · in,

(23)

where all of x0, x1, ..., xn , x1,2, x2,3, ..., xn−1,n , ..., x1,2, ...,n are real
coefficients. For instance, settingn = 2 leads toC2 = x0+x1i1+x2i2+
x1,2i1i2. A Cn number has 2n x-coefficients: one x0 for the real part,
n coefficients x1, x2, ..., xn for a single imaginary direction. All the
other coefficients are formixed imaginary directionswithmultiple i j .
Unlike quaternion [Shoemake 1985], the product between different
imaginary units is commutative such that i j · ik = ik · i j for j , k .
Following the derivation in [Lantoine et al. 2012], the Taylor

series expansion of f ⋆ under a multicomplex perturbation is:

f ⋆(x0 + hi1 + · · · + hin ) = f ⋆(x0) + f ⋆(1)(x0) · h
n∑
j=1

i j

+
f ⋆(2)(x0)

2 · h2
©­«
n∑
j=1

i j
ª®¬
2

+ · · · +
f ⋆(n)

n! · hn
©­«
n∑
j=1

i j
ª®¬
n

+ · · · .

(24)

Here, f ⋆(n) is the n-th-order derivative of f ⋆.
(∑

i j
)k can be ex-

panded following the multinomial theorem, and it contains products
of mixed k imaginary directions for the k-th-order term. We refer
the reader to [Lantoine et al. 2012; Nasir 2013] for a detailed step-
by-step derivation. Because

(∑
i j
)k
,

(∑
i j
)l for k , l , Eq. (24)

allows us to approximate an arbitrary-order derivative by directly
extracting the corresponding imaginary combination, just as we
did in CFD. In order to do so, Im

(
·
)
should also be generalized to

Imκ
(
·
)
to handle multiple imaginary directions:

Imκ (z) = xκ ∈ R, (25)

which picks a coefficient xκ that matches the imaginary combination
of κ (i.e. the subscripts combination of i j ).
The MCFD approximation of the n-th-order derivative can then

be concisely formulated as:

f (n)(x0) =
Im(n)

(
f ⋆(x0 + hi1 + hi2 + ... + hin )

)
hn

+ O(h2). (26)

Similarly, n-th-order partial derivative can be approximated as:

∂n f (x1, · · · , xp )

∂xk11 · · · ∂x
kp
k

≈
Im(n)

(
f ⋆(x1 + h

∑
j ∈Π1 i j , · · · , xp + h

∑
j ∈Πp i j )

)
hn

,

(27)
where Im(n) = Im1,2, ..,n is a shortcut notation, which picks the
coefficient of the mixed imaginary direction of i1i2 · · · in . Πj ={ j−1∑
l=1

kl + 1, · · · ,
j∑

l=1
kl

}
. By setting n = 2 in Eqs. (26) and (27), ele-

ments of the Hessian matrix (of a function f (x,y) : R2 → R) can
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Fig. 5. The performance of MCFD approximation. We use the same test
function of f (x ) = ex /(x 4+x 2+1) as in Fig. 2 and calculate its second-order
derivative at x = 4. The relative error w.r.t to value of analytic derivative is
plotted against the size of the perturbation, ranging from 2−2 to 2−63.

be easily obtained as:

∂2 f (x,y)

∂x2
≈

Im(2)
(
f (x + hi1 + hi2,y)

)
h2

,

∂2 f (x,y)

∂y2
≈

Im(2)
(
f (x,y + hi1 + hi2)

)
h2

,

∂2 f (x,y)
∂x∂y

=
∂2 f (x,y)
∂y∂x

≈
Im(2)

(
f (x + hi1,y + hi2)

)
h2

.

