
Pacific Graphics 2018
H. Fu, A. Ghosh, and J. Kopf
(Guest Editors)

Volume 37 (2018), Number 7

Online Global Non-rigid Registration for 3D Object Reconstruction
Using Consumer-level Depth Cameras

Jiamin Xu1 Weiwei Xu1† Yin Yang2 Zhigang Deng3 Hujun Bao1

1State Key Lab of CAD&CG, Zhejiang University 2University of New Mexico 3University of Houston

Figure 1: Selected 360-degree reconstruction results using our algorithm. The resulting reconstructions are rendered using the stitched texture
as diffusion maps. Please refer to Table 1 for detailed statistics. The real-world photos of the target objects are shown in yellow boxes.

Abstract
We investigate how to obtain high-quality 360-degree 3D reconstructions of small objects using consumer-level depth cameras.
For many homeware objects such as shoes and toys with dimensions around 0.06−0.4 meters, their whole projections, in the
hand-held scanning process, occupy fewer than 20% pixels of the camera’s image. We observe that existing 3D reconstruction
algorithms like KinectFusion and other similar methods often fail in such cases even under the close-range depth setting. To
achieve high-quality 3D object reconstruction results at this scale, our algorithm relies on an online global non-rigid regis-
tration, where embedded deformation graph is employed to handle the drifting of camera tracking and the possible nonlinear
distortion in the captured depth data. We perform an automatic target object extraction from RGBD frames to remove the un-
related depth data so that the registration algorithm can focus on minimizing the geometric and photogrammetric distances of
the RGBD data of target objects. Our algorithm is implemented using CUDA for a fast non-rigid registration. The experimental
results show that the proposed method can reconstruct high-quality 3D shapes of various small objects with textures.

CCS Concepts
•Computing methodologies → Shape modeling;

1. Introduction

3D reconstruction is one of the core methodologies of digital con-
tent creation for a wide range of graphics applications, especial-
ly when digitized 3D objects or environments are of primary con-
cerns [BRU10,RZS07]. Despite the proliferation of 3D reconstruc-
tion methods, such as structure-light based 3D scanning and image-

† Corresponding author: Weiwei Xu (xww@cad.zju.edu.cn)

based modeling, 3D reconstruction often requires expensive hard-
ware and dedicated scanning environments. Thus, many research
efforts have been devoted to 3D reconstruction using low-cost,
consumer-level depth cameras [BF15, NIH∗11, WZB14].

Although there are well-established 3D-scene reconstruction al-
gorithms [NIH∗11, NZIS13, WLS∗15], we observe that existing
methods frequently fail to achieve high-quality 3D object recon-
struction results (see Fig. 2). The main reasons are twofold. First,
many common homeware objects, such as shoes and toys of sizes
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Figure 2: Existing 3D reconstruction techniques like KinectFusion
[NIH∗11] often fall short of high-quality reconstructions for small-
scale objects.

roughly between 0.1− 0.4 meters, are small-scale w.r.t the depth
range (0.5−8.0 meters) of depth cameras. Empirically, during the
hand-held scanning, their shapes will only occupy a small portion
of the depth image, usually fewer than 20% of the pixels of the im-
age. This implies that conventional full-image based camera regis-
tration algorithms cannot concentrate on the target object, and ir-
relevant depth readings are likely to downgrade the quality of the
reconstructed object. Second, even though one can move the depth
camera near the target object to increase its resolution, the close-
range data from the depth camera are often too noisy for a high-
quality reconstruction of the 3D object.

