
SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
ART I F I C IA L INTELL IGENCE
1Baidu Research, Beijing, China. 2National Engineering Laboratory of Deep
Learning Technology and Application, Beijing, China. 3Nanjing University of Aero-
nautics and Astronautics, Nanjing, China. 4Beijing Engineering Technology Re-
search Center of Virtual Simulation and Visualization, Peking University, Beijing,
China. 5Deepwise AI Lab, Beijing, China. 6Zhejiang University, Hangzhou, China.
7University of Hong Kong, Hong Kong, China. 8Beihang University, Beijing, China.
9University of Maryland, College Park, MD, USA.
*These authors contributed equally to this work.
†Corresponding author. Email: liwei87@baidu.com (W.L.); yangruigang@baidu.com
(R.G.Y.); dm@cs.umd.edu (D.M.)

Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019
Copyright © 2019

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim

to original U.S.

Government Works
AADS: Augmented autonomous driving simulation
using data-driven algorithms
W. Li1,2,3*†, C. W. Pan4,5*, R. Zhang6*, J. P. Ren6, Y. X. Ma7, J. Fang1,2, F. L. Yan1,2, Q. C. Geng8,
X. Y. Huang1,2, H. J. Gong3, W. W. Xu6, G. P. Wang4, D. Manocha9†, R. G. Yang1,2†

Simulation systems have become essential to the development and validation of autonomous driving (AD) tech-
nologies. The prevailing state-of-the-art approach for simulation uses game engines or high-fidelity computer
graphics (CG) models to create driving scenarios. However, creating CG models and vehicle movements (the
assets for simulation) remain manual tasks that can be costly and time consuming. In addition, CG images still
lack the richness and authenticity of real-world images, and using CG images for training leads to degraded
performance. Here, we present our augmented autonomous driving simulation (AADS). Our formulation
augmented real-world pictures with a simulated traffic flow to create photorealistic simulation images and ren-
derings. More specifically, we used LiDAR and cameras to scan street scenes. From the acquired trajectory data,
we generated plausible traffic flows for cars and pedestrians and composed them into the background. The
composite images could be resynthesized with different viewpoints and sensor models (camera or LiDAR).
The resulting images are photorealistic, fully annotated, and ready for training and testing of AD systems from
perception to planning. We explain our system design and validate our algorithms with a number of AD tasks
from detection to segmentation and predictions. Compared with traditional approaches, our method offers
scalability and realism. Scalability is particularly important for AD simulations, and we believe that real-world
complexity and diversity cannot be realistically captured in a virtual environment. Our augmented approach
combines the flexibility of a virtual environment (e.g., vehicle movements) with the richness of the real world to
allow effective simulation.
INTRODUCTION
Autonomous vehicles (AVs) have attracted considerable attention in
recent years from researchers, venture capitalists, and the general public.
The societal benefits in terms of safety, mobility, and environmental
concerns are expected to be tremendous and have captivated the atten-
tion of people across the globe. However, in light of recent accidents
involving AVs, it has become clear that there is still a long way to go
to meet the high standards and expectations associated with AVs.

Safety is the key requirement for AVs. It has been argued that an AV
has to be test-driven hundreds of millions of miles in challenging
conditions to demonstrate statistical reliability in terms of reductions
in fatalities and injuries (1), which could take tens of years of road tests
even under the most aggressive evaluation schemes. New methods and
metrics are being developed to validate the safety of AVs. One possible
solution is to use simulation systems, which are common in other do-
mains such as law enforcement, defense, and medical training. Simula-
tions of autonomous driving (AD) can serve twopurposes. The first is to
test and validate the capability of AVs in terms of environmental per-
ception, navigation, and control. The second is to generate a large
amount of labeled training data to train machine learning methods,
e.g., a deep neural network. The second purpose has recently been
adopted in computer vision (2, 3).
The most common way to generate such a simulator is to use a
combination of computer graphics (CG), physics-based modeling, and
robot motion planning techniques to create a synthetic environment
in which moving vehicles can be animated and rendered. A number of
simulators have recently been developed, such as Intel’s CARLA (4),
Microsoft’s AirSim (5), NVIDIA’s Drive Constellation (6), Google/
Waymo’s CarCraft (7), etc.

Although all of these simulators achieve state-of-the-art synthetic
rendering results, these approaches are difficult to deploy in the real
world. A major hurdle is the need for high-fidelity environmental
models. The cost of creating life-like CG models is prohibitively high.
Consequently, synthetic images from these simulators have a distinct,
CG-rendered look and feel, i.e., gaming or virtual reality (VR) system
quality. In addition, the animation ofmoving obstacles, such as cars and
pedestrians, is usually scripted and lacks the flexibility and realism of
real scenes. Moreover, these systems are unable to generate different
scenarios composed of vehicles, pedestrians, or bicycles, as observed
in urban environments.

Here, we present a data-driven approach for end-to-end simulation
for AD: augmented autonomous driving simulation (AADS). Our
method augments real-world pictures with a simulated traffic flow to
create photorealistic simulation scenarios that resemble real-world ren-
derings. Figure 1 shows the pipeline of our AADS system and its major
inputs and outputs. Specifically, we proposed using light detection and
ranging (LiDAR) and cameras to scan street scenes. We decomposed
the input data into background, scene illumination, and foreground
objects. We presented a view synthesis technique to enable changing
viewpoints on the static background. The foreground vehicles were
fitted with three-dimensional (3D) CG models. With accurately esti-
mated outdoor illumination, the 3D vehiclemodels, computer-generated
pedestrians, and other movable subjects could be repositioned and ren-
dered back into the background images to create photorealistic street
1 of 12



SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
Fig. 1. The inputs, processing pipeline, and outputs of our AADS system. Top: The input dataset.Middle: The pipeline of AADS is shown between the dashed lines
and contains data preprocessing, novel background synthesis, trajectory synthesis, moving objects’ augmentation, and LiDAR simulation. Bottom: The outputs from the
AADS system, which include synthesized RGB images, a LiDAR point cloud, and trajectories with ground truth annotations.
Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019 2 of 12



SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
view images that looked like they were captured from a dashboard
camera on a vehicle. Furthermore, the simulated traffic flows, e.g., the
placement and movement of synthetic objects, were based on captured
real-world vehicle trajectories that looked natural and captured the
complexity and diversity of real-world scenarios.

Compared with traditional VR-based or game engine–based AV
simulation systems, AADS provides more accurate end-to-end
simulation capability without requiring costly CG models or tedious
programming to define the traffic flow. Therefore, it can be deployed
for large-scale use, including training and evaluation of new navigation
strategies for the ego vehicle.

The key to AADS’s success is the wide availability of 3D scene scans
and vehicle trajectory data, both of which are needed for automatic gen-
eration of new traffic scenarios. We will also release part of the real-
world data that we have collected for the development and evaluation
of AADS. The data were fully annotated by a professional labeling ser-
vice. In addition to AADS, they may also be used for many perception-
and planning-related tasks to drive further research in this area.