(28)

The most pleasing advantage of MCFD to us is its handy im-
plementation. As long as CFD is implemented, all the routines for
CFD can be recursively used for MCFD. More importantly, all the
acceleration techniques discussed in Sec. 5 are also inherited with
MCFD. The numerical performance of MCFD is excellent as re-
ported in Fig. 5, where we evaluate the second-order derivative of
f (x) = ex /(x4 + x2 + 1) at x = 4, the same example used in Fig. 2.
The actual derivative f ′′(x) = (x8 − 8x7 + 22x6 − 12x5 + 21x4 −
12x3 − 4x2 − 4x − 1)ex /(x4 + x2 + 1)3 is used as the reference. In
this example, second-order finite difference (Eq. (18)) has a sim-
ilar behavior as its first-order counterpart. After h hits a certain
threshold (∼ 1.0 × 10−13), the subtractive cancellation makes the
numerator a numerical zero leading to a 100% relative error. The
second-order CFD approximation of Eq. (19) also suffers from this
issue. MCFD however, accurately approximates the second-order
derivative. With a sufficiently small h, the relative error becomes
comparable to the machine epsilon, and the approximation can be
used to fully replace the analytic derivative.

7 TENSOR FUNCTION
Most examples we have discussed so far is a real function taking
a single real-valued input. In many simulation problems, however,
we deal with functions with a tensor input. If we know how each
component of the input tensor contributes to the output, we can
simply overload the corresponding calculation to evaluate the pro-
moted function value. For instance, f (X) : RN×N → R = |X|F
returns the Frobenius norm of the input matrix X. As we know the
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exact form of this function is: f (X) =
√∑∑

X 2
i , j , evaluating the

partial derivative of ∂ f (X)/∂Xi , j is really nothing more than fixing
unrelated tensor components to pose f as a scalar-input function.
However, there are also many functions that do not rely on an

explicit formulation such as the one that solves the input linear
system:

f (X) : RN×N → RN = X−1a. (29)
The exact inverse of a high-dimension matrix X is seldom given
analytically. Instead, appropriate numerical routines like LU decom-
position and forward-backward substitution are used to retrieve the
function output. It is difficult for us to apply CFD or MCFD pro-
motions without altering the underlying implementation of those
numerical procedures.
An important advantage of CFD/MCFD is that one can exploit

the Cauchy-Riemann (CR) formulation [Ahlfors 1973] to achieve
(multi-)complex perturbations without overloading the complex
arithmetic. CR form represents a multicomplex number in the form
of a real matrix. Suppose z1 = z00 + z

0
1i , its CR form is a 2× 2 matrix:

z1 = z00+z
0
1i =

[
z00 −z01
z01 z00

]
, where z1 ∈ C1 and z00, z

0
1 ∈ C0 = R.

Here, we use the superscript (·)n to denote the order of a multicom-
plex number. The CR matrix of zn can be constructed recursively
using the CR matrices of zn−10 and zn−11 following the definition of
the multicomplex number (Eq. (22)) as:

zn = zn−10 + zn−11 in ∈ Cn =

[
zn−10 −zn−11
zn−11 zn−10

]
. (30)

Each of the 2 × 2 blocks in Eq. (30) is a (n − 1)-order multicomplex
number, which can be further expanded with (n − 2)-order multi-
complex numbers and so on. Eventually, the CR form of zn becomes
a 2n × 2n real matrix.

CR form can also be generalized for tensors i.e. z00 and z
0
1 can be

real-valued tensor quantities. As a result, f (X) of Eq. (29) can be
promoted as:

f ∗(X∗) =

[
Re

(
X∗

)
−Im

(
X∗

)
Im

(
X∗

)
Re

(
X∗

) ]−1 [
Re

(
a∗
)

−Im
(
a∗
)

Im
(
a∗
)

Re
(
a∗
) ]
. (31)

Because all the tensors are now real quantities, Eq. (31) can be
evaluated without involving any complex number calculations. The
resulting function value is also the CR form of f ∗(X∗), and we
can extract its imaginary values from off-diagonal blocks. Fig. 6
reports another numerical experiment of using CR form to calculate
first-order and second-order derivative of the inverse of a 3 × 3
matrix: f (X) = X−1 ∈ R3×3 w.r.t X2,2 (i.e. the element resides at the
second row and second column of X). In this example, we generate
a random 3× 3 non-singular matrix, and compute its inverse matrix
analytically. The exact formulation of the first-order and second-
order derivative of matrix inverse is:
∂ f

