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In this paper, we develop a domain-decomposed subspace and multigrid solver to analyze 
the stress distribution for large-scale finite element meshes with millions of degrees 
of freedom. Through the domain decomposition technique, the shape editing directly 
updates the data structure of local finite element matrices. Doing so avoids the expensive 
factorization step in a direct solver and provides users with a progressive feedback of 
the stress distribution corresponding to the mesh operations: a fast preview is achieved 
through the subspace solver, and the multigrid solver refines the preview result if the 
user needs to examine the stress distribution carefully at certain design stages. Our system 
constructs the subspace for stress analysis using reduced constrained modes and builds 
a three-level multigrid solver through the algebraic multigrid method. We remove mid-
edge nodes and lump unknowns with the Schur complement method. The updating and 
solving of the large global stiffness matrix are implemented in parallel after the domain 
decomposition. Experimental results show that our solver outperforms the parallel Intel 
MKL solver. Speedups of 50%–100% can be achieved for large-scale meshes with reasonable 
pre-computation costs when setting the stopping criterion of the multigrid solver to be 
1e−3 relative error.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In Computer Graphics, both geometric editing that modifies the shapes of 3D models and stress analysis using the finite 
element method (FEM) have been extensively studied. The application of these two techniques to improve the structural 
stability of 3D printouts also receives many research interests (Stava et al., 2012; Zhou et al., 2013). Nevertheless, these two 
categories of research focus on distinctive objectives and their computing procedures differ from each other significantly. 
Existing design systems and commercial CAD/CAE packages only integrate the FEM analysis with the shape editing at the 
user interface level and use separate algorithmic subroutines to deal with each of them.

Clearly, a more in-depth coupling between the shape editing and FEM simulation will improve system efficiency and 
deliver better design experiences to the user. To this end, Nobuyuki and colleagues (Umetani et al., 2011) re-use the linear 
FEM data structure to achieve a fast response of 2D designs. The problem of fabrication-aware shape editing was also 
explored in Xie et al. (2015), where the stiffness matrix is directly parameterized using the editing parameters like scaling, 
rotating etc. to expedite the FEM matrix assemblage. However, those existing approaches adopt direct matrix solvers and 
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Fig. 1. The integration of IWires shape editing (Gal et al., 2009) and FEM stress analysis via domain decomposition for a 3D manipulator model with around 
five million DOFs. (a) Extract sharp edges, highlighted as blue lines, to form wires as the editing interface. (b) Decompose the model into domains. (c) The 
stress analysis result under the applied external forces, which are shown as red arrows in (b). (d) & (e) show how the editing operations reduce the stress 
peaks at manipulator’s base to improve its structural stability. In our setting, high stress values are visualized in red and low stress values are in blue. The 
light gray shapes are the deformation results. Since the editing operation is to thicken the basis of the manipulator, we only need to update the subspace 
and FEM data structure for the corresponding domain. The local updating and solving time of our solver (updating + solving takes 174.27 s) is roughly 70%
faster than the parallel PARDISO solver from Intel Math Kernel Library (numerical factorization + solving takes 292.79 s). Please also see the 
accompanied video for the editing and stress analysis procedure. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

the global stiffness matrix in FEM has to be re-factorized during shape editing, which is known to be expensive. Therefore, 
they are usually applied to meshes of moderate sizes i.e. thousands of degree of freedoms (DOFs). Indeed, stress analysis 
for large-scale meshes are more and more common in practical applications especially when 1) an as-accurate-as-possible 
stress distribution is needed and/or 2) 3D models are geometrically complex with a lot of local details. For instance, Akihiro 
and colleagues (Kawaguchi et al., 2011) use millions of DOFs to analyze the welding residual stress. How to achieve a fast 
and accurate design-simulation integration for system at such scale with high order elements remains a difficult problem.

As an echo to this challenge, we present a new algorithmic design of subspace and multigrid solvers to handle shape 
editing and stress analysis integration for large scale meshes. Our system efficiently handles 3D models with millions of 
DOFs on desktop PCs and utilizes quadratic elements in FEM simulation for an accurate stress analysis. The subspace solver 
provides a fast preview of stress distribution. The multigrid solver further refines the subspace solution if the user needs 
a careful inspection of stress values at certain design stages. We adopt the domain decomposition method to localize the 
shape or topology editing and minimize the numerical update cost of the FEM data structure. That is, only the stiffness 
matrices and subspace basis of those domains influenced by the shape editing operation are updated. Thanks to the domain 
decomposed model, such local update can be done in parallel and is always synchronized with the user editing. More 
specifically, some unique technical features of our system include:

• Our system adopts constraint modes to build the subspace for a fast stress preview. According to the theory of com-
ponent mode synthesis in structural mechanics (Craig, 1987), constraint modes represent the response of a domain 
interior nodes to the imposed unit displacement at a boundary node, and such modes provide a complete space of the 
static deformation of an object undertaking gravity and external forces at interfaces. Thus, the subspace solution using 
constraint modes also provides a good initial solution to speed up the multigrid solver.

• Instead of using the Lagrange multiplier method to stitch the domain boundaries which results in a none positive 
definite stiffness matrix, we further tweak constraint modes formulation to allow us to use the same set of unknown 
variables at domain boundaries. Doing so yields a symmetric positive definite (SPD) subspace system with domains’ 
boundaries implicitly coupled, which can be fast solved using the Cholesky algorithm. Being free of the duplication of 
interface DOFs, the dimension of the system is also reduced.

• Our three-level algebraic multigrid solver is designed for quadratic FEM simulation. The first level is built on the original 
quadratic element mesh; the second level is built by removing mid-edge nodes; and the third level is built by lumping 
unknowns with Schur complement method to some key nodes at domains’ interfaces (referred to as corner nodes). 
Such algorithmic design maintains the domain structure and results in a block-wise linear system at each level so that 
they can be locally updated in parallel to improve the simulation performance.