This paper includes the following technological advances:
1) A data-driven approach for AD simulation: By using scanned

street view images and real trajectories, both photorealistic images
and plausible movement patterns can be synthesized automatically.
This direct scan-to-simulation pipeline, with little manual intervention,
enables large-scale testing of autonomous cars virtually anywhere and
anytime within a closed-loop simulation.

2) A view synthesis method to enable view interpolation and ex-
trapolation with only a few images: Compared to previous approaches,
it generates better quality images with fewer artifacts.

3) A new set of datasets, including the largest set of traffic trajec-
tories and the largest 3D street view dataset with pixel/point level anno-
tation: All of these are captured in metropolitan areas, with dense and
complex traffic patterns. This kind of dense urban traffic poses notable
challenges for AD.

Previous methods
Simulation for AD is a very large topic. Traditionally, simulation cap-
abilities have been primarily used in the planning and control phase of
AD, e.g., (8–14). More recently, simulation has been used in the entire
ADpipeline, fromperception and planning to control [see the survey by
Pendleton et al. (15)].

Although Waymo has claimed that its AV has been tested for bil-
lions of miles in their proprietary simulation system, CarCraft (7), little
technical detail has been released to the public in terms of its fidelity for
training machine learning methods. Researchers have tried to use
images from video games to train deep learning–based perception
systems (16, 17).

Recently, a number of high-fidelity simulators dedicated to AD
simulation have been developed, such as Intel’s CARLA (4), Microsoft’s
AirSim (5), and NVIDIA’s Drive Constellation (6). They allow end-to-
end, closed-loop training and testing of the entire AD pipeline beyond
the generation of annotated training data. All of these simulators have
their basis in current gaming techniques or engines, which generate
high-quality synthetic images in real time. A limitation of these systems
is the fidelity of the resulting environmental model. Even with state-of-
the-art rendering capabilities, the images produced by these simulators
are obviously synthetic. Current state-of-the-art CG rendering may not
provide enough accuracy and details for machine learning methods.

With the availability of LiDAR devices and advances in structure
from motion, it is now possible to capture large urban scenes in 3D.
Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019
However, turning the large-scale point cloud (PC) into a CG quality–
rendered image is still an ongoing research problem. Models recon-
structed from these point clouds often lack details or complete textures
(18). In addition, AD simulators have to address the problem of realis-
tic traffic patterns and movements. Traditional traffic flow simulation
algorithms mainly focus on generating trajectories for vehicles and do
not take into account the realistic movements of individual cars or pe-
destrians. One of the challenges is to simulate realistic traffic patterns,
particularly in complex situations, when traffic is dense and involves
heterogenous agents (e.g., an intersection scenario with pedestrians in
a crosswalk).

Ourwork is related to the approach described byAlhaija et al. (19) in
which 3D vehicle models were rendered onto existing captured real-
world background images. However, the observation viewpoint was
fixed at capture time, and the 3D models were chosen from an existing
3D repository that may or may not match those in the real-world
images. Their approach can be used to augment still images for training
perception applications. In contrast, with the ability to freely change the
observation viewpoint, our system could not only play a role in data
augmentation but also enhance a closed-loop simulator such as CARLA
(4) orAirSim (5). Further enhanced by realistic traffic simulation ability,
our system can also be used for path planning and driving decision ap-
plications. In those dynamic applications, our system can generate data
in a loop for reinforcement learning and learning-by-demonstration
algorithms. Overall, the proposed approach enables closed-loop, end-
to-end simulation without the need for environmental modeling and
human intervention.
RESULTS
Because AADS is data driven, we first explain the datasets that have
been collected. Some of the datasets have already been released, and
others will be released with this paper. We then show results for the
synthesis of virtual views and generation of traffic flows, two key com-
ponents of AADS. Last, we evaluated AADS’s effectiveness for AD
simulation. Specifically, we show that the simulated red-green-blue
(RGB) and LiDAR images were useful for improving the performance
of the perception system, whereas the simulated trajectories were useful
for improving predictions of obstacle movements—a critical
component for the planning and control phases for autonomous cars.

The datasets
When collecting a dataset, we used a hardware system consisting of two
RIEGL laser scanners, one real-time line-scanning LiDAR (Velodyne
64-line), a VMX-CS6 stereo camera system, and a high-precision iner-
tial measurement unit (IMU)/global navigation satellite system
(GNNS). With the RIEGL scanners, our system could obtain higher-
density point cloudswith better accuracy thanwidely used LiDAR scan-
ners, whereas the VMX-CS6 system provided a wide baseline stereo
camerawithhigh resolution (3384 by 2710).With theVelodyne LiDAR,
we could obtain the shapes and positions of moving objects. To scan a
scene, the hardwarewas calibrated, synchronized, and thenmounted on
the top of a mid-size sport utility vehicle (SUV) that cruised around the
target scene at an average speed of 30 km/hour. Note that the RGB
images were taken about once every meter.

Instead of fully annotating all 2D/RGB and 3D/point cloud data
manually, we developed a labeling pipeline tomake our labeling process
accurate and efficient. Because 2D labeling is expensive in terms of time
and labor, we combined the two stages, i.e., 3D labeling and 2D labeling.
3 of 12



SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
By using easy-to-label 3D annotations, we could automatically generate
high-quality 2D annotations of static backgrounds/objects in all the
image frames by 3D-2D projections. Details of the labeling process
can be found in (20).

For each image frame, we annotated 25 different classes covered by
five groups in both 3D point clouds. In addition to standard annotation
classes, such as cars, motorcycles, traffic cones, and so on, we added a
new “tricycle” class, a popular mode of transportation in East Asian
countries. We also annotated 35 different lane markings in both 2D
and 3D that were not previously available in open datasets. These lane
markings were defined on the basis of color (e.g., white and yellow),
type (e.g., solid and broken), and usage (e.g., dividing, guiding, stopping,
and parking).

The table in Fig. 2 compares our dataset and other street view data-
sets. Our dataset outperformed other datasets in many aspects, such as
scene complexity, number of pixel-level annotations, number of classes,
and so on. We have released 143,906 video frames and corresponding
pixel-level annotations. Images were assigned to three degrees of diffi-
culty (e.g., easy, moderate, and hard) based on scene complexity, a mea-
sure of the number of movable objects in an image. Our dataset also
contains challenging lighting conditions, such as high-contrast regions
due to sunlight and shadows from overpasses.We named the dataset of
RGB images ApolloScape-RGB.We also provided 3D point-level anno-
tations inApolloScape point cloud (ApolloScape-PC) dataset, which are
not available in other street view datasets.

In addition to this article, we also announce ApolloScape-TRAJ, a
large-scale dataset for urban streets that includes RGB image sequences
and trajectory files. It is focused on trajectories of heterogeneous traffic
agents for planning, prediction, and simulation tasks. The dataset in-
cludes RGB videos with around 100,000 images with a resolution of
1920 by 1080 and 1000 km of trajectories for all kinds of moving traffic
agents. We used the Apollo acquisition car to collect traffic data and
generate trajectories. In Beijing, we collected a dataset of trajectories un-
der a variety of lighting conditions and traffic densities. The dataset in-
cludes many challenging scenarios involving many vehicles, bicycles,
and pedestrians moving around one another.