∂X2,2
= −X−1 ∂X

∂X2,2
X−1,

∂2 f

∂X 2
2,2
= −2X−1 ∂X

∂X2,2
X−1 ∂X
∂X2,2

X−1,

and it is used as the reference.
The relative error of the numerical derivative computed using

CR form as well as using the finite difference is plotted. We can
see from Fig. 5 that CR form based CFD and MCFD also have an

1.0E-16
1.0E-14
1.0E-12
1.0E-10
1.0E-08
1.0E-06
1.0E-04
1.0E-02
1.0E+00
1.0E+02
1.0E+04
1.0E+06
1.0E+08
1.0E+10
1.0E+12
1.0E+14

R
el

at
iv

e 
er

ro
r

Perturbation size

Cauchy-Riemann 1st
Cauchy-Riemann 2nd
Finite difference 1st
Finite difference 2nd

Fig. 6. Cauchy-Riemann formula allows us to use existing linear algebra
libraries to compute high-order numerical derivative without referring to
an explicit complex promotion. In this example, we compute the first- and
second-order derivative of 3 × 3 matrix inverse. CR-form based CFD and
MCFD still have excellent accuracy compared with regular finite difference.

excellent accuracy, while the regular finite difference still suffers
with the subtractive cancellation.

8 EXPERIMENTAL RESULTS
We implemented CFD/MCFD on a desktop computer with an Intel
i7 8700K CPU and 32 GB memory. Both regular complex arithmetic
and the generalized multicomplex arithmetic were implemented
using C++ double precision. The source code is also available in
the supplementary material. While we believe CFD/MCFD will be
useful for many graphics problems, in this paper we demonstrate
its applications in modeling and simulating elastic objects. Our gen-
eral observation is that one can fully rely on CFD/MCFD-based
derivative without any accuracy concerns. Performance-wise, our
accelerated CFD/MCFD is almost as efficient as analytic derivatives.
We also compared CFD/MCFD with some widely used AD pack-
ages. While both CFD/MCFD and AD produce accurate results in
well-conditioned problems, CFD/MCFD excels at its robustness for
nonsmooth functions, high-order generalization, and tensor exten-
sion. Our accelerated CFD/MCFD is also much faster: it is over 20×
faster than C++ based AD packages and ∼ 300× faster than Python
based AD packages.

CFD Adept (s) CppAD (s) ADOL-C (s) ad (s)
1st 114ms 11.1 (97×) 8.2 (72×) 1.4 (13×) 72.1 (632×)
2nd 242ms NA 11.2 (49×) 5.9 (24×) 80.3 (332×)
3rd 768ms NA NA 51 (62×) NA

Table 2. Time statistics of computing first- (1st), second- (2nd), and third-
order (3rd) derivatives for 1 million times of the function: f (x ) = ex /(x 4 +
x 2 + 1) using CFD/MCFD and some popular AD packages.

Comparison with AD packages In the first experiment, we
would like to examine the efficiency of our accelerated CFD/MCFD
as well as some widely used AD packages including Adept [Hogan
2014], CppAD [Bell 2012], ADOL-C [Griewank et al. 1996], and ad [Lee
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CFD Adept (s) CppAD (s) ADOL-C (s) ad (s)
StVK 1st 9ms 1.1 (122×) 0.8 (90×) 0.7 (78×) 7.1 (786×)
StVK 2nd 101ms NA 5.4 (54×) 5.2 (52×) 29 (288×)
NH 1st 12ms 1.2 (99×) 0.8 (66×) 0.8 (65×) 7.2 (580×)
NH 2nd 117ms NA 5.6 (48×) 5.7 (49×) 31 (268×)

Table 3. Computing the internal force and tangent stiffness matrix for 10k
linear tetrahedral elements of StVK and Neo-Hookean materials. Similar to
Tab. 2, our accelerated CFD/MCFD is much faster than AD packages.

