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Abstract—This paper presents a spatial reduction framework for simulating nonlinear deformable objects interactively. This reduced

model is built using a small number of overlapping quadratic domains as we notice that incorporating high-order degrees of freedom

(DOFs) is important for the simulation quality. Departing from existing multi-domain methods in graphics, our method interprets

deformed shapes as blended quadratic transformations from nearby domains. Doing so avoids expensive safeguards against the

domain coupling and improves the numerical robustness under large deformations. We present an algorithm that efficiently computes

weight functions for reduced DOFs in a physics-aware manner. Inspired by the well-known multi-weight enveloping technique, our

framework also allows subspace tweaking based on a few representative deformation poses. Such elastic weighting mechanism

significantly extends the expressivity of the reduced model with light-weight computational efforts. Our simulator is versatile and can be

well interfaced with many existing techniques. It also supports local DOF adaption to incorporate novel deformations (i.e., induced by

the collision). The proposed algorithm complements state-of-the-art model reduction and domain decomposition methods by seeking

for good trade-offs among animation quality, numerical robustness, pre-computation complexity, and simulation efficiency from an

alternative perspective.

Index Terms—Quadratic deformation, FEM, model reduction, domain decomposition, weight function

Ç

1 INTRODUCTION

REALISTICALLY simulating nonlinear deformable objects
is known to be expensive, which drives a great amount

of research efforts for developing accelerating techniques.
An intuitive thought is to leverage the fact that deforma-
tions in reality are often of low rank, as elastic material mod-
els themselves effectively penalize high-frequency shape
variations. Speedups of orders of magnitude can be
obtained by removing less important degrees of freedom
(DOFs). The core question for such model reduction method
is how to utilize limited DOFs to achieve a better deforma-
tion expressivity. This objective is often dealt with either
spectrally or spatially.

Spectral subspace methods assign each DOF with a
global representative modal shape or mode, often obtained
using PCA or modal analysis [3], [4]. They rely on a dedi-
cated pre-computation to select key modes. Some recent
research further accelerates the pre-computation [5], [6]
nevertheless, it is still at the order of OðrN2Þ, where r stands

for the number of modes and N is the size of the input
model. It is also known that a globally constructed modal
subspace lacks the capability of capturing local deforma-
tions. To remedy this limitation, the domain decomposition
method (DDM) trends to be a more attractive option. It
allows a domain-level mode customization and makes the
local pre-computation much more efficient (i.e., OðrN2=dÞ
for d domains, which is parallelizable and re-usable if
domains are of the same geometry). When domains are non-
overlapping, the influence of domain’s subspace is analogous
to the nodal shape function in the finite element method
(FEM), which evaluates 1 locally and 0 elsewhere. As an
unpleasant consequence, domains need to be explicitly cou-
pled due to such boundary discontinuity. This gives rise to
another concern regarding the simulation robustness under
large deformations. Highly deformed domain interfaces
could fail most coupling methods adopted in existing non-
linear multi-domain simulators like rigid binding [1],
damped springs [7], or coupling elements [2].

Another collection of acceleration techniques, referred to
as spatial reduction here, scatters DOFs sparsely over the
deformable body and utilizes blending functions to express
the deformation in between, similar to the Cage-based [8] or
the Free-from [9] schemes widely used for shape modeling.
Here, the concept of DOF is not limited to the nodal dis-
placement. It could be a linear transformation field [10], a
local coordinate frame [11], or an integration unit [12]. The
adopted blend or weight functions smoothly mix deforma-
tions across domains and unnecessitate an explicit domain
coupling. As a result, the spatial reduction behaves more
stably against extreme deformations. This framework is
also better suited for local adaptivity and refinement [13],
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[14] than the spectral method. On the downside, since
weight functions are typically calculated geometrically,
they do not accommodate real material parameters like the
Young’s modulus and the Poisson’s ratio. The deviation of
the resulting deformation from the fullspace standard is
often visually noticeable.

As outlined in Fig. 2, our method supplements state-of-
the-art spatial reduction techniques and tries to provide bet-
ter answers to following three important how-tos:

� How to choose suitable deformation DOFs?
� How to assign limited DOFs in a more profitable

way?
� How to design a good weight function?
We show that it is essential, for nonlinear models, to

employ high-order DOFs in the spatial reduction, and we
build our reduced simulator using overlapping quadratic
domains so that it remains stable even under extreme-scale
deformations. Orthogonal to existing geometric weighting
methods, we propose a new physics-based strategy yielding
local, smooth and material-respecting weight functions. We
borrow the idea of multi-weight enveloping (MWE) for ani-
mation skinning [15] and fine-tune weight functions based
on a few given representative deformations. Experiments
(i.e., an example is given in Fig. 1) show that such augmen-
tation enhances the expressivity of the reduced model sig-
nificantly even with few input poses. This elastic weighting
mechanism is efficient and adaptable so that adding new
quadratic DOFs at the simulation runtime is possible.

2 RELATED WORK

Physics-based deformable model has been extensively stud-
ied in computer graphics. We refer readers to excellent
review articles [16], [17] for a comprehensive overview of
classic deformable simulation algorithms. Speeding up a
deformable simulation can be achieved using dedicated
numerical treatments like the multigrid method [18], [19],
an incremental matrix update [20], or parallelizable nonlin-
ear solvers [21], [22]. These methods focus on improving the
performance for the fullspace nonlinear optimization with-
out condensing simulation DOFs. On the other hand, spec-
tral reduction methods remove less important DOFs and
create a reduced or subspace representation of fullspace
DOFs (i.e., u ¼ Uq). Modal analysis [3], [23], [24] and its

first-order modal derivatives [4] are often considered as the
most effective way for the spectral subspace construction.
Yang and colleagues [6] used Krylov iteration with reduced
orthogonalization to further speed up this calculation. Dis-
placement vectors from recent fullspace simulations can
also be utilized as subspace bases [25].