As an echo to the above limitations, we propose a novel 3D re-
construction pipeline for commodity objects using consumer-level
depth cameras, which integrates automatic object segmentation to
improve the accuracy of the depth registration algorithm signifi-
cantly and achieves high-quality, 360-degree 3D object reconstruc-
tion results regarding both geometry and texture. The technical
components of our reconstruction pipeline include:

• Automated object extraction from RGBD images. To reduce or
even eliminate the unwanted influence of the depth data irrel-
evant to a target object before 3D registration, our algorithm
automatically segments out the object frame-by-frame and on-
ly keeps the depths of the object in the registration. To locate the
target object in the scene at the beginning of scanning, the user
only needs to point the center of the depth camera image to the
target object for a short period, which eases the burden of manual
intervention (e.g., manually put a 3D bounding box on the object
at the beginning of scanning) often needed in current practices.

• Online global non-rigid registration. Unlike previous algorithms
that only perform global registration after all the data are ac-
quired or loop closures are detected, our algorithm perform-
s online global non-rigid registration repeatedly during the s-
canning process. Specifically, our pipeline first registers each
captured depth image rigidly frame-by-frame and organizes the
rigidly-registered consecutive frames into fragments [ZMK13].
The global non-rigid registration is performed online whenev-
er a new fragment is formed, which improves the accuracy of
the estimated camera poses and removes the unnecessary influ-
ence from the non-linear distortion in the data. At this step, we
adopt the embedded deformation (ED) graph algorithm [SSP07]
with an additional photometric energy term. Due to its parallel
implementation on GPU and the reduced computational cost at
fragment level, the non-rigid registration step takes fewer than
70 milliseconds, which can efficiently support the interactive re-
sponse of the pipeline.

• Pause-and-restart for 360-degree reconstruction. This scheme

allows the user to pause the process after finishing the scanning
of visible parts, change the object pose to uncover the occluded
surface, and then restart the scanning. In this way, we are able to
achieve high quality, 360-degree reconstruction results. At this
step, we choose view-independent features (e.g., Combine ORB
features [RRKB11] with FPFH features [RBB09]) to register the
frames.

We have tested our reconstruction algorithm on a variety of 3D
objects. As shown in Figs. 1 and 16, our algorithm can achieve
high-quality textured 3D reconstruction results.

2. Related Work

Existing 3D reconstruction techniques include structure-light based
3D scanning and image-based multi-view 3D reconstruction, which
have been extensively investigated in computer vision and comput-
er graphics communities [HZ06, Wik]. Our work follows the fast
development of 3D reconstruction technique using consumer-level
RGB-D cameras, and we briefly review recent research efforts most
related to our work in this section.

Rigid registration for depth fusion: Since the captured depth
images are only partial scans of real-world object(s), it is criti-
cal to register them to a unified model to form a final 3D recon-
struction result. At the early stage, researchers proposed to perform
an iterative closest point (ICP) based rigid registration algorithm
to register each depth image during 3D scanning [BM92, CM91],
which has been developed to the widely-known KinectFusion tech-
nique [NIH∗11]. To make the rigid registration procedure more
robust, Kerl et al. [KSC13b, KSC13a] proposed to consider the
color consistency during the registration, which can help to re-
duce the issue of geometry drifting. Endres et al. [EHE∗12] use
both geometric metrics and local image descriptors (SIFT [Low04],
SURF [BETG08], or ORB [RRKB11]) to register RGB-D frames.
The same idea was also explored in [DNZ∗17, HKH∗10]. In ad-
dition, Fast Point Feature Histogram (FPFH) [RBB09] and depth
edges have also been adopted to enhance the registration accura-
cy [ZK15, ZPK16]. There also exist research works to improve the
reconstruction quality via selecting sparse frames [YYFX18] and
emphasizing salient objects in the fusion [SKM∗17].

The registered frames can be fused into a volumetric represen-
tation which stores truncated sign distance function (TSDF) val-
ues at each voxel. Octree and spatial voxel hashing techniques
are explored to reduce the memory footprint required in unifor-
m volumetric representation in the reconstruction of large-scale
scenes [WKF∗12, NZIS13, KPM16, ZZZL12]. Roth et al. [RV12]
developed a volume shifting and re-mapping technique to synchro-
nize the volume with the movement of the depth camera. Along
with the widely-used volumetric representation, the surface ele-
ment technique surfel, a combination of point clouds and attached
features, has been also proposed [WWLG09, WLS∗15].