Evaluations of augmented background synthesis
An important part of our AADS system is synthesizing background
images in specific views using images captured in fixed views when
running closed-loop simulations. This ability stems from the utilization
of the image-based rendering technique and avoids prerequisite
modeling of the full environment.

There is a large literature on image-based rendering techniques, al-
though relatively little has been written on capturing scenes with sparse
images. We focused on wide baseline stereo image–based rendering for
street view scenes: The overlap between left images and right images
may be less thanhalf the size of full images. Technically, obtaining reliable
depth is an important challenge for image-based rendering techniques.
Thus, methods such as (21) use the multiview stereo method to estimate
depth maps. However, most street view datasets provide laser-scanned
point clouds, which can be used to generate initial depthmaps by render-
ing point clouds. As point clouds tend to be sparse and noisy, initial es-
timates of depthmaps are full of outliers and holes and need to be refined
before they are passed on to downstream processing. Thus, we proposed
an effective depth refinement method that included depth filtering and
completion procedures. To evaluate our depth refinement method, we
used initial and refined depth maps (Fig. 3, B and E) to synthesize the
same novel view. Results are shown in Fig. 3 (F and G, respectively).
Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019
When using depth maps without refinement to run image-based
rendering, the results suffered from artifacts near errors and holes in
depth maps. Specifically, in Fig. 3 (F and H), fluctuations appeared in
the green rectangle as the view changed, whereas window frames were
kept straight when using refined depth in the yellow rectangle.

To evaluate our image-based rendering algorithm (specifically the
novel view synthesis algorithm) with refined depthmaps, we compared
ourmethod with two representative approaches: the content preserving
warping method by Liu et al. (22) and the method by Chaurasia et al.
(23). Note that, in the implementation of themethod byChaurasia et al.
(23), we used the similarity of super pixels (24) to complete the depth
map and perform a local shape-preserving warp on each super pixel.

The synthesized images in Fig. 3 were generated using four reference
images. Because images were captured by a stereo camera, the four
reference images could be considered as two pairs of stereo images with
close to parallel views in which the angle between two optical axes of the
stereo images is small, but the baseline is relativelywide (about 1m).We
compared our view interpolation and extrapolation results with classical
methods. As shown in the third row of Fig. 3, themethod by Liu et al. (22)
performed well for small changes in the novel view compared to the input
views. When the view translation became larger, view distortion artifacts
became apparent (such as the fence in the green rectangle, the shape
of which is deformed inappropriately). For the method by Chaurasia
et al. (23), ghost artifacts appeared when neighboring super pixels were
assigned to inappropriate or incorrect depths. Our method obtained
correct depths and preserved invariant shapes of objects when the view
changes, handling both interpolation and extrapolation. The fourth row
of Fig. 3 evaluates another scene with both a wide baseline and a large
rotation angle. Because of large changes in the novel view, neither the
method by Liu et al. (22) nor themethod byChaurasia et al. (23) aligned
well with neighboring reference views. As shown in the figure, curb-
stones in the green rectangle and the white lane marker in the yellow
rectangle reveal misalignment artifacts. In addition, because of tone in-
consistencies in the input images, seams are prominent in the results of
the methods by Liu et al. (22) and Chaurasia et al. (23). In contrast, our
method could effectively eliminate misalignment and seam artifacts.

To further illustrate the effectiveness of our view synthesis approach
for closed-loop simulation, we have included a video (movie S3) that
shows the synthesized front camera view from a driving car that
changes lanes several times. Our view synthesis approach is sufficient
for handling such lane changes because it interpolates or extrapolates
the viewpoint.

Evaluations of trajectories synthesis
Another pillar for AADS is its ability to generate plausible traffic flow,
particularly when there are interactions between vehicles and pedes-
trians, e.g., heterogeneous agents whomove at different speeds andwith
different dynamics. This topic is a full research area in its own right, and
we developed techniques for heterogeneous agent simulations. For the
sake of completeness, we briefly show the main result in Fig. 4. Readers
are referred to (25) for more technical details. Specifically, Fig. 4 shows
the comparison with the ground truth from the input dataset, results of
our simulation method, and results of the method by Chao et al. (26), a
state-of-the-art multiagent simulation approach. In the evaluation, the
traffic was simulated on a straight four-lane road. For our method, the
number, positions, and velocities of agents were randomly initialized ac-
cording to the dataset. We evaluated the comparison using the metric of
velocity andminimumdistance probability distributions. Themetrics are
divided into 30 intervals. The probability of each interval is the divisor of
4 of 12



SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
the sample number in this interval and the total sample number. As
shown in Fig. 4, our simulation results are closer to the input data in both
the velocity distribution and the minimum distance distribution.
Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019
AADS evaluations by AD applications
As shown in Fig. 1, simulation and our AADS can simultaneously pro-
duce the following augmented data: (i) photorealistic RGB images with
Fig. 2. The ApolloScape dataset and its extension. Top: Table comparing ApolloScape with other popular datasets. Bottom: RGB images, annotations, and a point
cloud from top to bottom (left) and some labeled traffic trajectories from the dataset (right).
5 of 12



SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
Fig. 3. View synthesis results and effectiveness of depth refinement. (A and B) Raw RGB and depth images in our dataset, respectively. (C to E) Results of depth refinement
after filtering and completion. (F andG) Results of view synthesis using initial and refined depthswith close views in (H). (I toK) Final results of view synthesis using themethod by
Liu et al. (22), the method by Chaurasia et al. (23), and our method, respectively.
Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019 6 of 12



SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
annotation information such as semantic labels, 3D bounding boxes,
etc.; (ii) an augmented LiDAR point cloud; and (iii) typical traffic flows.
In the following evaluations, those data augmentationswere synthesized
on the basis of our ApolloScape dataset.We summarize the AADS syn-
thetic data and evaluations in terms of RGB images, point clouds, and
trajectories as follows:

1) AADS-RGB: For the baseline training set of ApolloScape-RGB,
we augmented RGB images with AADS and generated corresponding
annotations for augmented moving agents. This dataset is named
AADS-RGB and was used to evaluate our image synthesis method.

2) AADS-PC:With ourAADS system,we synthesized up to 100,000
new point cloud frames by simulating theVelodyneHDL-64E S3 LiDAR
sensor based on the ApolloScape-PC dataset. The simulation dataset has
the same object categories as and numbers of objects in each category
similar to ApolloScape-PC.

3) AADS-TRAJ: Our AADS system can also produce new tra-
jectories based on the ApolloScape-TRAJ dataset. We further eval-
uated such augmented data using a trajectory prediction method.
Object detection with AADS-RGB
For the evaluations of AADS’ capability to simulate camera images, we
used two real and three virtual datasets: ApolloScape-RGB–annotated
images (ApolloScape-RGB), CityScapes, virtual KITTI (VKITTI),
synthesized data from the popular simulator CARLA, and our synthe-
sized data (AADS-RGB).

We used the VKITTI (2) dataset to compare our systemwith a fully
syntheticmethod. The full dataset contains 21,260 imageswith different
weather and lighting conditions. A total of 1600 images were randomly
selected as a training set.
Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019
CityScapes (27) is a dataset of urban street scenes. There are 5000
annotated images with fine instance-level semantic labels. We used
the validation set of 492 images as the testing dataset.