We currently let the stopping criterion of the multigrid solver be 1e−3 relative residual error, which is enough in our 
experiments to achieve high-quality stress distribution results. With this stopping criterion, the computation time of our 
solver is much less than the commercial matrix solvers. It is straightforward to perform more multigrid iterations to achieve 
a smaller relative residual error when necessary. Furthermore, our subspace and the subsequent multigrid solver can provide 
progressive response in stress analysis, and the user can select where to stop to balance between the computation time and 
the accuracy of the results.
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Two shape editing prototypes, namely IWires and skeleton driven shape editing, are implemented in our system to show 
the capability of our system for the shape editing and stress analysis integration. We have tested our solvers on a variety of 
large-scale 3D models from half million to five million DOFs. Our solver provides a fast preview of stress analysis results to 
allow a fluent design experience with help of the subspace solver. Experimental results show that, with reasonable subspace 
and multigrid structure pre-computation costs, the proposed domain-decomposed multigrid achieves 50%–100% speedups
over the Intel Math Kernel Library or MKL (Wang et al., 2014), which is known as one of the best-optimized 
parallel direct solvers.

2. Related work

Fabrication-aware design Computation design system aims to handle fabrication requirement in geometric design via con-
strained optimization or the integration of fast simulation techniques. This line of research allows the user to control 
physical properties of the design, such as appearance (Dong et al., 2010; Lan et al., 2013; Chen et al., 2013), defor-
mation (Bickel et al., 2010; Skouras et al., 2013; Panetta et al., 2015), articulation (Lau et al., 2011; Calì et al., 2012;
Bächer et al., 2012), acoustics (Li et al., 2016), and mechanical motion (Zhu et al., 2012; Coros et al., 2013; Ceylan et al., 
2013). To improve the structural stability of a design, a common method is to alter its shape based on the stress analysis, 
when the material properties are given. Stress relief operations, such as hollowing and thickening, are adopted in Stava 
et al. (2012) to improve the structural stability of the 3D objects. Subspace techniques are used to fast analyze worst load 
distribution that causes high stress in 3D printable objects (Zhou et al., 2013). Our goal instead, is to develop a struc-
tural analysis algorithm integrated with shape editing so that the user can predict the stress distribution while editing the 
model’s geometry.

FEM domain decomposition The domain decomposition (DD) method is designed to solve large-scale partial differential 
equations by splitting the original problem into a set of small problems so that each sub-problem can be solved with 
manageable memory and computation costs (Toselli and Widlund, 2004). It is particularly suitable for parallel or distributed 
environment and has wide applications in structure analysis and stress analysis (Farhat et al., 2001). For non-overlapping 
DD methods, the domains only intersect at their boundaries, and the continuity of the solution across domains should be 
enforced. A seminal work in non-overlapping DD is the Finite Element Tearing and Interconnect (FETI) (Farhat and Roux, 
1991; Farhat et al., 2001). It adopts Lagrange multiplier method to guarantee that the solution of each domain is equal at 
boundaries. DD integrated with subspace methods is developed for real-time deformable animation, where the deformation 
at domain boundaries are simplified to reduce the number of subspace basis, for example, the assumption of interface 
rigidity (Barbič and Zhao, 2011), penalty forces based soft coupling (Kim and James, 2011), or with reduced boundary 
freedoms (Yang et al., 2013).

Although the domain decomposition technique is also employed in Xie et al. (2015) to integrate the mesh editing and 
subsequent stress analysis, it mainly investigates how to localize the updating of the stiffness matrix at edited domains. 
The factorization of the global stiffness matrix after every mesh editing is from scratch. The performance of their method 
on large-scale meshes should be at the same order of magnitude as the reported in Table 1 (single-domain MKL column) 
in our paper, since all matrix factorization timings are from Intel MKL library. In contrast, our work avoids the expensive 
factorization step in direct matrix solver by solving the system with a multigrid solver in parallel tailored for DD. The 
subspace and multigrid solvers, in our system, are primal solvers, which avoid the dual Lagrange multipliers by representing 
the domain boundaries with same unknowns.

Multigrid method The multigrid solver is powerful in solving linear and nonlinear systems. They have been extensively used 
for various problems in graphics, including shape modeling (Shi et al., 2006), cloth simulation (Jeon et al., 2013; Tamstorf 
et al., 2015), fluid animation (McAdams et al., 2010), and deformable models (Zhu et al., 2010; McAdams et al., 2011;
Patterson et al., 2012). Multigrid methods leverage the fact that many iterative linear solvers, such as the Jacobi method, 
are able to effectively reduce or smooth high-frequency errors, but not for low-frequency errors. If a fine-level residual 
gets projected onto a coarse grid, the spectrum of the error vector is shifted from a high-frequency one to a relatively 
low-frequency one. Therefore, smoothing at coarse level becomes effective again. Multigrid methods often require dedicated 
efforts to design a good mapping between the coarse grid and the fine grid, also known as the prolongation and restriction 
operators. Therefore, regular grids are preferred (Zhu et al., 2010). In addition to creating the prolongation and restriction 
operators based on grid geometrically. Multigrid can also be constructed algebraically (Yang et al., 2002). The key idea is 
to select a subset of unknown DOFs as a coarse problem and represent the other DOFs with them. Schur-complement or 
incomplete Gaussian elimination serve this purpose well (Reusken, 1996; Wagner et al., 1997).

The multigrid solver is also popular in FEM problems (Adams, 2002; Karer and Kraus, 2010), and efficient GPU multi-
grid solvers are developed in Geveler et al. (2013). However, the FEM data structures in such methods need to be globally 
updated. Our work can be viewed as a non-trivial extension of them in the case of shape editing and stress analysis integra-
tion, which further accelerates the updating and solving speed of the multigrid solver in parallel with domain decomposition 
technique.
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Fig. 2. The system flowchart. Given an input Armadillo model, the system pre-computes its subspace basis and multigrid data structure. After the user 
edits its pose using the underlying skeleton, a quick preview of the stress distribution is immediately available (§ 5) and the user can choose to refine the 
subspace solution with the multigrid solver (§ 6) as shown in (b). The user can improve the structural stability by thickening the weak regions (c), and 
fabricate the final editing result with 3D printing (d).