2013]. The first three libraries are in C++, and ad is a famous Python
package. We record the time performance for evaluating derivatives
(for 1 million times) of the function: f (x) = ex /(x4 + x2 + 1) at
x = 4 (i.e. the one used in Figs. 2 and 5). The computation time
for the analytic first- and second-order derivatives is 104ms and
238ms respectively, which is quite close to our CFD/MCFD taking
114ms and 242ms . This function is smooth and differentiable, and
all AD packages return accurate first-order derivative results suc-
cessfully. Yet, our method is massively faster than AD packages as
reported in Tab. 2. In general, the accelerated CFD/MCFD is dozens
times faster than C++ based AD packages and hundreds times faster
than Python based ones. In this experiment, Adept does not support
second-order derivative natively. CppAD only supports high-order
derivative up to the second order. ADOL-C is the most sophisticated
package, which has dedicated sub-routines for second-order and
high-order derivatives. Nevertheless, it is still more than one order
slower than our method. ADOL-C becomes even more slower for
higher-order derivatives as it calls the first-order routine repeat-
edly for high-order cases (i.e. with its forward() routune). Python
package is the slowest among all.
We also assess the robustness of AD packages for nonsmooth

functions. Let f (x) = log2
(
1 −

√
(x − 1)2

)
. Its analytic first- and

second-order derivative can be easily derived as:

f ′(x) = −

2(x − 1) log
(
1 −

√
(x − 1)2

)(
1 −

√
(x − 1)2

) √
(x − 1)2

, (32)

and

f ′′(x) = −

2
(
log

(
1 −

√
(x − 1)2

)
− 1

)
(
1 −

√
(x − 1)2

)2 . (33)

We notice thatx = 1 is actually a singular point of the function.With-
out explicitly cancelling out

√
(x − 1)2 from Eqs. (32) and (33), AD

packages that overload elementary arithmetic with differentiation
rules tend to yield the division-by-zero error2. In this experiment,
only Adept successfully returns the first-order derivative of this
function, but It yields a #IND error for the second-order case. All
other AD packages return either NaN, #IND or ZeroDivisionError
error. On the other hand, CFD/MCFD robustly handle this function
derivative without any special treatments.

2Wemay be able to avoid this numerical instability of AD by expanding and simplifying
the derivative function. But if we choose to do so, we are literally deriving the analytic
formula of the derivative function, and why do we bother to use AD?

Fig. 7. We simulate a Neo-Hookean Armadillo model using Newton’s
method. The Armadillo has 69, 074 elements. The gradient and Hessian
of the target function f (i.e. Eq. (35)) is approximated using numerical
CFD/MCFD. The result is identical to the one computed using analytic
gradient and Hessian.

We observe similar results when applying CFD/MCFD and AD
in deformable simulation computations. Tab. 3 lists the time perfor-
mance of computing the internal force and tangent stiffness matrix
for 10k linear tetrahedral elements of StVK and Neo-Hookean mate-
rials, which are the first- and second-order partial derivatives of the
energy function. The analytic formulations of those two energies
are known. We use Vega library [Barbič et al. 2012] to compute the
analytic force and stiffness matrix. For the StVK material, it takes
11.8ms and 103.5ms for the first- and second-order derivatives. For
the Neo-Hookean material, the computation time is 12.1 ms and
112.5ms respectively. This performance measure is very similar to
our accelerated CFD and MCFD as shown in the table. In this exper-
iment, most AD packages deliver correct results (expect for Adept)
but they are all much slower than accelerated CFD and MCFD.