For 3D reconstruction tasks, loop closure is often desired to ob-
tain good results. Many recent works use global optimization to
correct the issue of accumulated drifting during scanning. Choi et
al. [CZK15] proposed a robust off-line global optimization method
on a graph consisting of all the fragment pairs. Based on a simi-
lar idea, Prisacariu et al. [KPM16] developed an online real-time
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Figure 3: A schematic overview of our reconstruction pipeline.

system by dynamically creating sub-maps and performing the opti-
mization of detected loop closures. Instead of correcting the drifted
camera poses, Whelan et al. [WLS∗15] register the drifted point
clouds using embedded deformation graph [SSP07] on each de-
tected local loop closure and global loop closure. A more recent
work [DNZ∗17], on the other hand, maintains the relation at frame
level and performs global optimization in real time. It performs lo-
cal pose optimization for each new frame and global pose optimiza-
tion after a chunk of frames. Therefore, it can correct the drifting
issue at the frame level.

Non-rigid registration for 3D reconstruction: The non-rigid
registration is employed in 3D reconstruction to handle deformable
objects and non-linear distortions in the captured depth data. Zoll-
höfer et al. [ZNI∗14] use the as-rigid-as-possible surface model-
ing [SA07] method to do non-rigid surface fitting. The embedded
deformation graph method developed in [SSP07] is widely used
to track the motion of deformable objects [NFS15, DKD∗16]. Guo
et al. [GXW∗18] proposed to use both L2 and L0 based motion
regularizations to further stabilize the tracking. Our work is also
related to the recent contributions that apply non-rigid deforma-
tion techniques to register the distorted point clouds to achieve the
global geometry consistency [BR07, BR04, LPC∗00]. In [WWL-
G09, WLS∗15], global registration to reduce the gap at loop clo-
sures is achieved by the embedded deformation graph method.

Although the state-of-the-art non-rigid registration methods,
such as dynamic fusion in [NFS15], can be combined with “Pause-
and-restart” scheme to achieve 360-degree object reconstruction,
we found our system improves the reconstruction quality greatly
through online global non-rigid registration (see Fig.10 for a com-
parison).

Texture generation: To obtain high-quality object reconstruc-
tion, the texture consistency along with the geometry consistency
is another critical aspect. Although the colors and depth sequences
are registered before reconstruction, the texture inconsistency may
exist between different views and between texture-geometry par-
ing. Some previous efforts [CDG∗13, CDPS09] designed for struc-
ture from motion (SFM) were proposed to obtain accurate cam-
era poses according to the image-to-image or image-to-geometry
consistency, and then build the final texture by blending the color
images of all the views. For online scanning pipelines, Bornik et
al. [BKB∗01] use edge information to register the color images in
different views, while Zhou et al. [ZK14] chose to directly optimize
RGB camera poses to handle the possible inconsistency between
depth and color images. They also proposed to use a 2D non-rigid

deformation model to eliminate color image distortion. The recent
work by Bi et al. [BKR17] uses a patch-based synthesis method to
synthesize the texture for each scan with a content constraint and
the inter-view consistency constraint, which can correct large mis-
alignments in challenging cases. Other methods [LI07, WMG14]
formulate the texturing problem as a labeling problem for each tri-
angle using the Markov random field (MRF) model. After global
color adjustments between the labeled patches, the final texture is
packed into texture atlases. As a result, these two methods are suit-
able for high-resolution texture generation.

3. Overview

Given a captured RGBD image stream, our system first segments
out the target object selected by the user and performs interleaved
rigid registrations and online global non-rigid registration to recon-
struct the 3D model. A pause-and-restart scheme can be used by
the user to uncover the occluded parts of the target object to achieve
its 360-degree reconstruction. Finally, we convert the reconstructed
3D model into a triangular mesh and compute its texture informa-
tion to be the output of our pipeline. Fig. 3 illustrates the overall
pipeline.