Fig. 3. Domain decomposition, classification of DOFs and the corresponding DOF order.

3. System overview

The primary goal of our system is to integrate IWires and skeleton editing methods (Gal et al., 2009; Xie et al., 2015)
with FEM simulation in the design of large-scale meshes. The system flowchart is illustrated in Fig. 2. After an editing 
operation is committed, the internal data structures for subspace and multigrid solvers are locally updated at influencing 
domains. Afterwards, the system computes new stress results for the edited mesh. The local updating operations and stress 
computation are implemented in parallel at domain level, thanks to the advantage of the domain decomposition technique.

The IWires shape editing method is well designed for shapes with salient feature lines, such as man-made objects (Gal 
et al., 2009). It employs extracted feature lines as the editing interface and maintains the geometric relationships between 
them, such as planarity, orthogonality and parallelism, so that the edited shape reconstructed from user-edited feature lines 
still preserves its characteristic structure. We implement IWires method in our system for users to edit mechanical models, 
for instance, the manipulator model in Fig. 1. While a wire is translated or scaled, its editing is automatically propagated 
to other wires to form the editing result. Afterwards, the FEM data structure for domains influenced by the editing are 
updated to obtain the stress analysis results. The implemented skeleton editing interface is achieved by rigging the domains 
to the underlying skeleton. Therefore, when the user rotates the skeleton, the domains associated to it will be automatically 
rotated as well. Our implementation follows the algorithm in Xie et al. (2015).

4. Preliminary

It is possible to permute nodal DOFs and assemble the global stiffness matrix in a way reflecting the corresponding 
domain decomposition. In this section, we discuss how to leverage this block-wise structure and the matrix condensation 
technique to form a small-size coarse problem to warm start the full-scale equilibrium solution.

Classification of DOFs As illustrated in Fig. 3, we define three types of nodes namely, internal nodes, boundary nodes and 
corner nodes on the domain decomposed mesh. Internal nodes are the ones inside a domain, and they do not have a direct 
adjacency towards nodes from other domains. Boundary nodes sit on the interface between two domains. It is possible that 
a node is incident to multiple (more than two) domains. In this case, the node is referred to as a corner node. We use 
subscripts [·]i , [·]b and [·]c to denote the internal node, boundary node and corner node respectively. While assembling the 
stiffness matrix, all the internal nodal DOFs are listed first, followed by boundary and corner ones. Therefore, the global 
equilibrium equation Ku = f becomes in the format of:⎡⎢⎣ Kii Kib Kic

K�
ib Kbb Kbc

K�
ic K�

bc Kcc

⎤⎥⎦
⎡⎣ ui

ub

uc

⎤⎦ =
⎡⎣ fi

fb

fc

⎤⎦ (1)



W. Xu et al. / Computer Aided Geometric Design 63 (2018) 17–30 21
Block-wise stiffness matrix Nodes of the same type are also clustered according to their connectivity forming a connected 
component. Each cluster is assigned with a local index. Taking Fig. 3 an example, there are three internal nodes clusters 
(shadowed in green), three boundary node clusters (shadowed in orange) as well as one corner node cluster (shadowed in 
black). As shown on the right, each sub-matrix corresponding to a node cluster (i.e. a diagonal block) has a single superscript 
[·] j denoting its local index and repetitive subscripts (i.e. [·]ii , [·]bb or [·]cc). If subscripts do not match, a double superscript 
[·] j,l will be used such that j and l are local indices of the linked DOF clusters. An off-diagonal sub-block is nonzero if and 
only if the corresponding DOF clusters are adjacent to each other on the mesh. The unknown displacement vector u and the 

external force f can be written similarly: u =
[

u1�
i ,u2�

i ,u3�
i ,u1�

b ,u2�
b ,u3�

b ,u1�
c

]�
and f =

[
f1�

i , f2�
i , f3�

i , f1�
b , f2�

b , f3�
b , f1�

c

]�
.

Coarse problem via matrix condensation The block-wise structure matrix allows us to define a coarse problem on the DOFs 
of boundary and corner nodes through the matrix condensation technique (Bro-Nielsen and Cotin, 1996; Teng et al., 2015). 
The number of DOFs in the coarse problem is much smaller than the original problem size. Therefore, it can be solved 
efficiently using a direct solver, and the full-scale solution can be obtained in parallel afterwards. Since the condensation 
technique is adopted to compute the reduced matrix in multigrid solver at second-to-third level, we now detail how to 
obtain the matrices in coarse problem and their updating during the shape editing. Expanding Eq. (1) at internal nodes 
yields Kiiui + Kibub + Kicuc = fi , and ui can be condensed as:

ui = K−1
ii (fi − Kibub − Kicuc). (2)

Substituting Eq. (2) into Eq. (1) yields the coarse problem, which is essentially the equilibrium at boundary and corner 
nodes:[

Gbb Gbc

G�
bc Gcc

][
ub

uc

]
=

[
f̃b

f̃c

]
, (3)

where

Gbb = Kbb − K�
ibK−1

ii Kib

Gbc = Kbc − K�
ibK−1

ii Kic

Gcc = Kcc − K�
ic K−1

ii Kic,

f̃b = fb − K�
ibK−1

ii fi

f̃c = fc − K�
ic K−1

ii fc.
(4)

Typically, Kii is the biggest sub-block, however one can easily tell that it is also block-diagonal because each internal 
node cluster is isolated from each other by the boundary and corner nodes. Therefore, computing K−1

ii Kib and K−1
ii Kic in 

Eq. (4) is efficient and parallelizable. The coupling between boundaries and corners only exists when they are adjacent in 
one domain. Thus, the coarse problem is also sparse. If the geometry or topology of few domains are changed by the shape 
editing operation, we only need to update the corresponding K−1

ii and compute the entries of the boundaries and corners 
adjacent to the edited domains as outlined in Algorithm 1. Note that all the for-loops in Algorithm 1 are parallelizable at 
domains.