CARLA (4) is themost recent and popular VR simulator forAD.Up
to now, it provides two manually built scenes with car models. Because
the size of the scene is limited, we generated 1600 images distributed as
evenly as possible in the simulated scene.

In this section, we show the effectiveness of the AADS-RGB data.
We used the state-of-the-art objection detection algorithm Mask R-CNN
(28) to perform the experiments. The results were compared with the
standard average precision metric of an intersection over union (IoU)
threshold of 50% (AP50) and 70% (AP70) and a mean bounding box
AP (mAP) with an across threshold at IoU ranging from 5 to 95% in
steps of 5%. Because we mainly augmented textured vehicles onto
images in our object detection evaluation, the evaluation results came
from vehicles.

Synthetic data generation is an easyway to obtain large-scale datasets
and has been proven to be effective in AD. However, the data statistics
and distribution limit the capabilities of virtual data. When applying a
model trained with synthetic data to real images, there is a domain gap.
Because our simulation method was built on realistic background,
placement, and moving object synthesis, it effectively reduced the do-
main problem. Our method produced an image (Fig. 5C) that is more
visually similar to a real image fromCityScapes (Fig. 5D) than it is to the
VR simulator CARLA (Fig. 5A) or the fully synthetic dataset VKITTI
(Fig. 5B), i.e., images from our system have small domain gaps.

To quantitatively verify the effectiveness of our simulated data, we
chose to train object detectors with our data and data fromCARLA and
VKITTI. The trained detectors were tested on the CityScape dataset,
which has no overlap with any of the training sets.

We trained models on CARLA-1600, VKITTI-1600, ApolloScape-
RGB-1600, and AADS-RGB-2400 separately, where the suffix shows
the number of images used for training. Then, the object detection
performance of the trained model was evaluated on the CityScapes val-
idation set. Results are shown in Fig. 5 (right). It can be seen that, be-
cause of the domain gap, the metrics of ApolloScape-1600 are higher
than those of VKITTI-1600 or CARLA-1600. Note that images in
VKITTI are smaller than images in other datasets.We therefore applied
the VKITTI-1600 model on downsampled CityScapes to make the
comparisons fair. Otherwise, the VKITTI-1600 model tended to miss
large cars, leading to a degradation in detection performance. Adding
Fig. 4. Comparisonof traffic synthesis. Velocityandminimumdistancedistributionof
traffic simulation using our method, the method by Chao et al. (26), and the ground truth.
Fig. 5. RGB image augmentation evaluations. The four images on the left were selected from CARLA (A), VKITTI dataset (B), our AADS-RGB dataset (C), and the
testing dataset CityScapes (D). The bar graph on the right shows the evaluation results using mAP, AP50, and AP70 metrics, respectively.
7 of 12



SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
800 simulated images to ApolloScape-1600 (AADS-RGB-2400) im-
proved the results by roughly 1%. This demonstrates that our simula-
tion data may be closer to real-world data than data from VR.
Instance segmentation with AADS-PC
To evaluate AADS-PC simulations, we used the KITTI-PC dataset,
the ApolloScape-PC, and our simulated point cloud (AADS-PC).

The KITTI-PC dataset (29) consists of 7481 training and 7518 test-
ing frames. These real point cloud frameswere labeled corresponding to
capturedRGB images in the front view. This dataset provides evaluation
benchmarks for (i) 2D object detection and orientation estimation, (ii)
3D object detection, and (iii) bird’s eye view evaluations.

On the basis of those datasets, we evaluated our AADS system using
3D instance segmentation. It was a typical point cloud–based AD
application, which simultaneously ran 3D object detection and point
cloud segmentation. We used the state-of-the-art algorithm PointNet++
(30) to perform quantitative evaluation. The results were evaluated using
a mAP named mAP(Bbox) and a mean mask AP named mAP(mask).

We evaluated the accuracy and effectiveness of the model trained by
our simulation data and compared it with themodels trainedwithman-
ually labeled real data. These simulation and real data were randomly
selected from theAADS-PC andApolloScape-PC datasets, respectively.
The mAP evaluation results of the instance segmentation models are
presented in Fig. 6A. When trained with only our simulation data,
the instance segmentation models produced results competitive with
the precisely labeled real data.When using 100,000 data points generated
by simulation, the segmentation performance was better than a model
trained on 4000 real data points and came close to models trained on
16,000 and 100,000 real data points. In short, by using simulation to in-
crease the size of the training set, performance can approach that of
models trained on real-world data.

Next, we used simulation data to boost the real data (i.e., pretrain the
model), as shown in Fig. 6C. Boosting with simulation data significantly
improves (by 2 to 4%) the validation accuracy of the original model
trained with only the real data. On the ApolloScape-PC dataset, we
found that using 100,000 simulated data points to pretrain the model
and 1600 real data for fine-tuning outperformed a model trained with
16,000 real data points in terms of the average mAP of all object types.
When fine-tuned with 32,000 real data points, the model surpassed a
Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019
model trained on 100,000 real data. These results indicate that our
simulation approach may reduce up to 80 to 90% of manually labeled
data, greatly reducing the need to label images and thus saving time and
money. More details can be found in (31).

Last, on the basis of instance segmentation, we compared our object
placement (traffic simulation) method with alternative placement stra-
tegies, e.g., placing object randomly or under specific rules (32). As
shown in Fig. 6B, the accuracy of models trained with simulated data
outperformed (by 4 to 7%) those trained with the other object place-
ment strategies. The accuracy ofmodels trainedwith our simulated data
is close to that of a model trained on real data (gap of only 1 to 4%,
depending on the application).
TrafficPredict with AADS-TRAJ
To evaluate the effectiveness of synthesized traffic, i.e., trajectories of
cars, cyclist, and pedestrians, we adopted the TrafficPredict method
Ma et al. (33) for quantitative evaluation. This method takes motion
patterns of traffic agents in the first Tobs frames as input and predicts
their positions in the following Tpred frames. In our evaluation, Tobs
and Tpred were set to 5 and 7, respectively. We extended 20,000 real
frames fromApolloScape-TRAJdataset with an additional 20,000 sim-
ulated frames from our AADS-TRAJ dataset to train the deep neural
network proposed in the method by Ma et al. (33). Performance of the
trained model was measured using mean Euclidean distance between pre-
dicted positions and ground truth. In our case, average displacement error
(mean Euclidean distance of all predicted frames) and final displacement
error (mean Euclidean distance of the Tpred-th predicted frame) were eval-
uated.Prediction errorwas reduced sharplywhen trainingwithan addition-
al 20,000 simulated data points (Fig. 7). The error rate for cars was reduced
the most because cars were well represented in the simulated trajectories.
CONCLUSIONS
In the previous section, we showed the effectiveness of AADS for var-
ious tasks in AD. All of these tasks were achieved by using captured
scene data (location specific) and traffic trajectory data (general). The
entireAADS system requires very little human intervention. The system
maybe used to generate large amounts of realistic training datawith fine
annotation, or it may be used in-line to simulate the entire AD system
from perception to planning. The realism
and scalability of AADS make it possible
to be used in real-world scenarios, as long
as the background can be captured.