The 3D model during scanning is represented by surfels, where
each surfel represents a tiny portion of surface that can be well ap-
proximated by a plane. It is similar to point cloud data but each
surfel has five attributes, i.e. {position, normal, color, radius, and
confidence}, which are updated by fusing overlapped 3D points
from different depth maps. Please refer to [WWLG09] for the de-
tails of surfel fusion. We employ the surfel-based representation
since it allows us to directly define the correspondences between
3D points in both rigid and global non-rigid registrations.

The global non-rigid registration is performed at fragment level
to reduce the computational cost, inspired by the elastic fragments
used in [ZMK13]. For a new captured RGBD image, our pipeline
first performs an ICP-based rigid registration to align it with the
previous frame and fuses the 3D points from the new image into
surfels. A fragment is essentially 50 consecutive frames that have
been rigidly registered. Each fragment can then be deformed us-
ing the embedded deformation graph method during the non-rigid
registration process. To ease the non-rigid registration and the sub-
sequent texture generation, a fragment in our system has the fol-
lowing attributes: 1) the surfels belonging to the fragment, 2) an
embedded deformation graph [SSP07], 3) a keyframe, and 4) the
camera pose corresponding to the keyframe. The keyframe for a
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Figure 4: Object segmentation. (a) The rendered depth image from the surfel fusion. (b) The cyan bounding boxes computed from connected
depth edges. (c)-(d) After the user moves the depth camera such that the yellow rectangle is on one of the objects, the overlapped bounding
box will be drawn in red to inform the user. (e) The segmented object to inform the user to start the scanning.

The fused scene Candidate object 
windows The object selection procedure (red bounding box)

(b) (c) (d) (e)

Initial object window (red)
ORB feature points (yellow)

(a)

(a) (b) (c) (d) (e)

�𝐵�

(a) (b) (c) (d) (e) (f)

𝐵�𝐵���

Figure 5: Object tracking. (a) The bounding box Bt−1 and the computed ORB feature points indicated by the yellow dots. (b) The depth
image of the next frame t. (c) The depth edge pixels and the ORB feature points. (d) The correspondences between the ORB feature points
using the GMS method in [BLM∗17]. (e) The extended window B̃t shown as green rectangles used to compute the supporting plane. (f) The
final extracted object computed from the new bounding box Bt .

fragment is selected to be the frame with minimal blurriness score
proposed in [CDLN07]. A fragment graph, as shown in Fig. 6, is
constructed to connect adjacent fragments, which are used to build
the correspondences in global registration.

The triangular mesh in the final output is created using Poisson
surface reconstruction [KBH06], where the maximum Octree depth
is set to 9 to keep the details of the reconstructed model. The texture
is generated by merging RGB images at the keyframes of fragments
using the graph-cut method in [WMG14].

4. Automatic Object Extraction Using RGBD Images

We assume that objects are put on a plane (e.g., desk, ground) and
do not contact with each other. At the beginning of the scanning,
the user needs to point the camera center to the target object for
a short period (e.g., 8 RGBD frames in our experiments) to select
the target object. Afterward, during the scanning process, our sys-
tem will automatically track the target object and extract its depth
data frame-by-frame. Eliminating the irrelevant depth information
through object extraction effectively improves the robustness and
quality of the registration.

Initial segmentation: Initial segmentation is used to facilitate the
user to select the target object to start the scanning. To this end,
we compute a 2D bounding box for each object in the scene us-
ing the depth edge information. The pixels whose depth gradien-
t magnitude is larger than a threshold (default 20 in our experi-
ments) are deemed to be edge pixels, where the depth gradients
are computed using the 3× 3 Sobel operator. The edge pixels are
grouped into connected components based on 8-nearest neighbors,
and 2D bounding boxes are extracted for each connected compo-
nent (Fig. 4 (b)) as the representation of objects. Those very small
bounding boxes (with fewer than 10 pixel rows or columns) are re-
moved. After the user points the center of the camera to the same
bounding box for at least 8 frames, the object in the bounding box is

selected to be the target object and segmented out using its contours
formed by the depth edges in the box (Fig. 4 (e)).