5. Fast subspace stress preview

According to the theory of component mode synthesis (CMS) (Craig, 1987), attachment or constraint modes define how a 
local domain responses to external excitements applied via the boundary. If a domain only undertakes gravity and external 
forces at its interfaces, constraint modes compose a complete set of its static deformation basis, meaning any static equilib-
rium can be exactly represented by the constraint mode set. Therefore, they are chosen as the subspace basis to analyze the 
stress distribution in our system. In this section, we describe how to further reduce the constraint modes set to construct a 
more compact subspace to achieve the fast preview of stress analysis results.
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1: for each boundary cluster i do
2: find its two adjacent domain Dd1 and Dd2 ;
3: for each boundary cluster j, j �= i adjacent to Dd1 do

4: compute Gi, j
bb ← Kd1,i�

ib K
d−1

1
ii Kd1, j

ib ;
5: end
6: for each corner cluster k adjacent to Dd1 do

7: compute Gi,k
bc ← Kd1,i�

ib K
d−1

1
ii Kd1, j

ic ;
8: end

9: compute Gi, j
bb and Gi,k

bc similarly for Dd2 ;

10: compute Gi,i
bb ← Ki

bb −
∑

d={d1,d2}
Kd,i�

ib Kd−1

ii Kd,i
ib ;

11: end
12: for each corner cluster i do
13: for each of its adjacency domain Dd do
14: for each boundary cluster j adjacent to Dd do

15: compute Gi, j
cb ← Kd,i�

ic Kd−1

ii Kd, j
ib ;

16: end
17: for each corner cluster k adjacent to Dd do

18: compute Gi,k
cc ← Kd,i�

ic Kd−1

ii Kd,k
ic ;

19: end
20: end

21: compute Gi,i
cc ← Ki

cc −
∑

d

Kd,i�
ic Kd−1

ii Kd,i
ic ;

22: end

Algorithm 1: Assembling the coarse problem of Eq. (3).

Constraint modes The constraint modes are defined for a local domain. Here, we drop the superscript in this section for 
succincter notations. In classic CMS, constraint modes describe domain’s equilibrium shape when one of its boundary DOFs 
is prescribed by a unit displacement while the others are constrained. Mathematically, it can be expressed as a local equi-
librium equation:⎡⎢⎣ Kii Kib Kic

K�
ib Kbb Kbc

K�
ic K�

bc Kcc

⎤⎥⎦
⎡⎢⎣ ���b

i ���c
i

Ib 0
0 Ic

⎤⎥⎦
︸ ︷︷ ︸

constraint modes U

=
⎡⎣ 0 0

fb 0
0 fc

⎤⎦ , (5)

where identity matrices Ib and Ic represent unit displacements imposed. We would like to remind readers again that unlike 
Eq. (1), Eq. (5) is only for a local domain. The resulting displacements at internal nodes (i.e. ���b

i and ���c
i ) can be computed 

by solving the top two rows in Eq. (5) as: ���b
i = K−1

ii Kib and ���c
i = K−1

ii Kic .

Reduced constraint modes An issue associated with constraint modes is that the total number of interface DOFs is still 
quite large, especially when we are dealing with high-resolution meshes of quadratic elements. As shown in the Fig. 4(a), 
a quadratic tetrahedral element does not only have four regular tetrahedral nodes but also additional six mid-edge nodes. 
A large number of interface DOFs result in a noticeable delay when synchronizing the FEM analysis with mesh editing 
operations even within the constraint subspace. To further condense the dimension of the subspace, our reduced constraint 
modes are constructed only for tetrahedral nodes on the interface, each of which is still imposed by a unit displacement. Its 
adjacent mid-edge nodes are also prescribed by a half unit displacement as an estimate of the influence received from the 
tetrahedral nodes. In other words, Ib and Ic in Eq. (5) are no longer identity matrices and they are not square neither since 
the columns corresponding to mid-edge nodes are removed. Fig. 4(b) illustrates a 2D example of reduced constraint modes.

Let ���b and ���c denote the merged matrices whose row numbers equal to the total numbers of boundary DOFs and 
corner DOFs, but column numbers only reflect the number of DOFs at tetrahedral nodes. Accordingly, the corresponding 
internal displacements ���b

i and ���c
i are computed via:

���b
i = K−1

ii Kib���b, ���c
i = K−1

ii Kic���c . (6)

Reduced stiffness matrix A typical way of constructing domain mode vectors is to stack the displacements at internal, bound-
ary and corner DOFs together. However, doing so also induces the so-called coupling problem at domain interfaces, which 
needs to be handled by using the Lagrange multiplier method to enforce a set of linear constraints so that the displacement 
is continuous across an interface (Yang et al., 2013). Augmenting per-domain equilibrium with a Lagrange multiplier vector 
leaves zero entries at the diagonal of the system matrix (corresponding to the interface constraints), impedes its condition 
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Fig. 4. (a) 10 nodes quadratic element. (b) A toy 2D example showing how reduced constraint modes are constructed. Suppose there are three boundary 
nodes i, i + 1, and i + 2. Nodes i and i + 2 are mid-edge nodes and node i + 1 is a tetrahedral node. The classic constraint mode imposes a unit 
displacement at each of the boundary nodes yielding a 3 × 3 identity matrix at the sub-block corresponding to each node. In our reduced constraint mode, 
the unit displacement is only imposed at the tetrahedral node i + 1. Therefore, columns corresponding to nodes i and i + 2 are eliminated. Besides, we 
assume that the unite displacement at node i + 1 also triggers small deflections at its adjacent mid-edge nodes i and i + 2. Therefore, both of them are 
prescribed a half unit displacement 0.5I.

number and slows the follow-up multigrid iterations. To avoid additional Lagrange multiplier variables, we explicitly decou-
ple nonzero displacements corresponding to the internal DOFs and boundary/corner DOFs in the constraint mode matrix, 
and we denote this reduced modes set with Ũ:⎡⎢⎣ ���b

i ���c
i

���b 0
0 ���c

⎤⎥⎦ ⇒
⎡⎢⎣ ���b

i ���c
i 0 0

0 0 ���b 0
0 0 0 ���c

⎤⎥⎦ .