Earlier spectral reduction techniques compute U glob-
ally, which become a bit awkward when localized deforma-
tions are desired unless the user includes a large number of
modal bases. As a response to this limitation, domain
decomposition methods, originally designed for large-scale
numerical partial differential equations (PDEs), have been
imported to graphics. As subspaces are constructed at
domains, local deformations can be better handled. Many
existing multi-domain solvers are non-overlapping. Conse-
quently – domains must be explicitly constrained at bound-
aries, which stands as a primary challenge for state-of-the-
art multi-domain deformable models. Roughly speaking,
domain coupling can be achieved either geometrically [1],
[26] by enforcing the shape continuity at the interface, or
physically [2], [7] by plugging in coupling forces between
adjacent domains. Recently, overlapping domain decompo-
sition has also been explored in graphics. Xu and Barbi�c [27]
used bounded bi-harmonics weights (BBW) to blend local
modal derivative bases for localized deformations. While
targeting on character skinning, it implies that overlapping
domain decomposition is a feasible solution for local defor-
mation effects. Following this direction, our method can
also be considered as an overlapping domain decomposi-
tion system. Unlike [27], which geometrically blends physi-
cally-computed subspace bases, our method physically
blends geometrically-constructed bases.

Alternatives are also possible for local deformations. For
instance, Harmon and Zorin [28] made the fast simulation
of contact-trigger deformations possible by adding local
modal subspaces based on the Boussinesq solution. How-
ever, this method becomes less powerful when handling
other types of local deformations. Teng and colleagues [29]
extended the linear condensation to handle unpredicted
deformations by evoking the fullspace simulation locally.

Our algorithm falls into another category of spatial reduc-
tion methods. Inspired by the superior accuracy of the
higher-order finite element method [30], [31], we choose to
build our deformable model based on overlapping quadratic
domains, and each domain can be considered as a general-
ized super element. Our method also shares similar spirits
of the shape match method [32]. Unlike shape matching
however, our dynamics formulation is fully physics-based.

Fig. 2. Pros and cons of existing single- and multi-domain reduction tech-
niques for nonlinear deformable models.

Fig. 1. Overlapping quadratic domains make the simulation robust even
under large deformations. The one-inch-tall bunny model is forced to
pass a funnel whose inner diameter is only 0.3 inch. Our method yields
plausible animations (the red bunny) at an interactive rate comparable to
the fullspace simulation (the blue bunny). Most existing non-overlapping
multi-domain simulators (i.e., [1], [2]) fail in this challenging test. Indeed,
our simulator remains stable even when the funnel’s diameter is reduced
to 0.2 inch (Fig. 16). Please refer to the supplementary video and exe-
cutables for more details.
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Material parameters are fully incorporated in our reduced
representation. This is achieved by encoding physically cal-
culated shape functions, which is referred to as elastic weight-
ing in this article. Calculating weight functions for shape
interpolation has been widely studied in computer anima-
tion (see e.g., [33]). The harmonic coordinate [34], radial basis
function (RBF) [35] and mean value coordinate (MVC) [36],
[37] are a few classic paradigms. Similar techniques are also
used in meshless simulations: Martin and colleagues [12]
used the generalized moving least square (GMLS) for local
deformation gradient evaluation. Gilles and colleagues [11]
used harmonic kernels to blend rigid body motions for a
skinning-like simulation.

We are not the first trying to accommodate material-
awareness in the weight function calculation. Faure and col-
leagues [10] built shape functions using stiffness-scaled dis-
tance or the compliance distance. However, the other
important material parameter of Poisson’s ratio is disre-
garded. Nesme and colleagues [38] used static analysis to
compute the weight function, which is similar to our
approach. Yet, it is not clear how boundary conditions
should be imposed. Meanwhile, it is difficult to rely on a
single weight function to describe complex nonlinear defor-
mations across the deformable body. Consequently, we cal-
culate supplementary differential weight functions for
quadratic DOFs based on few given representative defor-
mation poses. This approach is similar to the multi-weight
enveloping [15], [39].

3 QUADRATIC DOFS

Before starting a detailed discussion of our overlapping
multi-domain simulator, we first show that quadratic DOFs
are important in
spatial reduction.
Illustrated as the
inset, think of
simulating a sim-
ple 2D square
under the pure bending using quadrilateral elements.
Because only bending moments are applied, the angle a

should be unchanged and retain right during the bending.
Unfortunately, if the local subspace (i.e., shape functions of
the quad-element) is linear, straight lines stay straight, and

an artificial shear stress will be produced because a cannot
be a right angle. More importantly, the shearing energy
often increases one- or even two-order (depends on the ele-
ment’s geometry) faster than the real bending energy, which
stiffens the deformable body. This artifact is known as the
shear locking of linear elements. Shear locking is suppressed
when the elements arrangement is dense as in most FEM
based graphics simulations. However when simulation
DOFs are spatially sparse (i.e., in our case), the locking issue
becomes much more severe if we only have affine/lin-
ear [10] or rigid [11] DOFs.

To further illustrate this issue, we show an extreme
example with side-by-side comparisons among several pop-
ular choices for local DOFs in Fig. 3.
The beam model undergoes a pure
bending test, where external forces
applied are always perpendicular to its
neutral axis. The force magnitude line-
arly varies along the neutral axis (as
shown on the left). Under this circumstance, the deformable
object will only have nonlinear bending deformation. This
simulation is particularly challenging for linear elements.
As shown in the figure, even with the correction of the
invertible finite element (IFE) method [40], the fullspace
simulation using linear tetrahedral elements still fails this
test. While quadratic 10-node tetrahedral elements produce
a convincing ground truth result (with the cost of a much
slower simulation). We evaluate the bending quality by
examining the shearing angle as marked in the figure. A sin-
gle quadratic domain (30 DOFs) captures the bending better
than three affine domains [10] (36 DOFs) and five rigid
domains [11] (30 DOFs).

4 DEFORMABLE QUADRATIC MODEL

We design our reduced model using overlapping quadratic
domains. Each domain houses 30 DOFs grouped into 3
translation DOFs, 9 affine DOFs, 9 quadratic homogenous
DOFs, as well as 9 quadratic heterogenous DOFs. The kine-
matics of an individual domain is the same as in [12]. A
domain only influences a local region, and the global defor-
mation is obtained by combining contributions from multi-
ple nearby domains.