8.1 Application I: Accurate Nonlinear Optimization
Dynamic simulation of a deformable object requires solving a non-
linear system of the force equilibrium. For instance, the implicit
Euler time integration scheme leads to:

M
(
un+1 − un − ∆t Ûun

)
= ∆t2

(
fint (un+1) + fext

)
, (34)

where M is the mass matrix. fint and fext stand for the elastic in-
ternal force and the external force. The subscript (·)n denotes the
time integration step, and ∆t is the time step size. un+1 is the un-
known displacement vector we want to compute. This equilibrium
is often treated as an optimization problem known as its variational
form [Liu et al. 2013; Stern and Desbrun 2006] of:

argmin
u

f (u), f (u) =
1
∆t2




M 1
2 (u − u∗)




2 + E(u), (35)

where u∗ = un+∆t Ûun+h2M−1fext is a known vector. E is the nonlin-
ear elastic energy. Eq. (35) can be solved using the classic Newton’s
method, which approximates f (u) with a quadratic form and cal-
culates an incremental improvement of ∆u as ∆u = −H · ∂ f /∂u.
Matrix H is the Hessian matrix, and it is the second-order partial
derivative of f : H = ∂2 f /∂u2. We simulate nonlinear dynamics of
a Neo-Hookean Armadillo (with 69, 074 elements) using Newton’s
method and drag its mouth back and forth. The gradient and Hes-
sian of f are approximated with CFD/MCFD. The elastic energy
density E of the Neo-Hookean material is

ENH = λ(J − 1)2 + µ(J−2/3I1 − 3), (36)
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Fig. 8. The Armadillo model falls quickly and hits a glassy rod. Due to the sharp collision, gradient descent method [Wang and Yang 2016] yields artifact
because the residual is not sufficiently reduced. Regular finite difference method crashes instantly. Newton’s method with MCFD-based Hessian yields the
same result as using the analytic Newton. Newton-PCG with MFCD-based directional derivative also has the same result.

where J = |F| is the determinant of the deformation gradient F,
and I1 = tr(F⊤F). λ and µ are Lamé constants. In our CFD/MCFD
implementation, we treat E as a nested composite function ENH =

E1(J (F)) + E2(I1(F)). Snapshots of the deformed Armadillo are re-
ported in Fig. 7. This animation is identical to the one obtained using
analytic gradient and Hessian.

Alternatively, one may also use the Newton-PCG method, which
replaces the direct solver used at each Newton iteration with an
iterative PCG solver. As explained in [Yang et al. 2015], each Newton-
PCG iteration calculates the product of K|u0 · p, where K|u0 is the
current tangent stiffness matrix at u = u0, and p is a known displace-
ment vector. This product can also be understood as the directional
derivative of the energy function E and be numerically computed
via CFD as:

K|u0 · p =
∂2E

∂u2

����
u0

· p = ∇p E |u0 ≈
Im

(
E∗(u0 + h · pi)

)
h

. (37)

As shown in Fig. 8, CFD-based directional derivative is also highly
accurate, which produces the same result of analytic Newton and
MCFD Newton. The regular finite difference crashes immediately
when the Armadillo collides with the glassy rod.

8.2 Application II: Intuitive Hyperelastic Simulation
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Fig. 11. We design a new volume
penalty term of log2

(
1 − 4(J − 1)2

)
,

which yields much bigger internal
forces when J = |F | deviates from
1 than the regular Neo-Hookean vol-
ume penalty of (J − 1)2 does.

For hyperelastic models, the
form of the elastic energy (i.e.
Eq. (35)) solely determines the
deformed shape given inertial
and external forces. Hypere-
lastic energy is typically de-
fined based on three isotropic
invariants of the deformation
gradient: I1 = tr(F⊤F), I2 =
tr

(
(F⊤F)2

)
, and I3 = |F⊤F|2.