︸ ︷︷ ︸
Ũ

(7)

It is easy to see that span(Ũ) ⊃ span(U) meaning any vector that can be represented with U can also be losslessly
represented with Ũ. This splitting allows us to put basis matrices for all the internals, boundary and corner nodes clusters 
into a big block diagonal matrix:

��� = diag
(
���

1,b
⋃

c
i ,���

2,b
⋃

c
i , ...,���1

b,���2
b, ...,���

1
c , ...

)
. (8)

Here, we restore the superscript of the local index of a cluster. ���l,b
⋃

c
i represents the union of the basis in ���l,b

i and ���l,c
i

at lth internal node cluster such that ���l,b
⋃

c
i =

[
���

l,b
i ,���

l,c
i

]
. Because each domain only has one internal node cluster, the 

number of internal node clusters matches the number of decomposed domains. However the number of boundary and 
corner node clusters are independent to domains’ number. In this setting, we can represent the reduced DOFs at boundary 
and corner node clusters with the same unknowns in the reduced system and avoid the usage of Lagrange multipliers.

Thanks to the block diagonal structure of ���, the reduced stiffness matrix for dth domain, which is also adjacent to 
boundary cluster j and corner cluster l can be written as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K̃d
ii =

[
���

d,b
⋃

c
i

]�
Kd

ii

[
���

d,b
⋃

c
i

]
,

K̃d, j
ib =

[
���

d,b
⋃

c
i

]�
Kd

ii���
j
b, K̃d,l

ic =
[
���

d,b
⋃

c
i

]�
Kd

ii���
l
c,

K̃ j
bb =���

j
b

�
K j

bb���
j
b, K̃l

cc =���l
c
�

K j
cc���

l
c.

(9)

Through sharing the unknowns at domain boundaries, our reduced stiffness matrix is still a symmetric positive definite 
(SPD) matrix, which can be solved efficiently using the Cholesky factorization method, which is faster than LU decomposition 
required in Lagrange multiplier based boundary coupling technique as in Yang et al. (2013).

6. Refinement with multigrid solver

The goal of this step is to eliminate the residual error in the subspace solution to obtain an accurate stress analysis result. 
As we want to avoid the matrix factorization of the global stiffness matrix after user updates the geometry or topology of 
the original mesh, the multigrid solver is a reasonable choice due to its appealing properties of: 1) it converges fast for 
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Fig. 5. A 2D illustration of the three-level multigrid construction. The 2nd level is formed by removing the mid-edge points, and only boundary and corner 
nodes are kept in 3rd level.

large-scale meshes, 2) its smoothing operator can be an iterative Jacobian/Gauss–Siedel solver, which is fast to compute 
(Falgout, 2006; Shi et al., 2006). In this section, we show that the geometry of quadric elements allows us to construct a 
three-level multigrid solver that can be easily updated after user editing.

6.1. Three-level multigrid construction

It is well known that multigrid methods accelerate the convergence rate of iterative relaxation solver using a coarse to 
fine hierarchy formulation (Falgout, 2006). In multigrid methods, the low-frequency error that cannot be efficiently reduced 
at a fine level is restricted to the coarse level and solved recursively. Since the problems at coarse levels have much smaller 
size than the fine-level ones, such hierarchical formulation significantly speeds up the solver. For the problems defined on 
regular 2D or 3D grids, the hierarchy can be easily obtained by tweaking the grid spacing. In contrast, the construction of 
a multi-resolution representation of a finite element mesh is a non-trivial task, which necessitates the sophisticated mesh 
simplification or graph-based coarsening techniques. Besides, the hierarchy constructed from such techniques has many 
cross-domain elements which violates the domain decomposition. Our multigrid method constructs the prolongation/re-
striction operators at three different levels while maintaining the original domain partition, and we use the V-cycle in our 
implementation (Fig. 5).

First-to-second level The first level is the original quadratic finite element mesh. The second level is constructed by removing 
the mid-edge nodes – it usually reduces 70%–80% DOFs from the first level, where this percentage increases along with the 
mesh resolution. The prolongation operator from the second level to first level is designed as:

u(1)
i =

⎧⎪⎪⎨⎪⎪⎩
u(2)

j + u(2)

k

2
for mid-edge nodes,

u(2)
i for tetrahedral nodes,

(10)

where the superscript [·](k) indicates the grid level k. For the mid-edge nodes, indices j and k are two endpoints of the 
edge < v j, vk >, which the mid-point vi belongs to. For a tetrahedral node, its value is directly copied to the second level 
in prolongation.