Kinematics. For a given material point P on the deform-

able body, we denote x ¼ ½x1; x2; x3�> and u ¼ ½u1; u2; u3�>
as its rest shape position and displacement. A nearby
domain imposes a quadratic influence to its displacement
components such that ui ¼ x>Qixþ a>i xþ ti for i ¼ 1; 2; 3.
Qi 2 R3�3 is a symmetric tensor encoding the iso-quadratic
DOFs. We put its three diagonal DOFs into a vector
qoi
¼ ½Q11; Q22; Q33�> and name it as homogenous DOFs.

Similarly, the vector qei
¼ ½2Q12; 2Q23; 2Q13�> containing off-

diagonal entries of Qi is referred to as heterogenous DOFs.

The affine DOF a 2 R3 describes how ui is linearly related to
its rest position, and ti is a translation DOF. Each type of
deformable DOFs from different domains are convexly
combined, and the ith displacement component of P can be
written as

ui ¼
X
j

wj tji þ aj
>
i xþ qj>

oi
exþ qj>

ei
bx� �

; (1)

Fig. 3. We apply pure bending moments along the neutral axis of the
beam model. The bending quality is measured using the maximum
shearing angle along the neutral axis. Our method yields a much smaller
shearing locking artifact than other competitors including affine
DOFs [10], and rigid DOFs [11]. The ground truth is the result using full-
space quadratic tetrahedral elements. Under such challenging bending
test, even fullspace simulation using linear elements will fail.
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where wj is the location-dependent weight coefficient indi-
cating how much domain j affects the displacement of P .ex ¼ ½x2

1; x
2
2; x

2
3�> and bx ¼ ½x1x2; x2x3; x1x3�> are second-order

homogenous and heterogenous vectors of P . By stacking all
the DOFs from the jth domain into a single vector qj 2 R30

such that qj ¼ ½tj> ; aj>1 ; aj
>
2 ; aj

>
3 ;qj>

o1
;qj>

o2
;qj>

o3
;qj>

e1
;qj>

e2
;qj>

e3
�>,

the displacement of P can be concisely expressed as a
matrix-vector product

u ¼ Gjqj ¼ Gj
t jGj

ajGj
ojGj

e

h i
qj; (2)

where

Gj
t ¼ wjI; Gj

a ¼ wjI� x>; Gj
o ¼ wjI� ex>; Gj

e ¼ wjI� bx>:
We call matrix Gj the geometric displacement matrix, and the
generalized coordinate qj prescribes P ’s kinematic configu-
ration as:

_u ¼
X
j

Gj _qj; €u ¼
X
j

Gj€qj: (3)

Reduced dynamics. Let ei denote canonical basis vectors of
R3, and we drop the domain superscript ½��j for succincter
notations. Based on Eq. (1), each row of the deformation gra-
dient tensor F ¼ ½F1; F2; F3�> 2 R3�3 can be written as
Fi ¼ Fti þ Fai þ Foi þ Fei þ ei, where

Fti ¼
X
rwti; Fai ¼

X
a>i xrwþ wa>i ;

Foi ¼
X

q>oiexrwþ wq>oi
eX; Fei ¼

X
q>eibxrwþ wq>ei

bX;
and

eX ¼ x2 x1 0
0 x3 x2

x3 0 x1

24 35; bX ¼ 2x1 0 0
0 2x2 0
0 0 2x3

24 35:
Here we assume that rw is a column 3-vector. On the
top of F, one can evaluate the nonlinear Green strain,
E ¼ 1

2 ðF>F� IÞ, and proceed to express the strain energy
density C as well as the first Piola-Kirchhoff stress tensor
(PK1) based on the chosen material model. Our framework
works withmost hyperelastic materials, and in this paper we
choose to use the St. Venant-Kirchhoff (StVK) model since it
is capable of producing most desired deformation effects for
computer animation. With the StVK model, the energy den-
sity and PK1 are formulated as: C ¼ mE : Eþ �

2 tr
2ðEÞ and

P ¼ F½2mEþ �trðEÞI� respectively, where � and m are the
Lam�e parameters. The per-domain reduced internal forceefint and its gradient @efint=@q are computed as

efint ¼ �Z P :
@F

@q
dV; (4)

and

@efint
@q
¼ �

Z
@P

@F
:
@F

@q

� �>
:
@F

@q
dV: (5)

Here, @F=@q 2 R3�3�30 is a block-sparse 3-tensor, which can
be understood as the superposition of three layers as shown
on the right. The ith layer represents the matrix @Fi=@q
and it hosts four sub-matrices: @Fti=@t, @Fai=@a, @Foi=@qo

and @Fei=@ae. These sub-matri-
ces are block-sparse as the par-
tial derivative is nonzero only
when subscripts of generalized
coordinates agree with each
other. Each nonzero block can
be easily calculated as

@Fti
@ti
¼ rw; @Fai

@ai
¼ rw� xþ wI;

@Foi
@qoi

¼ rw� exþ weX>; @Fei
@qei

¼ rw� bxþ wbX>: (6)

Applying temporal discretization using the implicit
Euler integration leads to the final nonlinear system to be
solved at each time step:

fM� heC� h2 @
efint
@q

 !
D _q ¼ hefext þ h2 @

efint
@q

_q; (7)

where fM is the reduced mass matrix, which can be evalu-

ated block-wisely: fMij ¼
Z

rGi>GjdV ; efext is the general-

ized external force; h is the time step size; and eC is the

reduced damping matrix.

5 PHYSICS-BASED ELASTIC WEIGHTING

Analogous to FEM shape functions that blend nodal quanti-
ties volumetrically within an element, the weight function
wðxÞ interpolates local quadratic transformations to produce
the final global result. An ideal weightingmechanism should
be material-customized so that sparsely allocated DOFs well
capture the nonlinear dynamics. To this end, we utilize the
per-domain static equilibrium to retrieve themost physically
meaningful weight distribution with carefully prescribed
boundary conditions. It may be difficult to depict complex
deformations with a single weight function. To address this
challenge, we use a method similar to the multi-weight
enveloping [15] to customize weight distributions for qua-
dratic DOFs using an alternating optimization. The block-
sparse matrix brought by decomposed domains allows a
block-Jacobi solver to update weight coefficients efficiently.