To reduce the influence of the depth noise, we choose to use the
fused depth data for the computation of depth edges. In addition,
since our system requires the target object located at the center of
the current view, we use a center window Wc of size 324× 242
centered at the current view to calculate the depth range in which
the target object should be contained. Specifically, we discard edge
pixels in the depth image D whose depth values are not in the in-
terval [dmin,dmax], where dmin and dmax are respectively defined as:

dmin = minD(p), p ∈Wc

dmax = 2davg−dmin,
(1)

where p ∈R2 is a pixel in D, and davg = ∑D(p)/|W|,p ∈W is the
average depth within W.

Object tracking: It is used to transfer the bounding box Bt−1 at
frame t− 1 to the current frame t, and then segment out the target
object at frame t. We first compute ORB feature points Ot−1 at
the dilated object bounding box ~Bt−1 according to the RGB frame
It−1 and its associated depth frame Dt−1. At frame t, we also use
connected depth edges to obtain candidate bounding boxes and then
select the boxes based on the correspondences computed between
Ot−1 and Ot [BLM∗17]. Those selected boxes are merged into one
bounding box Bt as the new one. Only those candidate bounding
boxes that receive more than five correspondences are selected to
be merged into the new bounding box. Similarly, to improve the
tracking performance, we only detect edge pixels and ORB feature
points at frame t for depth pixels in the dilated bounding box ~Bt−1.
Fig. 5 illustrates the procedure of ORB feature point tracking and
the computation of a new bounding box.

However, depth data inside the bounding box could still con-
tain the depths associated with the supporting plane, which should
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Fragment graph Embedd deformation graph
Figure 6: (Left) Fragments are organized into a fragment graph.
Two fragments are connected in the graph if their camera orienta-
tions are similar. (Right) Each fragment has an embedded defor-
mation graph, which parameterizes the underlying deformation of
the fragment. The red spheres indicate the deformation graph nodes
selected from the surfels of the fragment.

be removed to facilitate the reconstruction and registration. It is
done by detecting the plane according to the tracked bounding box.
Specifically, given a tight bounding box Bt , we extend the bot-
tom half of this region laterally by 25% at both vertical sides of
the original bounding box, yielding an extended window B̃t indi-
cated by two green boxes in Fig. 5(e). Presumably, B̃t provides
the high-confidence information of the current supporting plane
if the view does not parallel to the supporting plane. For a pix-
el p in the depth image D, we can obtain its 3D vertex v ∈ R3

by v(p) = D(p)K−1[p>,1]>, where K is the camera calibration
matrix. The supporting plane should cross the set of vertices v in
B̃t and its normal n can be estimated using Principal Component
Analysis (PCA). After the supporting plane for the current frame is
obtained, the vertices in the bounding box Bt which are above the
supporting plane is extracted as the vertices of the object as shown
in Fig. 5(f).

5. Online Global Non-rigid Registration

To obtain high-quality reconstruction results, we adopt the ED
method [SSP07], an efficient shape deformation framework, to cap-
ture the geometry distortion of the object induced by camera drift-
ing. Each non-rigid registration seeks for the optimal deformation
across all the RGBD images received. In our implementation, we
detect the overlapping area among all the fragments and build cor-
respondences accordingly so that their spatial distance and photo-
metric difference can be minimized. Loop closure is thus naturally
achieved by registering the overlapping fragment pairs.