We now derive the coarse problem at the second level. Given the adjacent relationship in the first level mesh, a row of 
its stiffness matrix can be written as:∑

j∈Ai

S(1)
i j u(1)

j + S(1)
ii u(1)

i = f (1)
i , (11)

where S(1)
i j is a 3 × 3 matrix extracted from the first level stiffness matrix. The set of nodes adjacent to node i is denoted 

by Ai . Ai consists of both mid-edge and tetrahedral nodes sharing an element with node i. Thus, Eq. (11) can be re-written 
as: ∑

j∈Mi

S(1)
i j u(1)

j +
∑
j∈Ni

S(1)
i j u(1)

j + S(1)
ii u(1)

i = f (1)
i , (12)

where the set of mid-edge nodes is denoted by Mi ⊂ Ai , and the set of tetrahedral nodes is denoted by Ni ⊂ Ai . According 
to the prolongation operator in Eq. (10), the mid-edge node in Mi is represented by two tetrahedra nodes in Ni . The proof 
is simple: if a mid-edge node v is in Mi , both v and the node i must be in the same tetrahedra tk . Since the edge passing 
through v is in tk , the two tetrahedral nodes used in the prolongation operator for v should be in Ni . Accordingly, Eq. (12)
can further be re-arranged as:
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∑
j∈Ni

⎛⎝S(1)
i j + 1

2

∑
k∈A j

⋂
Mi

S(1)

ik

⎞⎠ u(1)
j

+
⎛⎝S(1)

ii + 1

2

∑
k∈Mi

S(1)

ik

⎞⎠ u(1)
i = f (1)

i .

(13)

Note u(1)
j in Eq. (13) only contains the nodes in Ni that will be restricted to the second multigrid level. Afterwards, simply 

adding all the equations at mid-edge nodes to the equations of the end nodes of its edge with weight 0.5 and discarding all 
the equations at mid-edge nodes forms the reduced problem at the second level. The restriction operator is the transpose 
of the prolongation operator. It guarantees that the problem at second level has a SPD matrix. An important advantage 
of Eq. (13) is that the block-wise structure arising from domain decomposition is well maintained, since the prolongation 
operator for mid-edge nodes does not break domain boundaries. It means that we can still perform local update at the 
second level.

Second-to-third level Further coarsening or simplifying the second-level tetrahedral mesh may yield cross-domain elements, 
which downgrades the advantages of the domain decomposition technique: the classification of internal, boundary and 
corner nodes, as well as the corresponding block-wise structure are difficult to maintain.

Instead, we leverage the coarse problem as the third level of our multigrid solver using the Schur complement method, 
a widely used technique in algebraic multigrid methods (Falgout, 2006). Specifically, since the domain decomposition result 
is maintained at the second level, its equilibrium has a similar block-wise structure as of Eq. (1):

K(2) =

⎡⎢⎢⎣
K(2)

ii K(2)

ib K(2)
ic

K�(2)

ib K(2)

bb K(2)

bc

K�(2)
ic K�(2)

bc K(2)
cc

⎤⎥⎥⎦ . (14)

The restriction and prolongation operators are defined as:

R =
[

−K�(2)

ib K−1(2)
ii Ib

−K�(2)
ic K−1(2)

ii Ic

]
, P = R�. (15)

We can then obtain the system matrix at the third level as follows K(3) = RK(2)P. In other words, the matrix K(3) is the 
Schur complement of the matrix K(2)

ii , and we compute it in parallel using domain decomposition at second level as described in 
Algorithm 1. Therefore, our prolongation/restriction operator can be considered as optimal operators in the theory of Schur 
complement, where only one iteration is required between second and third level.

Domain-level parallel Gauss–Siedel smoothing operator The stiffness matrix in linear elasticity is SPD, but we can not guaran-
tee that it is a strictly diagonally dominant matrix. Therefore, we adopt the Gauss–Siedel iterative solver which is proved to 
converge for SPD matrices (Golub and Loan, 1996) instead of the Jacobi solver. The Gauss–Siedel method has been used as 
the smoothing operator in FEM multigrid solver (Kim et al., 2009), and red–black ordering technique that avoids data race 
is used to implement a parallel Gauss–Siedel solver (Courtecuisse and Allard, 2009). In our case, the domain decomposition 
provides a natural domain level red–black ordering, since decomposed domains are surrounded by boundary and corner 
nodes, their Gauss–Siedel iterations do not depend on each other. Therefore, we first perform Gauss–Siedel iteration for 
internal nodes for each domain in parallel, and then proceed to boundary and corner nodes in parallel.

7. Implementation details

It is a nontrivial task for users to decompose an input model into domains manually. For the skeleton editing interface, 
the initial domains can be obtained through the automatic rigging (Baran and Popović, 2007), and we develop an algorithm 
to compute the cross section surface at wires to cut the input model into disconnected parts as domains. The cross section 
surface should be a manifold, consisting of triangles of the input tetrahedral mesh. The qualified wires are defined to be 
independent wires with two criterions: 1) They do not have common edges with other wires. 2) The cross section at them 
should have neighboring tetrahedra on its two sides.

As illustrated in Fig. 6, the independent wires are four wires that on the upper plane of the rectangular solid of the 
model, and we compute the cross section surface via graph cut. Specifically, a set of tetrahedrons intersected with a plane 
fitted at an independent wire is used as the seed and their 3-ring neighborhoods are nodes to form the graph. To figure 
out the cross section surface using graph cut, we assign source and sink nodes at the two boundary of the detected set of 
tetrahedrons without surface triangles, and set the edge weight to be the triangle area for two neighboring tetrahedrons 
sharing a common triangle. The triangles that have wire edges and are most parallel to be fitted plane at the wire is set to 
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Fig. 6. Decomposing the mesh into domains. (a) An input model. (b) The cross section surface computed via graph cut at one independent wires. (c) A de-
tected domain by region growing. (d) The domain decomposition result. The largest domain is implicitly decomposed using variation shape segmentation 
algorithms into small sub-domains to balance the load in parallel implementation of our solver (Cohen-Steiner et al., 2004).

Fig. 7. Convergence curves of the three-level multigrid solver. Left: How the initial solution from subspace solver influences the convergence speed of the 
multigrid solver. Right: The convergence speed of the multigrid solver with respect to the number of Gauss–Siedel iterations.

be on the cross section by hard constraint: its two neighboring tetrahedrons should belong to source and sink respectively. 
Our setting enables graph cut algorithm to find the optimal cross section surface as shown in Fig. 6(b). The user can then 
refine the automatic domain decomposition result.