Domain decomposition. The input tetrahedral mesh is
decomposed into overlapping domains. As illustrated in
Fig. 4, the domain decomposition starts with subdividing
the mesh into non-overlapping segments as in [10], [11].
While many well-established mesh segmentation algorithms
are available [41], we found that a centroid Voronoi tessella-
tion typically suffices. Initial seeds of each Voronoi cell are
obtained by a regular sampling within the bounding box of
the input model, followed by a few Lloyd iterations [42].
Users are allowed to manually specify segments with the

Fig. 4. Decompose a deformable body into four domains.
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provided interface too. After that, we can extract an undi-
rected graph GðV; EÞ encoding the connectivity information
of the resulting Voronoi segmentation such that each vertex
vi 2 V on the graph represents a Voronoi cell and hvi; vji 2 E
iff vi and vj share at least a triangle face. Finally, a domain is
defined as a set of face-connected tetrahedrons from the ones
in vi and vi’s adjacent segments, and its seed is the seed of vi.
Note that it is possible that domains have the same collection
of elements. For instance in Fig. 5 the red and purple, and the
blue and green domains coincide with each other entirely,
but they have complimentary weight functions.

Principal direction. The weight function of a domain ought
to comply with the pattern describing how the deformation
amplitude dissipates from its seed, where the maximum
local displacement occurs. Following this thought, a reason-
able way is to solve a static equilibrium [10], [38], by impos-
ing an external nodal force fs at the seed while retaining
other neighbor seeds and domain’s boundary. Unfortu-
nately, this solution is ill-defined as we have infinite num-
bers of choices for applying fs – obviously they lead to
different weight distributions especially when the domain’s
geometry and material are irregular.

We resolve this ambiguity by restricting fs along the prin-
cipal direction p. It can be understood as the most deformable
direction such that domain’s displacement is maximized
when fs ¼ p. Let ½��s and ½��n denote domain’s (three) seed

DOFs and non-seed DOFs.1 We partition domain’s stiffness
matrix accordingly and the principal direction of the
domain can be mathematically formulated as a quadrati-
cally constrained quadratic program (QCQP) problem

argmax
p

kuk

subject to

Kss Ksn 0

K>sn Knn C>

0 C 0

264
375

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K

us

un

�

264
375 ¼ p

0n

0�

264
375;

and kpk ¼ 1:

(8)

Here � is the unknown multiplier vector. C is a constraint
matrix prescribing necessary boundary conditions, which
include: 1) user specified con-
straints like anchor nodes; 2)
seeds of neighbor Voronoi cells;
and 3) domain’s boundary
DOFs (as shown on the right).
Doing so makes the resulting
weight function always evalu-
ate 1 at its own seed and 0 at
others’. It is also local and has a

vanished influence outside the domain. K is the domain’s
stiffness matrix (using linear elements).

In general, QCQP is NP-hard [43]. However as Eq. (8)
only activates low-dimensional equality constraints, it can
be efficiently solved. To do so, we first rewrite the linear
constraint term in Eq. (8) using partitioned compliance matrix
L (i.e., L , K�1) as

us

un

�

24 35 ¼ Lss Lsn Ls�

L>sn Lnn Ln�

L>s� L>n� L��

24 35 p
0n
0�

24 35;
which leads to

u ¼ us

un

� �
¼ Lss

L>sn

� �
p , eLp: (9)

While evaluating the full L matrix is expensive, eL only has
three columns and it can be quickly computed by solving

K
Lss

L>sn
L>s�

24 35 ¼ Is
0n
0�

24 35: (10)

Recalling that KL ¼ I, it is easy to understand that the right
hand side of Eq. (10) is simply the first three column of the
identity matrix. After that, the target function to be maxi-
mized becomes:

kuk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p>Bp

p
; B ¼ eL>eL: (11)

B is a symmetric positive definite (SPD) matrix and can be
diagonalized with the eigenvalue decomposition as:
B ¼ R>SR, where S ¼ diagðd1; d2; d3Þ; d1 � d2 � d3 is the
diagonal matrix of eigenvalues. R is an orthonormal matrix.

Substituting B by R>SR in Eq. (11) yields

kuk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRpÞ>diagðd1; d2; d3ÞðRpÞ

q
�

ffiffiffiffiffi
d3

p
: (12)

It shows that kuk reaches the maximum value
ffiffiffiffiffi
d3
p

when p
is the eigenvector of B corresponding to its largest
eigenvalue.

Principal weight & principle projection. After p is ready, one
can solve domain’s static equilibrium prescribing p as the
seed displacement and use the norm of the corresponding
nodal displacement as its weight coefficient. Unfortunately,
the resulting weight distribution leads to noticeable locking
artifacts. Reasons are twofold. First, using the displacement
norm as weight coefficients rules out the possibility of
negative weight values, which are essential for high-order
overlapping shape/weight functions. Second, when nodes
are completely fixed, weight distributions among them are
damped (as shown in Fig. 6a) making the corresponding
region artificially stiffened. The solution is simple: since the
principal direction reveals the most deformable direction of
the domain, we should only consider the displacement
along it other than incorporating information from “less
important” directions.

Following this rationale, we allow all the constrained
nodes to move on a plane perpendicular to the principal
direction and only restrict their displacements along p. The
resulting per-node equilibrium displacement is also pro-
jected on p as the final principal weight. As illustrated in

Fig. 5. The Voronoi segmentation and corresponding domain decompo-
sition of the bunny model.