Intuitively, I1 measures the
length change of the defor-
mation; I2 measures the area
change of the deformation; and
I3 measures the volume change
of the deformation. As long
as the internal force ∂E/∂u
and the tangent stiffness matrix
∂2E/∂u2 are available, the dy-
namic behavior of the deformable body can be simulated using
standard FEM. The closed-form formulation of ∂E/∂u and ∂2E/∂u2

for some material models such as co-rotational model, StVK model,
Neo-Hookean model are available in the literature [Bonet andWood
1997; Sifakis and Barbic 2012; Smith et al. 2018]. However, there are
many other materials such as Fung, Mooney-Rivlin, Ogden, Yeoh,
Arruda Boyce models or the more general Polynomial model. Their
energy structure can be easily followed, but deriving the actual
formulation of force and stiffness matrix prevents these materials
from being more widely employed by the graphics community. CFD
and MCFD allow us to conveniently simulate hyperelastic materials
with light-weight implementation efforts. As reported in Fig 9, we
simulate all of those materials using CFD/MCFD under standard
bending, compressing, stretching and twisting tests. In this experi-
ment, we use invertible StVK energy [Irving et al. 2004] to improve
the stability of the regular StVK material. Timing information of
different CFD/MCFD implementations is compared in Fig. 10.
In many situations, the user wants to use customized materials

for specific needs in an animation scenario. For instance Smith and
colleague [2018] proposed a new Neo-Hookean-like hyperelastic
energy for a stable integration and volume preservation under large
deformation. Using CFD/MCFD, users can freely explore various
such energy densities without tedious derivations for internal force
and Hessian. For instance, we design a new hyperelastic model:

Evolume = µ(J−2/3I1 − 3) + λ

2 log2
(
1 − 4(J − 1)2

)
. (38)

Fig. 13. Example-based hyperelastic
energy can also be easily handled with
CFD/MCFD. We make the energy be
the function of bending angle so that
a smiling face appears when the box
bends to left and a sad face appears
when the box bends to right. This box
model has 14, 678 elements.

As plotted in Fig. 11, Evolume
triggers a much stronger re-
sistance force to when J =
|F| deviates from 1 and better
preserves the volume (i.e. see
Fig. 12). In this example, the
rest-shape volume of the jelly
box is 0.64. After compressing
its height by 65%, the new vol-
ume of the jelly box becomes
0.63 with Evolume and 0.61
with the stable Neo-Hookean
material [Smith et al. 2018].
While numbers look close, we
can clearly see that the com-
pressed box is wider spread with Evolume .
CFD/MCFD can deal with even more complicated energies. An-

other example is reported in Fig. 13. In this example, we use an
example-based hyperelastic energy as in [Martin et al. 2011], which
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Fig. 10. Timing information of CFD/MCFD derivative in simulating various
hyperelastic materials.Opt. is the optimized CFD/MCFD computation time.
Img. only is the time without computing the real part of the promoted en-
ergy functions.B.F. is the computation time using a brute-force CFD/MCFD
implementation.

has two target shapes, each of which embeds a smiling face , or a
sad face / on the surface. We design this energy to be the function
of the bending orientation so that corresponding internal forces
arise when the box is bent to a certain direction. CFD/MCFD frees
us from formulating the animation system and to quickly toy with
many of such examples to achieve more interesting animations.
For a customized material, it is possible that the user-crafted

energy has some singularities due to its complex formulation. In
this case, AD packages, regardless of their slow performance, could
even fail the simulation if any element reaches the singularity. To

Stable Neo-Hookean material

Our material

Fig. 12. Our new material (Eq. (38)) with a more aggressive volume penalty
term is able to better preserve the volume of this jelly box during the com-
pression than the stable Neo-Hookean material [Smith et al. 2018].

better elaborate this, we create another energy with the form of:

Esinдular = µ(J−2/3I1 − 3) + λ(J − 1)2 +
√
cos2 4(J − 1) − 1. (39)

As shown in Fig. 14, if we slowly bend the dragon with the material
of Esinдular using AD, the system crashes with the division-by-
zero error when an element hits the singular point. CFD/MCFD
is robust in such situations. Referring to Eq. (7), it is easy to see
that as long as f (x0) exists, f ∗(x0 + hi) also exists because it is
promoted orthogonally towards the real domain. Therefore, CFD
always returns a well-estimated derivative value because h is also
nonzero.
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Fig. 14. Complicated energy formulation as Eq. (39) often hides singularities
that are unfriendly for AD. CFD/MCFD can tackle this issue robustly.