If the decomposed domains are of different sizes, it will influence the performance of the parallel implementation of our 
solver due to the unbalanced load. We adopt variational shape segmentation algorithm as in Cohen-Steiner et al. (2004) but 
adapt it to the tetrahedral mesh to subdivide those large domains into sub-domains to balance the computational load. It is 
also possible to decompose large domains with specialized metric to further enhance the load balance as investigated in Yu 
and Li (2011), Li et al. (2017). However, the editing is still maintained at the user refined domain level since it meets the 
semantic requirement of user editing.

For large scale meshes, it is possible that the domain boundary has thousands of DOFs. The reduced constrained modes, 
in this case, might still have a significant memory footprint, since the modes are dense. Therefore, we resort to rigid and soft 
modes, which is actually the domain response to the rigid and harmonic deformation at boundaries to reduce the memory 
cost (Craig, 1987). Please also refer to Yang et al. (2013) for the details of these two kinds of modes. In our implementation, 
we limit the number of modes at each boundary to be at 200–300.

8. Experiments

In this section, we report the results and time statistics of our system implemented on a desktop PC with i7-5820, 
a 6 core, 3.3 GHz CPU and 64GB memory. We set the material to be the photosensitive resin for stereolithography (SLA) 3D 
printing, whose Young’s modulus is 2.5 GPa and Poisson ratio is 0.41, for all the models used in the paper. Please also refer 
to the accompanied video for the editing and stress analysis demo.

Mesh editing and stress analysis integration Figs. 1, 2, 8, 9, 10 show several mesh editing results for stress relief. The editing 
is obtained through IWires or skeleton editing interfaces. The visualized stress is computed based on the definition of the 
von Mises stress:

σ 2
von Mises = σ 2

1,2 + σ 2
2,3 + σ 2

3,1 + 6(σ 2
12 + σ 2

23 + σ 2
32)

2
, (16)

where σ is the 3 × 3 stress tensor and σi, j = σii − σ j j . Fig. 8 illustrates a topology editing result on a chasis model. Since 
the topology editing operations, such as drilling holes and add a supporting cylinder, are all local, we only need to update 
the subspace and multigrid solver data structure at the edited domains in green colors in Fig. 8 to obtain the updated 
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Fig. 8. The integration of topology editing and stress analysis. Since the topology editing occurs at the selected domains (shown in (b) & (c)), our FEM data 
structure, such as subspace basis and multigrid restriction and propagation operators, can be easily updated at the edited domains, it accelerates the solver, 
achieving a 27.1% speedup (our method uses 8.72 s vs. MKL, which uses 11.09 s. See first row in Table 2). The chasis model has 515,142 DOFs. The cylinders 
added are treated as a new domain in our implementation. The stress values are converted to color maps according to the rightmost legend, where the 
unit for its numbers is MPa.

Fig. 9. Stress relief oriented shape editing. The horse leg and earphone are thickened by scaling operation at rigid link associating to the underlying skeleton. 
The light gray shapes indicate the deformation results, and red regions imply high stress values.

Fig. 10. The integration of IWires editing and stress analysis on a chair model. The blue lines on the chair model indicate the extracted wires.

stress analysis results. In contrast, the PARDISO solver from MKL has to perform symbolic and numerical factorization from 
scratch. Thus, it is 21% slower than our solver in this case.

The simulator provides a fast stress preview using reduced constrained modes. On the top of this, the multigrid solver 
further improves the subspace solution as shown in Fig. 2. The high frequency errors in subspace solution are sufficiently 
reduced after multigrid iterations.
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Fig. 11. (a) The influence of domain size to the speed of the multigrid solver. With increasing number of domains, the difference in domain size is reduced. 
The computational load is more balanced to improve the performance of the parallel multigrid solver. This test is done on the Chasis model and its 
subdomains in the figures near the curve are automatically generated. (b) Physical validation using a stress measurement instrument. It shows that the 
stress error using linear elements is reduced by 0.59 MPa after using quadratic elements for the chasis model.

Table 1
Model statistics. Detailed statistic of the 3D models we used in the experiment. # ele: the number of quadric elements on the mesh; # node: the number 
of nodes on the mesh; # domain: the number of domains of the model; # DOFs: the average number of DOFs each domain holds. For the solving time 
of MKL pardiso solver, we choose Cholesky matrix decomposition method and report its time in two parts Sym/Solving: symbolic factorization/numerical
factorization + solving. Total: the sum of these two parts which is required in the integration of shape and topology editing and stress analysis. Please note 
that only numerical factorization + solving time is required to obtain the stress analysis result if no topology editing. The timing is measured in seconds.

Model Mesh statistics Domain statistics Single-domain MKL

# ele # node # matrix size # domain # DOFs Sym/Solving Total

Chasis 102,452 171,714 515,142 60 8,121 3.91 s/7.18 s 11.09 s
Chair 209,443 351,059 1,053,177 28 37,613 9.1 s/41.85 s 50.95 s
Earphone 343,522 555,718 1,667,154 40 39,906 14.26 s/65.85 s 80.11 s
Armadillo 774,198 1,119,699 3,359,097 47 71,740 45.38 s/285.12 s 330.5 s
Horse 742,176 1,161,637 3,484,911 40 83,393 34.79 s/262.12 s 296.91 s
Manipulator 1,002,774 1,582,335 4,747,065 34 134,230 45.38 s/292.79 s 338.17 s

Convergence of the multigrid solver The convergence speed is influenced by many factors, such as mesh quality, initial solu-
tion. On the left of Fig. 7, we show that the initial solution from subspace is important to speed up the convergence of the 
multigrid solver, using the chasis model as an example. As the number of basis grows, the initial solution is more accurate 
and it reduces the convergence time of the multigrid solver. The initial solution for zero subspace basis is set to be a zero 
vector, and its convergence is around 2× slower than the curve of subspace with reduced constraint modes (8,613 basis 
for the chasis model). The rest of curves are measured by increasingly sampling the reduced constraint modes. We also 
add rigid modes used in Yang et al. (2013) in this test so that every boundary node has its displacements encoded in the 
subspace. On the right of Fig. 7, we illustrate how the number of Gauss–Siedel iteration in the multigrid solver influences 
the convergence speed of the multigrid solver. Not surprisingly, smoothing the residual error with more iterations accelerate 
the convergence, since it further reduces the error at fine levels.