1. Seed DOFs are the x, y, and z displacement freedoms of the
domain’s seed node while non-seed DOFs are the DOFs of the non-
seed nodes.
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Fig. 6b, such principal projection is able to produce a natural
and smooth weight distribution with necessary negative
values across the domain. Clearly, the principal direction
plays an essential role forming the principal weight func-
tion. Since different deformations propagate over the
domain with different patterns, the principal direction effec-
tively captures the most dominant one. Thus, animations
produced using the principal weight are often distinguish-
ably better. A simple test shown in Fig. 7 validates the
importance of principal direction. In this test, the beam
model only has one domain seeded at the middle. The prin-
cipal direction is vertical to its neutral axis. We compare its
deformation using weight functions calculated under a
direction that is gradually away from the principal one
(from 0	 to 90	 as shown in the figure). It can be clearly seen
that the more it diverges from the principal direction, the
more locking artifacts are observed.

Elastic weighting encodes both domain’s material and
geometry information. Our experiment shows that the princi-
pal weight yields more realistic animations compared with
geometry-based weights (e.g., harmonic coordinate [34], RBF
[35] or MVC [36], [37]) especially when the material of the
deformable body is heterogeneous (e.g., see Section 7, Fig. 12).

Elastic multi-weight enveloping. While the principal weight
function captures most visible deformations and produces
natural results in general, the expressivity of our reduced
model can be further enriched by using more customized
weight functions at high-order DOFs, given a few represen-
tative shapes. Our method is similar to the multi-weight
enveloping method [15], and we name this approach as
elastic multi-weight enveloping (EMWE). Since the Cuba-
ture scheme [44] is also used for a fast runtime integration.
Such shapes can be picked out of the Cubature training
pose set if not specially provided.

We split domain’s geometric displacement matrix G (i.e.,
Eq. (2)) into two sub-matrices G ¼ ½YjZ� defined as
Y ¼ ½GtjGa� and Z ¼ ½GojGe� housing the linear and qua-
dratic parts ofGmatrix respectively. Similarly, we subdivide

domain’s reduced coordinate into y ¼ ½t>; a>1 ; a>2 ; a>3 �> and
z ¼ ½q>o1 ;q>o2 ;q>o3 ;q>e1 ;q>e2 ;q>e3 �

> so that u ¼ Gq ¼ Yyþ Zz.

Y matrix is constructed using the principal weight func-
tion discussed previously. For a given exemplar shape uk,
we compute its residual error vector as

Duk , I� YðY>YÞ�1Y>
� �

uk; (13)

which is a difference vector between the shape uk and its
best-fitting reduced representation in the column space of Y
(i.e., ðYY>Þ�1Y>uk). Our goal is to minimize kDuk � Zzk by
assigning each quadratic DOF an independent isotropic

weight function so that uk can be well expressed in the sub-
space. Mathematically, this reflects an updated formulation
forGo andGe:

Go ¼ I� w>o diagðexÞ
 �
Ge ¼ I� w>e diagðbxÞ
 �

; (14)

where wo;we 2 R3 are weight coefficients for homogenous

(x2
1, x

2
2, x

2
3) and heterogenous (x1x2, x2x3, x1x3) quadratic

DOFs. We split Zz into homogenous and heterogenous
parts as Zz ¼ Gozo þGeze. A few manipulations extract the
homogenous weight vector as:

Gozo ¼ I� ðw>o diagðexÞÞ� 

zo

¼ ðI� ex>ÞðI� diagðwoÞÞzo
¼ ðI� ex>Þ diagðqo1

Þjdiagðqo2
Þjdiagðqo3

Þ
h i>

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wo

wo:
(15)

Together with We ¼ ðI� bx>Þ diagðqe1
Þjdiagðqe2

Þjdiagðqe3
Þ

h i>
,

we construct the matrix W ¼ ½WojWe� such that Zz ¼Ww,
wherew ¼ ½w>o ;w>e �> is the quadratic weight vector. Clearly,

both z and w are unknown and final weight coefficients

should be calculated alternatingly. We initialize w as the

principal weight, fix it, and compute the current optimal z

using least square as: z ðZ>ZÞ�1Z>Duk. Afterwards, z is

fixed, andwe compute the optimalw respecting the updated

z. The iteration stopswhen kDuk �Wwk converges.
To avoid irregular weight distributions, we also added a

penalty term when solving w. Let L 2 R6N�6N be a graph-
Laplacian matrix computing the weight difference between
a node and its local average. The augmented optimization
forw becomes:

argmin
w
kDuk �Wwk þ akLwk; (16)

which leads to the final weight update as w ðaL>L þ
W>WÞ�1W>Duk. Here, we set a ¼ 0:1 in all of our experi-
ments. aL>LþW>W 2 R6N�6N is a big matrix and explic-
itly factorizing it is expensive. Fortunately, it is also block
dominant since W>W is block diagonal. As a result, we
use the iterative block-Jacobi solver to solve w efficiently.
For instance for the bunny model, block-Jacobi can com-
plete one weight update
within tens of milliseconds
while the Pardiso solver
takes several seconds. As
shown on the left, few (3 to
5 iterations) alternations are
sufficient to produce good
quadratic weights.

Fig. 6. (a) Anchoring boundary nodes completely results in weight damp-
ing. (b) Principal projection yields smoother weight functions.

Fig. 7. Computing weight function along different directions other than the
principal direction leads to locking artifacts. (a) shows the rest shape of the
beam, whose principal direction is along the y axis.We show its equilibrium
shapes under the gravity using weight functions calculated with directions
further and further away from the principal direction. The resulting shapes
are aggregated for the comparison. The ground truth is also given in (c). In
(d) we plot the relative shape difference for different directions.
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EMWE enriches the expressivity of the geometric dis-
placement matrix and allows interesting deformable effects
that could be challenging for exiting methods with similar
numbers of simulation DOFs. Fig. 8 reports snapshots from
a set of comparative simulations of a winding snake model.
A circular force field is applied and the fullspace simulation
with 10,800 DOFs winds the snake for about 800	 (i.e.,
360	 þ 360	 þ 180	) as shown in the first row in the figure.
Applying the principal weight for all the 30 DOFs only
yields a 360-degree wind (second row in the figure). This
result is similar to what one could obtain using modal deriva-
tives [4] with 30 modal bases. However, EMWE using only
three poses is able to improve the resulting animation mak-
ing it visually similar to the fullspace result (third row in
the figure). This result is even more plausible than modal
derivatives with 60 bases (forth row in the figure). Notice
that training poses used are quite different from the final
frame of the fullspace simulation. Indeed, these poses sim-
ply imply that larger weights should be assigned to qua-
dratic DOFs at the middle part of the snake. The entire
EMWE training takes less than 300 ms. Results using multi-
ple domains but with only affine transformations as in [10]
are also reported in the bottom row. Clearly our method
outperforms the spatial reduction using linear DOFs.