5.1. Fragment Graph

The fragment graph G〈N,E〉 determines the correspondences need-
ed in the global non-rigid registration, where the note set N is a
set of fragments and the edge set E stands for their connection-
s, as shown in Fig. 6. If two nodes (fragments) are not connected
via an edge in G, the two fragments do not have their correspon-
dences. The connectivity between two fragments is determined by
the camera orientations of the keyframes from the two fragments.
Specifically, let Ti,T j ∈ SE(3) be the keyframe camera poses for
fragments i and j, respectively. They are connected in G if the fol-

lowing condition holds:

arccos
(
[Ti]3 · [T j]3

)
< γ. (2)

[A]i stands for the ith column vector of matrix A, and [Ti]3 is the
local optical axis of poses i. The threshold angle γ is set as 120◦ in
our experiments and it is not critical for our system as more connec-
tions are also acceptable. We found in our experiments that using
such a simple inner product based metric suffices to quantify the
similarity between different camera poses. This is because during
the scanning process, the camera generally faces to the object and
the object is relatively small (Figure 7). For each pair of adjacent
fragments Fi and F j, we maintain a set of matching vertices Mi, j,
which is computed by projecting the depth of one fragment to the
other (from new to old in our implementation). The matched ver-
tices are recorded as the overlapping vertices of Fi and F j and need
to be re-calculated whenever either fragment is updated.

5.2. ED-based Optimization

Figure 7: The camera’s tra-
jectory for the upper half
of the shoe.

Once a fragment Fi is received, we
construct an embedded deformation
graph [SSP07] containing a set of ver-
tices Si as the nodes for the defor-
mation graph, as indicated by the red
spheres in the right of Fig. 6. We set
|Si|= 16 in our implementation, which
is selected using systematic sampling.
Each non-node vertex in Fi is connect-
ed with four nearest node vertices in
Si, and each node vertex is connected
with eight nearest node vertices. Such
a dense connection setup effectively avoids the singularity issue
during the follow-up optimization.

A node vertex possesses its original position gi ∈ R3, a local ro-
tation Ri ∈ SO(3), and a local translation ti ∈ R3. Ri is parameter-
ized using exponential map that maps a vector θi ∈R3 to a rotation
matrix, namely, Ri = exp(θi). The deformed position and normal
of a non-node vertex in vk

i are estimated through weighted blend-
ing of the transformations of its four associated node vertices vl

i ,
l ∈ {1,2,3,4} as follows:

ṽk
i = ∑

l
wl

i(v
k
i )
[
Rl

i(v
k
i −gl

i)+gl
i + tl

i

]
, (3)

and

ñk
i = ∑

l
wl

i(v
k
i )R

l
in

l
i . (4)

wl
i(v

k
i ) is the interpolation weight computed as:

wl
i(v

k
i ) =

(
1−
∥∥∥vk

i −gl
i

∥∥∥/dmax

)2

4

∑
n=1

(
1−
∥∥∥vk

i −gn
i

∥∥∥/dmax

)2
, (5)

where dmax is the distance between ṽk
i and its nearest non-node ver-

tex. Here, we use the superscript [·]k to denote the vertex index and
the subscript [·]i is the fragment index. The nonlinear registration
seeks for the optimal rotation and translation at each node vertex
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so that the geometric and photometric inconsistencies across all the
fragment pairs, {(Fi,F j)|〈i, j〉 ∈ E}, are minimized. Our objective
energy function consists of the following three components:

E = λgeoEgeo +λphotoEphoto +λsmoothEsmooth. (6)

Weights λgeo, λphoto, λsmooth are primarily for scaling each energy
term to the same range, and they are set as 10, 0.001 and 100 in our
implementation, respectively.

The geometric energy (Egeo) encodes the geometric inconsistency
based on the point-to-plane distance as:

Egeo = ∑
〈i, j〉∈E

∑
k1,k2∈Mi, j

[
ñk1

i · (ṽ
k2
j − ṽk1

i )
]2

+
[
ñk2

j · (ṽ
k1
i − ṽk2

j )
]2

,

(7)
assuming ṽk1

i ∈ Fi and ṽk2
j ∈ F j are two matched vertices from the

associated matching vertices set Mi, j.