8.3 Application III: Expressive Model Reduction
Model reduction is a widely-used technique to produce real-time
deformable animation. This technique needs a pre-built subspace,
which defines all the possible deformations of the deformable body.
The standard method for subspace construction is based on the
modal analysis [Pentland and Williams 1989], which provides the
optimal vibrational modes around the rest shape. For nonlinear
models, we need to compute derivative modes that first-order ap-
proximate a low-frequency nonlinear vibration [Barbič and James
2005; Yang et al. 2015]. Computing derivative modes requires the
calculation of the force Hessian (i.e. the third-order derivative of
E). Therefore, this powerful technique is normally used only for
the StVK material, whose stiffness matrix is quadratic w.r.t to the
displacement vector. Applying nonlinear model reduction to other
materials using modal derivative is less exploited due to the bar-
rier of computing high-order energy gradients. CFD/MCFD allows
us to build expressive and compact subspace easily for any given
hyperelastic material. Fig. 15 shows snapshots of a real-time sim-
ulation of six falling dinosaur models using 30 first-order modal
derivatives. Each dinosaur model has 356, 48 elements, and they are
of Fung, Mooney-Rivlin, Ogden, Yeoh, Arruda Boyce, and Polyno-
mial materials. Yang and colleagues [2015] introduced a method
that generalizes modal derivative to higher-order nonlinear shape
approximation. This method can also be readily implemented with
MCFD. As shown in Fig. 16, we apply a circular force to bow the
dinosaur model. Second-order modal derivatives are able to capture
extreme bending effects. In this experiment, the hyperelastic mate-
rial of Eq. (38) has a strong volume preserving term, which prevents
this material from being extremely bent as other materials under
the same external forces.

8.4 Application VI: Convenient Inverse Design
A lot of design problems tweak a collection of parameters to make
sure that the simulated result matches certain specific measures like
the maximum stress, deflection magnitude and so on. While there
are many techniques (e.g. the well-known adjoint method) that are
capable of handling those problems, we show that CFD/MCFD is
also a convenient alternative to deal with inverse simulations.
In Fig. 1, we show an example where the user wants to adjust

the linear vibration frequencies of a bridge for a given external
wind field by changing three primary geometry parameters: length

Fig. 15. Real-time simulation of six falling dinosaur models using modal
derivative (30 modes for each dinosaur). The first-order derivative modes
are computed using CFD, and we use Fung, Mooney-Rivlin, Ogden, Yeoh,
Arruda–Boyce and Polynomial materials for each dinosaur.

l , widthw and the height of the arch top t . For an intuitive visualiza-
tion of a frequency pattern, our system allows the user to apply this
wind field to a standard rectangular beam (with two ends fixed) and
to change its geometry/material to generate a preferred vibration
pattern (see Fig. 17). The principle vibration of a linear structure un-
der a given direction u is described by the Rayleigh quotient defined
as ω2 = u⊤Ku/u⊤Mu. The wind is modeled as an acceleration field
a meaning u = K−1Ma. As a result, the frequency design procedure
can be formulated as an optimization problem of:

arg min
l ,w ,t

f , f (l,w, t) =





ω∗2 −
a⊤MK−1Ma

a⊤MK−1MK−1Ma





2 , (40)

where ω∗2 is our target frequency.M = M(l,w, t) and K = K(l,w, t)
are tensor functions of the unknown geometry parameters l ,w , t to
be optimized. In this example, we use the CR form (Eq. (31)) to pro-
moteM(l,w, t) and K(l,w, t), and Newton’s method is used to solve
Eq. (40). Thanks to the accurate Hessian obtained by MCFD, our
solver quickly finds the optimal geometry only with few iterations.