6 ADAPTABILITY AND EXTENSIBILITY

AssemblingG only needs to solve domain’s rest-shape stiff-
ness matrix (i.e., for handling Eq. (10) and computing the
principal weight), which is efficient and allows an interactive
DOF adaption during the simulation runtime to incorporate
novel deformations, for example induced by collisions.
Besides, the locality of domain’s subspace also makes the
Cubature training orders of magnitude faster and paralleliz-
able at each Voronoi segment. Overlapping domains do not
need an explicit domain coupling treatment. Therefore, our
method is able to simulate extreme-scale deformations
robustly evenwhen themesh geometry is degenerated.

Runtime domain adaption. It is known that geometrically
constructed shape functions can be conveniently altered

and adapted at the run time to accommodate new deforma-
tions [10], [45]. Our elastic weighting function also pos-
sesses this property. Suppose a novel deformation is
triggered by a local contact on the deformable body. A rea-
sonable reaction is to add a new domain Da seeded at the
node where the deepest inter-penetration is found. Due to
the presence of Da, weight functions of existing domains
that overlap with Da need to be updated.

Consider a 1D example shown in Fig. 9. The original
weight function of an existing domain D seeded at S, as
well as the newly-plugged domains Da seeded at Sa are
known. The weight interpolating property requires that
the updated weight w0 of D must have vanished values at
both B (the original domain boundary) and Sa while
remaining 1 at its own seed S. In other words, we seek for
a smooth function to offset w such that it becomes 0 at Sa

while its original values at S and B are unchanged. Inter-
estingly, wa serves this purpose perfectly as it evaluates 0
at both S and B so that stacking wa over w will not change
w’s original boundary conditions. As a result, the updated
weight function of D, after Da is inserted, can be instantly
obtained without resorting to the re-computation from
scratch as

w0 ¼ w� wðSaÞ � wa: (17)

It is noteworthy that such combination of weight func-
tions also agrees with the superposition principle of linear
elasticity. If principal directions of D and Da align each
other, it can be shown that the updated weight distribution
w0 is identical to the fresh-calculated elastic weight, under
new boundary conditions. Eq. (17) also implies that the new
weight from Da supplements existing subspaces rather than
replacing them. In the example shown in Fig. 10, a concen-
trated external force is applied at the facet center of a rubber
brick. Inserting a new domain correspondingly yields a nat-
ural denting effect. The updated weight functions on the
surface are also plotted.

Parallelized local Cubature. An efficient integration to com-
pute the reduced internal force and its gradient is important
for interactive deformable models. Barbi�c and James [4]
found that entries of ef and eK are low-degree polynomials
of the reduced displacement for StVK materials, whose

Fig. 8. Comparative simulation of a winding snake.

Fig. 9. Left: The initial weight distribution w of an existing domain seeded
at S. Mid: the weighting function of a newly inserted domain wa. Right:
the updated weighting function w0 can be fast obtained as the linear com-
bination of w and wa.

Fig. 10. Adding newdomain produces natural denting effects on the brick.
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coefficients can be pre-computed. Another more general
solution named Cubature [44] uses 3D quadrature to
approximate the internal force at a few Cubature elements.
Cubature was originally adopted for model reduction using
global bases, and we notice that this procedure can be sig-
nificantly accelerated under our framework due to the local-
ity of the per-domain subspace.

It is clear that (i.e., in Fig. 4) elements in the same Voronoi
segment are affected by the same subset of reduced DOFs
from adjacent domains. As a result, the Cubature training
can be carried out segment by segment. Such local training is
independent and can be trivially accelerated with multi-
threading. More importantly because a segment has much
fewer (typically less than 20) Cubature points, the associated
NNLS (non-negative least square) solves run much faster
than the global Cubature training. For instance, training the
bunny model would take more than three hours with global
bases, which is only less than two minutes when domain-
decomposed. After the Cubature training is finished, the
runtime evaluation of force and force gradient is simplified

as: efint 
Pl hlPl
@Fl
@q and eK 
Pl hlð@Fl@qÞ>ð@Pl@Fl

Þ> @Fl
@q , where hl is

the non-negative Cubature weight at the element l.

Recovering domain degeneration. Some materials such as the
StVK model suffer the stability issue under a large compres-
sion. This is because the constitutive law does not produce
necessary resisting forces to restore the volume from degen-
eration. This issue is often invisible for spectral reduction
methods as the high-frequency displacements are already fil-
tered by the subspace. Unfortunately, we do not have any
mechanism preventing a domain from inversion. To deal
with the domain degeneration, we transplant the invertible
finite element or IFE method [40], [46] into our framework.
IFE alters singular values of F if they are smaller than a certain
threshold so that an element always produces restoring inter-
nal forces. Doing somodifies the differential relation between
PK1 and the deformation gradient. We follow the formula-
tion in [47] to update @P=@F. While F is linearly related to the
reduced coordinate, clamping its singular values does not
alter this relation. Therefore, @F=@q remains unchanged.