The photometric energy (Ephoto) is designed to describe the mu-
tual projection difference in the RGB color space between two con-
nected fragments. Mathematically, it is formulated as:

Ephoto = ∑
〈i, j〉∈E

∑
k1,k2∈Mi, j

∥∥∥I j
(
π(T−1

j ṽk1
i )
)
− Ii
(
π(T−1

i ṽk2
j )
)∥∥∥2

.

(8)
Similar to Eq. (7), ṽk1

i ∈ Fi and ṽk2
j ∈ F j are two matched vertices

from Mi, j. First, ṽk1
i is transformed to the camera space, determined

by the key frame camera pose of F j as T−1
j ṽk1

i . π is the camera
projection operation such that:

π([x,y,z]>) = [
x fx
z

+ cx,
y fy
z

+ cy]
>, (9)

where fx, fy are the camera’s focal lengths and cx, cy are the op-
tical center coordinates. Next, we project the transformed ṽk1

i onto
I j , which is the key RGB frame of F j. The color is computed us-
ing a bi-linear interpolation based on the projected image coordi-
nates. Similarly, the color value of ṽk2

j is also evaluated in Ii and the
squared color differences are summed.

The smooth energy (Esmooth) is a regularization term as suggested
in [SSP07]. Esmooth penalizes sharp high-frequency deformations,
which can be calculated as:

Esmooth = ∑
i

∑
k

∥∥∥∥∥∑l
Rl

i(g
k
i −gl

i)+gl
i + tl

i − (gk
i + tk

i )

∥∥∥∥∥
2

, (10)

where the first summation iterates all the fragments. For a node
vertex k on the embedded deformation graph of Fi, Eq. (10) sums
the squared displacement as it is plugged into the transformation
field at its neighboring node l.

5.3. Camera Poses Update

The online global non-rigid registration can reduce scan drifting
by both registering the fragments and rectifying the current cam-
era pose. Therefore, an important step in our system is to update
the camera poses for all the fragments’ keyframes according to the
non-rigid registration result during scanning, since it is not direct-
ly optimized in the embedded deformation algorithm. To this end,

we consider the camera as a “super vertex" deformed by all the n-
odes in the embedded graph. Precisely, its new pose, denoted by
T̃cam

i = {R̃cam
i , t̃cam

i }, is computed as the average of all the node
vertices on the embedded graph:

R̃cam
i = exp

(
∑
k

log
(

Rk
i Rcam

i

)
/16

)
, (11)

where the camera’s rotation R̃cam
i is updated by averaging the lo-

cal rotation Rk
i of all of the 16 node vertices based on the initial

camera pose Rcam
i . Likewise, the camera translation is updated by

averaging all the tk
i :

t̃cam
i = ∑

k

[
Rk(tcam

i −gk
i )+gk

i + tk
i

]
/16. (12)

With the updated camera poses for keyframes, the current camera
pose is updated accordingly by calculating a rigid transformation
related to its corresponding keyframe camera pose.

5.4. Optimization

During the optimization each loop updates the matching vertices set
Mi, j for each connected fragment pair Fi and F j, 〈i, j〉 ∈ E, com-
putes an incremental correction towards current deformation pa-
rameters, updates the fragments’ geometry using Eqs. (3) and (4),
and adjusts the camera pose for each fragment.

The Gauss-Newton method is employed in our implementation
and the following linear system is solved at each iteration:(

J>J
)
δx =−J>r, (13)

where the unknown vector x stacks deformation parameters on the
embedded deformation graph for all the fragments. As we have 6
parameters per node vertex and 16 nodes per embedded graph, x is
a (6 ·16 · |F|)-dimensional column vector. During scanning |F| will
increase to typically between 30 to 50 in our experiments. r is the
residual that is updated after each iteration. The Jacobi matrix J is
2 ·∑ |Mi, j|+ 3 · 16 · |F| by 6 ·16 · |F| and is sparse because of the
local property of ED graph. To reduce the computational workload,
we down-sample each fragment to 512 vertices when assembling
Mi, j to reduce the cardinality of Mi, j and speed up the optimiza-
tion.