Compared to VR-based simulations,
AADS’s viewpoint change for RGB data
is limited. Deviating too much from the
original captured viewpoints leads to de-
graded image quality. However, we be-
lieve that the limited viewing range is
actually acceptable for AD simulation.
For the most part, a vehicle drives on flat
roads, and the possible viewpoint changes
are limited to rotation and 2D translation
on the road plane. There is no need to
support a bird’s eye view or a third-person
perspective for RGB-based perception.
Another major limitation of AADS is the
lack of lighting/environmental changes
(snow/rain) in the scene. For now, these
must be the same in the captured images,
Fig. 6. LiDAR simulation evaluations. (A) Evaluation of dataset’s size and type (real or simulation) for real-time
instance segmentation. (B) Evaluation results of different object placement methods. (C) Real data boosting evalua-
tions (mean mask AP) using instance segmentation.
8 of 12



SC I ENCE ROBOT I C S | R E S EARCH ART I C L E

Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019
but there have been significant advances
in image synthesis using generative ad-
versary networks (34, 35). Preliminary
results synthesizing seasonal changeshave
been demonstrated. Enabling full lighting/
environmental effect synthesis within
AADS is a promising direction that we
are actively pursuing.
MATERIALS AND METHODS
Data preprocessing
AADS used the scanned real images for
simulation.Our goal was to simulate new
vehicles and pedestrians in the scanned
scene with new trajectories. To achieve
this goal, before simulating data, our
AADS should remove moving objects,
e.g., vehicles and pedestrians, from
scanned RGB images and point clouds.
Automatic detection and removal of
moving objects constitute a full research
topic in its own right; fortunately, most
recent datasets provide semantic labels
of RGB images, including point clouds.
By using semantic information in the
ApolloScape dataset, we removed objects
of a specific type, e.g., cars, bicycles,
trucks, and pedestrians. After removing
moving objects, numerous holes in both
RGB images and point clouds appear,
whichmust be carefully filled to generate
a complete and clean background for
AADS. We used the most recent RGB
image inpainting method (36) to close
the holes in the images. This method
used the semantic label to guide a
learning-based inpainting technique,
which achieved acceptable levels of qual-
ity. The point cloud completion will be
introduced in the depth processing for
novel background synthesis (see the next
section).

Given synthesized background im-
ages, we could place any 3D CG model
on the ground and then render it into
the image space to create a new, composite
simulation image. However, to make the
composite image photorealistic (look close
to the real image), we must first estimate
the illumination in background images.
This enables our AADS to render 3D
CG models with consistent shadows on
the ground and on vehicle bodies. We
solved such outdoor lighting estimation
problems according to the method in
(37). In addition, to further improve the
reality of composite images, our AADS al-
so provided an optional feature to enhance
Fig. 7. TrafficPredict evaluations. Comparison of trajectory prediction with 20,000 real trajectory frames and an addi-
tional 20,000 simulation trajectory frames.
Fig. 8. Novel view synthesis pipeline. (A) The four nearest reference images were used to synthesize the target view in
(D). (B) The four reference imageswerewarped into the target viewvia depth proxy. (C) A stitchingmethodwas used to yield a
complete image. (D) Final results in the novel viewwere synthesized after post-processing, e.g., hole filling and color blending.
9 of 12



SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
the appearance of 3D CG models by grabbing textures from real images.
Specifically, given an RGB image with unremoved vehicles, we retrieved
the corresponding 3D vehicle models and aligned those models to the
input image using themethod in (38). Similar to (39), we then used sym-
metric priors to transfer and complete the appearance of 3D CGmodels
from aligned real images.

Augmented background synthesis
Given a dense point cloud and image sequence produced from
automatic scanning, themost straightforwardway to build virtual assets
for an AD simulator is to reconstruct the full environment. This line of
work focuses on using geometry and texture reconstructionmethods to
produce complete large-scale 3D models from the captured real scene.
However, these methods cannot avoid hand editing while modeling,
which is expensive in terms of time, computation, and storage.

Here, we directly synthesized an augmented background in a spe-
cific view as needed during simulation. Ourmethod avoidedmodeling
the full scene ahead of running the simulation. Technically, our
method created such a scan-and-simulate system by using the view
synthesis technique.

To synthesize a target view, we needed to first obtain dense depth
maps for input reference images. Ideally, these depth maps should be
extracted from a scanned point cloud. Unfortunately, such depth maps
will be incomplete andunreliable. In our case, these problems camewith
scanning: (i) The baseline of our stereo camera was too small compared
to the size of street view scenes, and consequently, there were too few
data points for objects that were too far from the camera. (ii) The scenes
were full of numerous moving vehicles and pedestrians that needed to
be removed. Unfortunately, their removal produced holes in scanned
point clouds. (iii) The sceneswere always complicated (e.g.,many build-
ings are fully covered with glasses), which led to scanning sensor failure
and thus incomplete scanned point clouds. We introduced a two-step
procedure to address the lack of reliability and incompleteness in depth
maps: depth filtering and depth completion.

With respect to depth filtering, we carried out a judiciously selected
combination of pruning filters. The first pruning filter is amedian filter:
A pixel was pruned if its depth value was sufficiently different from the
median filtered value. To prevent removing thin structures, the kernel
size of the median filter was set to small (e.g., 5 by 5 in our implemen-
tation). Then, a guided filter (40) was applied to keep thin structures and
to enhance edge alignment between the depthmap and the color image.
After getting a muchmore reliable depth, we completed the depth map
by propagating the existing depth value to the pixels in the holes by
solving a first-order Poisson equation similar to the one used in color-
ization algorithms (41).

After depth filtering and completion, reliable dense depthmaps that
could provide enough geometry information to render an image into
virtual views were produced. Similar to (23), given a target virtual view,
we selected the four nearest reference views to synthesize the virtual
view. For each reference view, we first used the forward mapping
method to produce a depth map with camera parameters of the virtual
view and then performed depth inpainting to close small holes. Then, a
backward mapping method and occlusion test were used to warp the
reference color image into the target view.

A naïve way to synthesize the target image is to blend all the warped
images together. However, when we blended the warped images using
the view angle penalty following a previous work (23), there always ex-
isted obvious artifacts. Thus, we solved this problem as an image stitch-
ing problem rather than direct blending. Technically, for each pixel xi of
Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019
the synthesized image in the target virtual view, it is optimized to choose
a color from one of those warped images. This can be formulated as a
discrete pixel labeling energy function

arg min
fxig

∑
i
l1E1ðxiÞ þ l2E2ðxiÞ þ ∑

ðijÞ∈N
l3E3ðxi; xjÞ

þ l4E4ðxi; xjÞ þ l5E5ðxi; xjÞ ð1Þ

Here, xi is the ith pixel of the target image, andN is the pixel set of xi’s
one ring neighbor. E1(xi) is the pixel-wise data term, which is defined by
extending the view angle penalty in (42). In contrast to the scenarios in
(42), depthmaps of the street view scene always contain pixelswith large
depth values, which lead the angle view penalty to be too small. To ad-
dress this problem, when the penalty is close to zero, we added another
term to help choose the appropriate image by taking advantage of cam-
era position information. Specifically, E1(xi) is defined as E1(xi) = Eangle
(xi)Wlabel(xi). Here, Eangle(xi) is the view angle penalty in (42). When
Eangle(xi) is too small, it will be hooked and set to 0.01 in our implemen-
tation. This is done to balance two energy terms and makeWlabel(xi) ef-
fective.Wlabel(xi) is defined asW labelðxiÞ ¼ DposðCxi ;CsynÞDdirðCxi ;CsynÞ,
which evaluates the difference between the reference view and the target
view. Here, Cxi and Csyn denote the view choice for the camera for pixel
xi and for the target view’s camera, respectively. Furthermore, Dpos repre-
sents the distance from the camera center, andDdir is the angle between the
optical axes of the two cameras.