9 CONCLUSION AND FUTURE WORK
In this paper, we show how to accelerate and generalize complex-
step finite difference to accurately obtain a numerical derivative
of an arbitrary order. Its superior precision comes from complex
or multicomplex promotion of the target function, which avoids
the subtractive cancellation issue in standard finite difference meth-
ods. Without worrying about losing many significant digits during
the calculation, CFD and MCFD allow us to have a very small-size
perturbation to obtain a numerical derivative at the precision of
machine epsilon implying it is as accurate as the analytic derivative.
We propose a collection of acceleration techniques that avoid re-
dundant and costly calculations induced by the complex promotion.
Therefore our CFD and MCFD are as efficient as analytic derivative,
but we are freed from the derivation for the actual differentiation.
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Fig. 17. We develop a system with an intuitive interface for the linear
frequency design (left). The error reduces quickly along Newton iterations,
with the Hessian accurately computed from MCFD. (right)

We show how this numerical algorithm can be applied for physics-
based deformable simulation. Indeed, we believe that this method
could be useful in a variety of graphics problems.

Limitation and future work The limitation of this method may
be it requires a dedicated implementation in order to achieve a good
performance. When CR form is used, the computation quickly be-
comes prohibitive if one wants to evaluate higher-order derivatives
for a tensor-valued function. However, if the efficiency is not the
primary concern, one can implement CFD and MCFD quickly based
on any existing complex arithmetic library. In the future, we would
like to fully leverage this new method to attack other challenging
computational problems. For instance, to perform the imaginary
perturbation along the time domain to get a better time integration.

It is also of our great interests to apply this method to machine
learning and other similar problems where optimizing complicated
functions is required.
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A ELEMENTARY COMPLEX PROMOTION
The addition/subtraction and multiplication are trivial:

f (x0) = x0 ± a → f ∗(x0 + hi) = x0 ± a + hi,
f (x0) = s · x0 → f ∗(x0 + hi) = sx0 + shi .

(41)

The division is treated as the multiplication of the conjugate:

f (x0) =
a

x
→ f ∗(x0 + hi) =

a

r2
(x0 − hi), r =

√
x20 + h

2. (42)

If the exponent of the power function (xa ) is an integer i.e. a = n ∈ Z,
we can use the De Moivre’s formula:

f (x0) = xn → f ∗(x0 + hi) = r
n (cosnϕ + sinnϕi), (43)

where r cosϕ = x0 and r sinϕ = h is the polar form of x0 + hi . On
the other hand, a = 1/m (m ∈ Z) makes f (x0) anm-root function,
and the promotion is:

f (x0) = x
1
m
0 → f ∗(x0 + hi) = r

1
m

(
cos ϕ + 2πk

m
+ sin ϕ + 2πk

m
i

)
.

(44)
Here, k is an integer between 0 andm − 1. In more general cases,
when a ∈ Q is a rational number such that a = n/m, the power
function of xa is split as f (x) = yn and y = a1/m .

The exponential function is promoted based on Euler’s formula:
f (x0) = ex0 → f ∗(x0 + hi) = ex0 (cosh + sinhi). (45)

The logarithmic promotion is the inverse of the exponential map,
which can be obtained as:

f (x0) = lnx0 → f ∗(x0 + hi) = ln r + (ϕ + 2πk)i, k ∈ Z. (46)
Trigonometric functions can also be defined with complex numbers.
According to Euler’s formula, we have sinα = (eαi − e−αi )/2i .
Substituting α with x0 + hi leads to the promotion of sinx :

f (x0) = sinx0 → f ∗(x0+hi) =
eh + e−h

2 sinx0+
eh − e−h

2 cosx0i .
(47)

Similarly, cosα = (eαi + e−αi )/2 is promoted as:

f (x0) = cosx0 → f ∗(x0+hi) =
eh + e−h

2 cosx0−
eh − e−h

2 sinx0i .
(48)

Note that the promotion of exponential and logarithmic functions
of Eqs. (44) and (46) is not unique due to the periodicity. We can
restrict the argument angle to [0, 2π ], that makes k = 0.
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