In general, IFE is slow because the deformation gradient
at each element must be checked and adjusted if necessary.
This leads to OðNÞ runtime efforts, and an interactive IFE
simulation is hardly possible for large meshes, where N
stands for the total number of elements on the mesh. We
note that such calculation could also be accelerated follow-
ing the idea of numerical quadrature, which has also been
successfully utilized to resolve self-contacts [48] recently.
We follow the standard Cubature procedure to find a small

number of restorative elements R so that the domain-wise
restoring force can be well approximated at restorative ele-
ments based on a set of degenerated training poses. The
runtime corrective forces resolving the volume inversion
can then be computed via

efr ¼X
i2R

yiG
>
i fiðbFiÞ � fiðFiÞ
h i

; (18)

where fðFiÞ and fðbFiÞ are element internal forces calculated
using the current deformation gradient Fi and the singular-
value-corrected deformation gradient bFi. yi is the non-
negative weight. The approximation of Eq. (18) does not
have to be precise, because the restoring force itself is ad-
hoc when a material failure occurs. efr only provides a
momentum to recover the degenerated volume, and it will
be replaced by regular Cubature forces as long as the degen-
eration is resolved. In practice, the reduced IFE produces
physically-plausible responses under extreme deformations
and it is at least an order faster than the fullspace IFE
method. Fig. 11 shows an example of using our reduced
IFE to imitate inflating a collapsed hot-air balloon.

7 EXPERIMENTAL RESULTS

Our system was implemented using Microsoft Visual

Studio 2013 on a Windows 10 X64 desktop PC equipped
with an Intel Core i7-5960 CPU and 12 G RAM.
Numerical algorithms were implemented on the top of
Eigen C++ template and Intel MKL library. Unless speci-
fied, the performance reported is with the single-core imple-
mentation. The statistics of tested 3D models and simulation
benchmarks are summarized in Table 1. Since our method
uses the model reduction, all the experiments run at an
interactive rate, which is two to three orders faster than the
fullspace simulation. Here we would like to remind readers
that the EMWE is only used for funnelling the bunny
(Figs. 1 and 16) and winding the snake (Fig. 8) with six and
three training poses. All the other experiments discussed
are based on the principal weight and local adaption.
After all, it is not surprising that EMWE can produce highly
stylized animations similar to [49] with carefully selected
weight training, which makes the comparison unfair.

Weighting quality. In the first experiment, we compare the
proposed elastic weighting with other widely-used weight-
ing algorithms including Harmonics weight [11], radial
basis function [35], mean value coordinate [37] and the

Fig. 11. Use reduced IFE simulation to imitate the inflation of a hot-air
balloon. In this example, we simply use Cubature points as restorative
elements. Three domains are defined.

TABLE 1
Model Statistics and Simulation Benchmarks

Model #Ele #D #Cub Pre Sim FPS

Bunny 64 K 5 389 2 (4.2%) 26 16
Balloon 56 K 3 248 1 (3%) 55 25
Stay-Puft 49 K 5 138 0.5 (5%) 23 13
Cactus 23 K 4 102 0.2 (4.5%) 175 63
Armadillo 39 K 6 348 1.5 (7%) 31 23

#Ele: the number of elements on the simulation mesh; #D: the number of ini-
tialized quadratic domains; #Cub: the number of cubature elements in total;
Pre: pre-computation time in minutes (with multi-threading enabled) and the
accuracy of the Cubature training; Sim: average FPS for simulating the
deformable bodies (collision handling not included). FPS: over all FPS includ-
ing collision/self-collision handling and OpenGL rendering.
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method used in [38]. As shown in Fig. 3, quadratic DOFs
produce better nonlinear bending than linear or rigid ones.
Therefore, we use two quadratic domains (i.e., 60 simula-
tion DOFs) for all the tests in order to eliminate the interfer-
ence brought by using different simulation DOFs.

The result is summarized in Fig. 12. Here, the material
distribution of the cylinder beam is not uniform. The fixed
end of the cylinder beam is stiffer where the Young’s modu-
lus is set as 10,000. The stiffness linearly decreases to 1,000
at the middle region. The deformed shapes under the grav-
ity are shown along with the corresponding weighting dis-
tributions. One can see that geometrically constructed
weight functions (Harmonics, RBF and MVC) yield results
that do not reflect the material variation. Our method with
principal weights well handles such heterogenous elastic
object. In [38], the weight function is computed based on a
high-resolution equilibrium analysis which also takes the
material into account. Similar results can be obtained using
compliance distance [10], which augments the weight function
with Young’s modulus. However without computing the
principal direction and performing the principal projection,
the locking artifact (near the free end of the beam) is dis-
cernible. The fullspace ground truth (using un-reduced
FEM simulation of linear elements) is the leftmost and the
relative error of the free end displacement is also plotted.

One may also notice from Fig. 12 that our weighting func-
tion will have negative values occasionally. In fact, in the
context of overlapping domain decomposition having nega-
tive weighting coefficient is essential to avoid the locking
artifact. To explain this argument, let us look at an illustrative
toy example of a 1D element with two nodesA andB. Under
this configuration, only interpolation is needed as shown in
the leftmost subfigure of Fig. 13. Here, interpolation means
A’s weighting function WA is defined within its nearest
boundary condition: WAðBÞ ¼ 0, and negative weight
should be avoided. When a new node C is inserted into this
1D element between A and B,2 it induces a new boundary
condition:WAðCÞ ¼ 0. That alsomeansWA need to be extrap-
olated beyond its nearest boundary condition in order to
allow A to influence the entire element. If one chooses to
design a smooth shape function, in order to incorporate
boundary conditions at B and C, the lowest-degree polyno-
mial solution is a quadratic curve with negative values after
C (the rightmost subfigure in Fig. 13). If one chooses to clamp
the functions values as the bounded biharmonicweights [50],
the weighting function becomes discontinuous and locking
artifacts could occur (mid sugfigure in Fig. 13). In this case,
the element is degenerated to be a linear one. Without

negative weight values, no smooth shape functions can sat-
isfy both boundary conditions atB andC simultaneous.

Whether or not we should have negative weighting func-
tions depends on whether or not the weighting function
needs to be extrapolated beyond its nearest boundary con-
ditions. In many existing graphics literature, weighting
functions are not supposed to influence areas outside of its
neighboring boundary conditions. As a result, such blend-
ing is just interpolation and should be convex. However,
our system is designed for the overlapping domain decom-
position and negative weights become essential. Fig. 14
gives a 3D example. The beam model has two domains both
covering the entire model. Their seeds are at the 1=4 and
3=4 along the neutral axis of the beam. If BBW is used,
weight values of both domains at nodes right to seed 1 will
be 1 and 0. This leads to locking effect. However, our
method does not have such problem.