E2(xi) is the occlusion term used to exclude the occlusion areas while
minimizing the pixel labeling energy.Most occlusions appear near depth
edges. Thus, when using the backward mapping method to render the
warped images, we detected occlusions by performing depth testing.
All pixels in the reference view with larger depth values than those of
the source depth can yield an occlusion mask, which is then used to
define E2(xi). Specifically, when an occlusion mask is invalid, i.e., the
pixel is nonocclusion, we set E2(xi) = 0 to add no penalty into the
energy function. When a pixel is occluded, we set E2(xi) = ∞ to ex-
clude this pixel completely.

The rest of the terms inEq. 1 are smoothness terms: color termE3(xi,xj ),
depth term E4(xi, xj), and color gradient term E5(xi, xj). Similar to (43),
the color term E3(xi, xj) is defined by a truncated seam-hiding pair-
wise cost first introduced in (44)E3ðxi; xjÞ ¼ minðjjcxii � c

xj
i j 2; tcj Þ þ

minðjjcxij � c
xj
j j 2; tcj Þ, where cxii is the RGB value of pixel xi. Similarly,

the depth term E4(xi, xj) is defined as E4ðxi; xjÞ ¼ minðjdxii �
d
xj
i j; tdÞ þminðjdxij � d

xj
j j; tdÞ, where dxii is the depth of pixel xi,

and the RGB and depth truncation thresholds are set to tc = 0.5 and
td = 5 m in our implementation, respectively. Because the illumination
difference may occur between different reference images, the color
difference is not sufficient to ensure a good stitch. An additional gradi-
ent difference E5(xi, xj) is used. By assuming that the gradient vector
should be similar on both sides of the seam, we defined E5ðxi; xjÞ ¼
∣gxi � gxj ∣þ ∣gyi � gyj ∣, where g

x
i is a color space gradient of the ith

pixel in the image and includes xi.
The term weights in Eq. 1 are set to l1 = 200, l2 = 1, l3 = 200, l4 =

100, and l5 = 50. The labeling problems are solved using the sequential
tree-reweightedmessage passing (TRW-S)method (45). Figure 8 shows
the pipeline and results of augmented background synthesis. Note that,
in Fig. 8C, a color difference may exist near the stitching seams after
image stitching. To obtain consistent results, a modified Poisson image
blendingmethod (46) was performed. Specifically, we selected the near-
est reference image as the source domain and then fixed its edges to
10 of 12



SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
propagate color brightness to the other side of the stitch seams. After
solving the Poisson equation, we obtained the fusion result shown in
Fig. 8D. Note that, when the novel view is far from the input views, e.g.,
large view extrapolation, there will be artifacts because of disoccluded
regions that cannot be filled in by stitching together pieces of the input
images.Wemarked those regions as holes and set their gradient value to
zero. Thus, these holes were filled with plausible blurred color when
solving the Poisson equation.

Moving objects’ synthesis and data augmentation
With a synthesized background image in the target view, a complete
simulator should have the ability to synthesize realistic traffics with di-
verse moving objects (e.g., vehicles, bicycles, and pedestrians) and pro-
duce corresponding semantic labels and bounding boxes in simulated
images and LiDAR point clouds.

We used the data-driven method described in (26) to address chal-
lenges involving traffic generation and placement of moving objects.
Specifically, given the localization information, we first extracted lane
information from an associated high-definition (HD) map. Then, we
randomly initialized the moving objects’ positions within lanes and en-
sured that the directions of moving objects were consistent with the
lanes.Weused agents to simulate objects’movements under constraints
such as avoiding collisions and yielding to pedestrians. The multiagent
systemwas iteratively deduced andoptimized using previously captured
traffic following a data-driven method. Specifically, we estimated mo-
tion states from our real-world trajectory dataset ApolloScape-TRAJ;
these motion states included position, velocity, and control direction
information of cars, cyclists, and pedestrians. Note that such real dataset
processing was performed in advance of simulation and needed to be
processed just once. During simulation runtime, we used an interactive
optimization algorithm to make decisions for each agent at each frame
of the simulation. In particular, we solved this optimization problem by
choosing a velocity from the datasets that tends tominimize our energy
function. The energy function was defined on the basis of the locomo-
tion or dynamics rules of heterogeneous agents, including continuity of
velocity, collision avoidance, attraction, direction control, and other user-
defined constraints.

With generated traffic, i.e., the object placement in each simulation
frame, we rendered 3Dmodels into the RGB image space and generated
annotated data using the physical rendering engine PBRT (47). Mean-
while, we also generated a corresponding LiDAR point cloud with an-
notations using the method introduced in the next section.

LiDAR synthesis
Given 3Dmodels and corresponding placement, it is relatively straight-
forward to synthesize LiDARpoint cloudswith popular simulators such
as CARLA (4). Nevertheless, there are opportunities to take advantage
of specific LiDAR sensors (e.g., Velodyne HDL-64E S3). We pro-
posed a realistic point cloud synthesis method by effectively modeling
the specific LiDAR sensor following a data-driven fashion. Technically,
a real LiDAR sensor captured the surrounding scene by measuring the
time of flight for pulses of each laser beam (48). One laser beam was
emitted from the LiDAR and then reflected from target surfaces. A
3Dpointwas then generated if the returned pulse energy of a laser beam
was big enough. We modeled the behavior of laser beams to simulate
this physical process. Specifically, the emitted laser beam could be
modeled using parameters including the vertical and azimuth angles
and their angular noises, as well as the distance measurement noise.
For example, the Velodyne HDL-64E S3 LiDAR sensor emits 64 laser
Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019
beams in different vertical angles ranging from −24.33° to 2°. During
data acquisition, HDL-64E S3 rotates around its own upright direction
and shoots laser beams at a predefined rate to accomplish 360° coverage
of the scenes. Ideally, such models can be adaptive to other types of
LiDAR sensors. Model parameters should depend on the specific
type of sensor. However, we experimentally found that parameters
vary considerably, even among devices of the same type. To be as
close as possible to reality, we fitted the model from real point clouds
to statistically derive those parameters.