Fig. 11(a) reports how the difference in domain size influences the performance of the multigrid solver, also tested on 
the chasis model. For 30 domains, the max/min domain sizes are 183, 321/236. We then try to reduce the difference in 
domain sizes by further subdividing the large domains into sub-domains using variational shape approximation method 
(Cohen-Steiner et al., 2004). After that, there are 60 (sub-) domains, and the max/min domain sizes are 33, 225/246. The 
difference in domain sizes is greatly reduced, which leads to more balanced computational costs in the parallel implemen-
tation. On the other hand, the increasing number of domains also means more nodes at domain boundaries, and it yields a 
larger-size reduced stiffness matrix. In our implementation, we require the ratio of boundary nodes in the mesh to be less 
than 20% when subdividing the large domains.

Time performance Table 1 reports the geometric statistics of the models we have tested, and the timing statistics of the Intel 
MKL solver in stress analysis. The timing statistics for subspace and multigrid solvers for each model are listed in Table 2.

Since we localize the updating of the solver data structure, our solver outperforms the MKL PARDISO solver for large-
scale meshes. The stop criterion of the multigrid solver is set to be 1e−3 relative residual error. For the integration of 
editing and stress analysis, our subspace and multigrid solver time to obtain the stress values can be calculated by the 
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Table 2
The performance of the proposed subspace and multigrid solver. I/U time: the initing and average updating time after user editing for multigrid and 
subspace solver. coarse size: the size of the third level problem; Iteration: the multigrid solver iteration time after editing. basis: the number of subspace 
basis. Solving: the subspace solving time after its basis updating. Total: the total stress analysis time after shape and topology editing, which is the sum of 
subspace and multigrid solver updating and solving time. The timing is measured in seconds.

Model Multigrid Subspace Total

I/U time coarse size Iteration basis I/U time Solving

Chasis 6.23 s/0.60 s 8,449 5.62 s 8,613 69.87 s/2.23 s 0.27 s 8.72 s
Chair 5.58 s/1.90 s 9,336 20.88 s 700 69.87 s/2.02 s 0.09 s 24.89 s
Earphone 11.63 s/2.42 s 20,076 39.12 s 8,470 277.32 s/20.6 s 0.87 s 63.01 s
Armadillo 32.64 s/15.25 s 61,035 47.62 s 4,776 462.59 s/21.31 s 0.82 s 85.00s
Horse 27.8 s/8.00 s 41,094 67.98 s 8,414 981.1 s/75 s 1.82 s 152.80 s
Manipulator 36.06 s/12.34 s 51,435 53.02 s 10,470 975.03 s/105.61 s 3.2 s 174.17 s

sum of their updating time and solving time, and the solving time for MKL PARDISO solver is just the sum of numerical 
factorization and solving time when shape editing only. In the case of topology editing, the symbolic factorization time has 
to be counted since the sparsity pattern of the stiffness matrix is changed.

From Table 2, except the chassis model with half million DOFs, the time required, including both the updating and 
solving time of the subspace and multigrid solvers, to compute the stress distribution after user editing for the models with 
million DOFs is around 50%–100% faster than the PARDISO solver using Cholesky decomposition method (please see the 
total column in Table 1 and 2). It shows the advantage of localized updating enabled by domain decomposition. In addition, 
the subspace solver can be solved in a few seconds to provide fast stress previews, and the multigrid solver enables users 
to change its stopping criterion to balance between computation time and the accuracy.

Physical validation To show how the number DOFs influences the accuracy of the stress analysis, we print out the chasis 
model with SLA material and measure the strain on selected locations using the strain gauge, as shown in Fig. 11. The 
measured strain under the 3.5 kg load at the two ends of the model is 2.3907e−3, the average of seven times measurements 
is used to remove the noise. Since the material properties of the fabricated model using SLA is isotropic (Formlabs, 2016), 
we multiply the measured strain with the Young’s modulus to estimate the stress at the measured points, assuming that 
the shear strain is small under our applied load. Fig. 11(b) shows that the stress error using linear elements is reduced by 
0.59 MPa after using quadratic elements. It indicates that the increased DOFs and quadratic shape functions in the quadratic 
elements improve the accuracy of the stress analysis results.

9. Conclusion and future work

In this paper, we explore how to combine subspace and multigrid solvers to provide users progressive response when 
analyzing the stress distribution, under static equilibrium, for meshes with millions of DOFs. Our system employs domain 
decomposition technique to integrate shape editing and FEM simulation. It avoids the expensive global matrix factorization 
of direct solver by localizing the shape editing and FEM data structure updating at edited domains. The system constructs 
the subspace for stress analysis in static equilibrium using reduced constrained modes and builds three-level multigrid 
solver through the algebraic multigrid method by removing mid-edge nodes and lumping unknowns with Schur complement 
method.

In the future, we want to further reduce the updating cost of FEM data structure according to the change of design pa-
rameters. The optimal Schur complement based multigrid construction in our implementation is expensive, and its efficient 
approximation is a reasonable choice to balance between updating cost and the convergence speed of the multigrid solver. 
After mesh editing, there might be sliver tetrahedrons, which will lead to stiffness matrix with large condition number. It is 
important to detect such tetrahedrons and remove them as discussed in Ni et al. (2017). We would also like to investigate 
how to develop fast simulation and design integration algorithms for transient or nonlinear stress analysis.
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