Robust nonlinear expressivity. Next, we evaluate the capabil-
ity of the proposed simulator capturing large nonlinear defor-
mations. We compare our method with two paradigmatic
state-of-the-art multi-domain nonlinear simulators using
deformation substructuring [1] and coupling elements [2]. As
shown in Fig. 15, the cactus model is decomposed into four

Fig. 12. Compare different weighting algorithms with a cylinder beam of heterogenous materials: the Young’s modulus of the beam varies along its
neutral axis. Two quadratic domains are set. The weight distributions from different algorithms are also plotted.

Fig. 13. Shape functions of a simple 1D element.

Fig. 14. BBWmay induce locking artifacts.2. Doing so actually makes this element nonlinear.
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domains. The Voronoi segments (left in the figure) are used
for the non-overlapping domain decomposition for [1] and
[2] with 30 modal derivatives per domain. Therefore all the
reduced models have 120 simulation DOFs. From snapshots
reported in the figure and the supplementary video, we can
see that all the simulators produce plausible deformable ani-
mations comparable to the fullspace result.

On the other hand, our method does not require an
explicit domain coupling. This advantage makes our system
robust against large-scale deformations. Figs. 1 and 16 show
snapshots of a challenging scenario: a one-inch-tall bunny
model is forced to pass through a thin funnel. The Young’s
modulus of the bunny is 500 and the Poisson’s ratio is 0.4.
Five domains are used in this example and all the solvers
use 150 simulation DOFs. When the funnel is relatively
wide (i.e., 0.4) as shown in Fig. 16 top, all the simulators pro-
duce plausible and interesting animations. However, if we
reduce the size of the funnel to 0.3, non-overlapping solvers
fail. This is because when domains’ interfaces are highly
distorted, the rigid interface assumption [1] does not hold
and the coupling elements [2] are degenerated. Our method

is still able to produce a similar animation compared with
the fullspace simulation (Fig. 1) and remains stable even the
funnel is further shrunk to 0.2 (Fig. 16 bottom).

A more extreme case highlighting the robustness of our
solver is shown in Fig. 17. In this test, we collapse the
Armadillo model into a small 2D disk initially. When this
strong geometry constraint is released, our method quickly
restores the model back to the rest shape with the help of
reduced IFE simulation. While the IFE contributes the calcu-
lation of necessary internal forces, the main reason behind
such good numerical stability is the overlapping domain
decomposition. A fullspace IFE [40] simulated animation is
also available in the video for readers’ reference.

Local adaptivity. Lastly, we test the adaptivity of our algo-
rithm. Fig. 18 reports results using our method, local sub-
space [28] and the fullspace solver when we push the Stay-
Puft with a spiky board. The Stay-Puft model originally has
five domains and extra two domains are inserted corre-
sponding to the external collision with spikes. We can see
from the figure that, newly-added domains provide neces-
sary deformable freedoms to simulate local deformation,
and realistic results comparative to the fullspace ground
truth are produced.

It is noteworthy that similar denting effects can also be
obtained by building a local subspace using Boussinesq equa-
tion [28] as shown in Fig. 18. However, our method is able to
deal with a much wider range types of deformation. As
shown in Fig. 19, the falling bunny hits an elastic lollipop. The
local domain insertion does not only help for a better denting
effect on the bunny’s body, it also enriches the local deforma-
tion for the lollipop. Initially, the bunny has five domains and
the lollipop has only one domain seeded at themiddle.

8 LIMITATION AND FUTURE WORK

We present a new spatially reduced deformable simulator
using overlapping quadratic domains. The incorporated

Fig. 16. Drag the bunny through a thin funnel (available as the supple-
mentary executable too).

Fig. 15. Simulate a swinging cactus using deformation substructuring [1],
unified domain decomposition [2], our method, and the fullspace solver.

Fig. 17. Our solver remains stable under severe geometry constraints.

Fig. 18. Adding new domains according to the contacts from a moving
spike board greatly enriches detailed local deformation.
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high-order DOFs enhance the expressivity of the reduced
model for nonlinear deformations. Besides, we also design
an elastic multi-weight enveloping scheme assigning cus-
tomized weight functions for quadratic DOFs. Augmented
with the accelerated invertible finite element method and
runtime domain addition, our method simulates challeng-
ing large-scale nonlinear deformations at an interactive rate.

Our method also has several limitations, which leave us
many interesting research directions for future work. While
quadratic transformations provide plenty of nonlinear
freedoms, they could also inject excessive DOFs for modest
deformations. As a result, placing a lot of quadratic
domains (i.e., over hundreds of domains as in [1]) will
quickly drop simulation FPS. A possible solution is to
explore the geometric symmetry/degeneration hidden in
the deformable body to further condense the domain’s
DOFs (i.e., downgrade entries in the geometry matrix to lin-
ear DOFs that are perpendicular to the neutral axis of a
beam, where we have limited nonlinear deformations).
Another possible treatment is to use mixed domains, like
affine [10] or rigid [11] domains. Adding new domains dur-
ing the simulation runtime alters the subspace matrix and
popping artifacts are possible if the time step size is aggres-
sive. For instance in [28], the time step is set conservatively
at the order of 1e�4 to 1e�6 to alleviate the issue. Another
limitation lies in the fact that our weight function is still
computed based on the linear elasticity and the rest shape
stiffness matrix. Under large deformations, the weight dis-
tribution is likely to change too. We will look into the possi-
bility of calculating the spatial weight derivative similar to
the modal derivative [4] to better incorporate such nonline-
arity. Augmenting modal deformations with elastic weight-
ing is also an interesting future work for us. In order to do
so, we need to carefully design local boundary conditions to
construct modal bases and couple them with local rigid
body transformations. Of course, doing so will induce more
freedoms to the simulator putting us back to the original
question for the reduced simulation: how to find the best
balance between simulation speed and quality?
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