Specifically, we collected real point clouds fromHDL-64E S3 sensors
on top of parked vehicles, guaranteeing smoothness of point curves
from different laser beams. The points of each laser beam were then
marked manually and fitted by a cone with the apex located in the
LiDAR center. The half-angle of the cone minus p/2 forms the real
vertical angle, whereas the noise variance was determined from the
deviation of lines constructed by the cone apex and points from the
cone surface. The real vertical angles usually differed from ideal angles
by 1° to 3°. In our implementation, wemodeled the noise with standard
Gaussian distribution, setting the distance noise variance to 0.5 cm and
the azimuth angular noise variance to 0.05°.

To generate a point cloud, we computed intersections between the
laser beams and the scene. Specifically, we proposed a cubed,map-based
method to mix the background of the scenes in the form of points and
meshes of 3D CG models. Instead of computing intersections between
the beams and the mixed data, we computed the intersection with the
projected maps (e.g., depth map) of scenes, which offer the equivalent
information but in a much simpler form. Note that our LiDAR
simulation method can be easily extended for arbitrary LiDAR sensors
and to any sensor solution for different numbers and poses of sensors.
Figure S1 shows the visual results of our LiDAR simulation.
SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/28/eaaw0863/DC1
Fig. S1. Visual evaluations of point cloud simulation.
Movie S1. Full movie.
Movie S2. Scan-and-simulation pipeline.
Movie S3. Synthesizing lane changes.
Movie S4. Data augmentation.
Movie S5. Novel view synthesis evaluations.
REFERENCES AND NOTES
1. N. Kalra, S. M. Paddock, Driving to safety: How many miles of driving would it take to

demonstrate autonomous vehicle reliability? Transp. Res. A Policy Pract. 94, 182–193 (2016).
2. A. Gaidon, Q. Wang, Y. Cabon, E. Vig, Virtual worlds as proxy for multi-object tracking

analysis, in Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR, 2016).

3. M. Müller, V. Casser, J. Lahoud, N. Smith, B. Ghanem, Sim4CV: A photo-realistic simulator
for computer vision applications. Int. J. Comput. Vis. 126, 902–919 (2018).

4. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, CARLA: An open urban driving
simulator, in Proceedings of the 1st Annual Conference on Robot Learning (PMLR, 2017),
pp. 1–16.

5. S. Shah, D. Dey, C. Lovett, A. Kapoor, AirSim: High-fidelity visual and physical simulation
for autonomous vehicles. Field Serv. Rob. 5, 621–635 (2018).

6. NVIDIA, NVIDIA Drive Constellation: Virtual Reality Autonomous Vehicle Simulator
(NVIDIA, 2017).

7. A. C. Madrigal, “Inside Waymo’s secret world for training self-driving cars,” The Atlantic,
23 August 2017; www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-
testing-and-simulation-facilities/537648/.

8. M. Likhachev, D. Ferguson, Planning long dynamically feasible maneuvers for
autonomous vehicles. Int. J. Robot. Res. 28, 933–945 (2009).

9. S. J. Anderson, S. C. Peters, T. E. Pilutti, K. Iagnemma, Design and development of
an optimal-control-based framework for trajectory planning, threat assessment, and
11 of 12

http://robotics.sciencemag.org/cgi/content/full/4/28/eaaw0863/DC1
http://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
http://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/


SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
semi-autonomous control of passenger vehicles in hazard avoidance scenarios. Robot. Res.
70, 39–54 (2011).

10. C. Katrakazas, M. Quddus, W.-H. Chen, L. Deka, Real-time motion planning methods
for autonomous on-road driving: State-of-the-art and future research directions.
Transp. Res. Part C Emerg. Technol. 60, 416–442 (2015).

11. J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang, U. Franke,
N. Appenrodt, C. G. Keller, E. Kaus, R. G. Herrtwich, C. Rabe, D. Pfeiffer, F. Lindner, F. Stein,
F. Erbs, M. Enzweiler, C. Knoppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke, M. Ghanaat,
M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, E. Zeeb, Making Bertha drive—An autonomous
journey on a historic route. IEEE Intell. Transp. Syst. Mag. 6, 8–20 (2014).

12. A. Geiger, M. Lauer, F. Moosmann, B. Ranft, H. Rapp, C. Stiller, J. Ziegler, Team AnnieWAY’s
entry to the 2011 grand cooperative driving challenge. IEEE Trans. Intell. Transp. Syst.
13, 1008–1017 (2012).

13. M. Buehler, K. Iagnemma, S. Singh, The DARPA Urban Challenge: Autonomous Vehicles in
City Traffic (Springer-Verlag, 2009), vol. 56.

14. A. Best, S. Narang, D. Barber, D. Manocha, Autonovi: Autonomous vehicle planning with
dynamic maneuvers and traffic constraints, in Proceedings of the 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS, 2017), pp. 2629–2636.

15. S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng, D. Rus, M. H. Ang,
Perception, planning, control, and coordination for autonomous vehicles.Machines5, 6 (2017).

16. M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, R. Vasudevan, Driving in
the matrix: Can virtual worlds replace human-generated annotations for real world tasks?
arXiv:1610.01983 (2016).

17. S. R. Richter, V. Vineet, S. Roth, V. Koltun, Playing for data: Ground truth from computer
games, in Proceedings of the 2016 European Conference on Computer Vision (ECCV, 2016),
pp. 102–118.

18. H. Lin, J. Gao, Y. Zhou, G. Lu, M. Ye, C. Zhang, L. Liu, R. Yang, Semantic decomposition and
reconstruction of residential scenes from LiDAR data. ACM Trans. Graph. 32, 66 (2013).

19. H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, C. Rother, Augmented reality
meets computer vision: Efficient data generation for urban driving scenes. Int. J. Comput.
Vis. 126, 961–972 (2018).

20. X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, R. Yang, The ApolloScape open dataset
for autonomous driving and its application. arXiv:1803.06184 (2018).

21. E. Penner, L. Zhang, Soft 3D reconstruction for view synthesis. ACM Trans. Graph. 36, 235
(2017).

22. F. Liu, M. Gleicher, H. Jin, A. Agarwala, Content-preserving warps for 3D video
stabilization. ACM Trans. Graph. 28, 44 (2009).

23. G. Chaurasia, S. Duchene, O. Sorkine-Hornung, G. Drettakis, Depth synthesis and local
warps for plausible image-based navigation. ACM Trans. Graph. 32, 30 (2013).

24. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC superpixels compared to
state-of-the-art superpixelmethods. IEEE Trans. PatternAnal.Mach. Intell. 34, 2274–2282 (2012).

25. J. Ren, W. Xiang, Y. Xiao, R. Yang, D. Manocha, X. Jin, Heter-Sim: Heterogeneous multi-agent
systems simulation by interactive data-driven optimization. arXiv:1812.00307 (2018).

26. Q. Chao, Z. Deng, J. Ren, Q. Ye, X. Jin, Realistic data-driven traffic flow animation using
texture synthesis. IEEE Trans. Vis. Comput. Graph 24, 1167–1178 (2018).

27. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
B. Schiele, The cityscapes dataset for semantic urban scene understanding, in Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2016).

28. K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV, 2017), pp. 2980–2988.

29. A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? The KITTI vision
benchmark suite, in Proceedings of the 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR, 2012), pp. 3354–3361.

30. C. R. Qi, L. Yi, H. Su, L. J. Guibas, PointNet++: Deep hierarchical feature learning on point
sets in a metric space, in Proceedings of the 2017 Advances in Neural Information
Processing Systems (2017), pp. 5099–5108.

31. J. Fang, F. Yan, T. Zhao, F. Zhang, D. Zhou, R. Yang, Y. Ma, L. Wang, Simulating LiDAR point
cloud for autonomous driving using real-world scenes and traffic flows. arXiv:1811.07112
(2018).

32. X. Yue, B. Wu, S. A. Seshia, K. Keutzer, A. L. Sangiovanni-Vincentelli, A LiDAR point cloud
generator: From a virtual world to autonomous driving, in Proceedings of the ACM
International Conference on Multimedia Retrieval (ICMR, 2018), pp. 458–464.
Li et al., Sci. Robot. 4, eaaw0863 (2019) 27 March 2019
33. Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, D. Manocha, TrafficPredict: Trajectory
prediction for heterogeneous traffic-agents. arXiv:1811.02146 (2018).

34. P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, Image-to-image translation with conditional
adversarial networks. arXiv:1611.07004 (2017).

35. T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, B. Catanzaro, High-resolution image
synthesis and semantic manipulation with conditional GANs, in Proceedings of the 2018
IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2018).

36. Y. Song, C. Yang, Y. Shen, P. Wang, Q. Huang, C.-C. Jay Kuo, SPG-Net: Segmentation
prediction and guidance network for image inpainting. arXiv:1805.03356 (2018).

37. Y. Liu, X. Qin, S. Xu, E. Nakamae, Q. Peng, Light source estimation of outdoor scenes for
mixed reality. Vis. Comput. 25, 637–646 (2009).

38. M. Corsini, M. Dellepiane, F. Ponchio, R. Scopigno, Image-to-geometry registration:
A mutual information method exploiting illumination-related geometric
properties, in Computer Graphics Forum (Wiley Online Library, 2009), vol. 28,
pp. 1755–1764.

39. N. Kholgade, T. Simon, A. Efros, Y. Sheikh, 3D object manipulation in a single photograph
using stock 3D models. ACM Trans. Graph. 33, 127 (2014).

40. K. He, J. Sun, X. Tang, Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35,
1397–1409 (2013).

41. A. Levin, D. Lischinski, Y. Weiss, Colorization using optimization. ACM Trans. Graph. 23,
689–694 (2004).

42. C. Buehler, M. Bosse, L. McMillan, S. Gortler, M. Cohen, Unstructured lumigraph rendering,
in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (2001), pp. 425–432.

43. P. Hedman, S. Alsisan, R. Szeliski, J. Kopf, Casual 3D photography. ACM Trans. Graph. 36,
234 (2017).

44. V. Kwatra, A. Schödl, I. Essa, G. Turk, A. Bobick, Graphcut textures: Image and video
synthesis using graph cuts. ACM Trans. Graph. 22, 277–286 (2003).

45. V. Kolmogorov, Convergent tree-reweighted message passing for energy minimization.
IEEE Trans. Pattern Anal. Mach. Intell. 28, 1568–1583 (2006).

46. P. Pérez, M. Gangnet, A. Blake, Poisson image editing. ACM Trans. Graph. 22, 313–318
(2003).

47. M. Pharr, W. Jakob, G. Humphreys, Physically Based Rendering: From Theory to
Implementation (Morgan Kaufmann, 2016).

48. S. Kim, I. Lee, Y. J. Kwon, Simulation of a Geiger-mode imaging LADAR system for
performance assessment. Sensors 13, 8461–8489 (2013).

Funding: This work was supported by NSFC grants 61732016 (to W.W.X.), 61872398 and
61632003 (to G.P.W.), and National Key R&D Program of China 2017YFB1002700 (to G.P.W.).
Author contributions: R.G.Y. conceived the project. W.L. and C.W.P. developed the
concept and systems. J.P.R. developed the trajectory synthesis framework. R.Z. and Q.C.G.
performed the synthesized RGB image evaluations. X.Y.H. helped collect the RGB and point
cloud datasets. J.F. and F.L.Y. performed the synthesized LiDAR point cloud evaluations.
Y.X.M. helped collect the trajectories dataset and performed the simulated trajectory evaluations.
G.P.W., W.W.X., and H.J.G. discussed the results and contributed to the final manuscript. W.L.,
D.M., and R.G.Y. wrote the paper. Competing interests:W.L., C.W.P., and R.Z. completed the work
while interning with Baidu Research. F.L.Y., J.F., and R.G.Y. are inventors on patent application
no. CN20181105574.2, “A method of LIDAR point cloud simulation for autonomous driving.”
The other authors declare that they have no competing interests. Data and materials
availability: The RGB and point cloud datasets (ApolloScape-RGB and ApolloScape-PC) are hosted
with the web link http://apolloscape.auto/scene.html. The trajectory dataset (ApolloScape-TRAJ)
announced along with this paper can be freely downloaded through the link http://apolloscape.
auto/trajectory.html. Some of the data used and the code are proprietary.

Submitted 4 December 2018
Accepted 5 March 2019
Published 27 March 2019
10.1126/scirobotics.aaw0863

Citation: W. Li, C. W. Pan, R. Zhang, J. P. Ren, Y. X. Ma, J. Fang, F. L. Yan, Q. C. Geng, X. Y. Huang,
H. J. Gong, W. W. Xu, G. P. Wang, D. Manocha, R. G. Yang, AADS: Augmented autonomous
driving simulation using data-driven algorithms. Sci. Robot. 4, eaaw0863 (2019).
12 of 12

https://arxiv.org/abs/1610.01983
https://arxiv.org/abs/1803.06184
https://arxiv.org/abs/1812.00307
https://arxiv.org/abs/1811.07112
https://arxiv.org/abs/1811.02146
https://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1805.03356
http://apolloscape.auto/scene.html
http://apolloscape.auto/trajectory.html
http://apolloscape.auto/trajectory.html


AADS: Augmented autonomous driving simulation using data-driven algorithms

P. Wang, D. Manocha and R. G. Yang
W. Li, C. W. Pan, R. Zhang, J. P. Ren, Y. X. Ma, J. Fang, F. L. Yan, Q. C. Geng, X. Y. Huang, H. J. Gong, W. W. Xu, G.

DOI: 10.1126/scirobotics.aaw0863
, eaaw0863.4Sci. Robotics 

ARTICLE TOOLS http://robotics.sciencemag.org/content/4/28/eaaw0863

MATERIALS
SUPPLEMENTARY http://robotics.sciencemag.org/content/suppl/2019/03/25/4.28.eaaw0863.DC1

REFERENCES

http://robotics.sciencemag.org/content/4/28/eaaw0863#BIBL
This article cites 25 articles, 0 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science Robotics
American Association for the Advancement of Science. No claim to original U.S. Government Works. The title 
New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee 

(ISSN 2470-9476) is published by the American Association for the Advancement of Science, 1200Science Robotics 

http://robotics.sciencemag.org/content/4/28/eaaw0863
http://robotics.sciencemag.org/content/suppl/2019/03/25/4.28.eaaw0863.DC1
http://robotics.sciencemag.org/content/4/28/eaaw0863#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service