ñk1
i and ñk2

j in Eq. (7), and Ti and T j in Eq. (8) are treated as con-
stants at a given iteration, so that Egeo becomes standard quadratic
forms of x, and the corresponding matrix sub-block in J can be
computed trivially. For Ephoto, the partial derivative of I with re-
spect to x is computed via the chain rule:

∂ I
∂x

=
∂ I
∂π
· ∂π

∂ [x,y,z]>
· ∂ [x,y,z]

>

∂x
. (14)

The last two partial derivatives are straightforward. The derivative
∂ I/∂π is calculated by applying a normalized Scharr kernel over
I. We convert the gray values of the image to floats and apply a
Gaussian filter to smooth the variation of the gray values on I to
avoid local gradient vanishing.

Eq. (13) is solved using the Jacobi-preconditioned conjugate gra-
dient (PCG) method. The PCG loop terminates when the residual
is sufficiently small (e.g., below a threshold), which takes typically
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50-100 iterations, and the deformable registration needs fewer than
five non-linear iterations to converge.

GPU implementation: We implement the PCG solver in parallel
on GPU. Since the dimension of the Jacobi matrix J in Eq. (13)
could become very large with the increase of the number of edges
in the fragment graph, calculating J>J will be time-consuming af-
ter J is obtained. Instead, we choose to directly calculate the J>J,
similar to Fusion4D [DKD∗16]. In the ED graph, a non-node vertex
is only affected by its 4 neighboring nodes in the data term, and a
node is only affected by its 8 neighboring nodes in the smooth term.
With such characteristics, the resulting J>J is a sparse matrix com-
posed of 6×6 dense sub-blocks, each of which is only affected by a
limited number of vertex-to-node and node-to-node energy deriva-
tives. In our implementation, we launch one CUDA block for each
dense sub-block and use the threads in each CUDA block to calcu-
late the related vertex-to-node and node-to-node energy derivatives
concurrently. Each CUDA block will fill its sub-block after mul-
tiplying these energy derivatives with each other and reduce them
together. This parallel algorithm to directly calculate J>J can sig-
nificantly reduce the computational time while reducing the GPU
memory usage. Similarly, J>r can also be calculated directly.

6. Pause-and-restart for 360-degree Reconstruction

However, to achieve pause-and-restart, using the frame-to-model
ICP based rigid registration method is insufficient because both the
camera pose and the object pose have been changed. For these cas-
es, we choose to use view-independent features to register the depth
frame “after restart” to the model “before pause”.

After the user pauses then restarts the scanning, our system first
extracts the ORB feature points [RRKB11] and the FPFH feature
points [RBB09] separately on the current color and depth frames.
Then, the correspondences are calculated between these features
and the same features extracted from the projected color map and
depth map at the camera pose “before pause”. As shown in Fig. 8,
the correspondences are calculated using the HAMMING distance
for the ORB features and the Euclidean distance for the FPFH fea-
tures, and we only choose the nearest neighbor in our system. By
combining the ORB features with the FPFH features, the registra-
tion process is robust even for objects without rich texture.

After the extraction of the feature correspondences, candi-
date matching points between the depth image and the model
are obtained. Then we implement a random sample consensus
(RANSAC) method to register the depth image to the current model
by employing the following scheme:

1. Select 6 sample points randomly while ensuring that their pair-
wise distances are greater than a user-defined minimum distance
(4 pixels in our implementation).

2. Compute the rigid transformation defined by the sample points
and their correspondences.

3. Compute the re-projection error between the point cloud and the
depth image.

The RANSAC method with GPU implementation stops after 1,000
iterations, and it takes less than 1ms for each iteration. The rigid
transformation with minimal re-projection error is used to register
the depth frame "after restart" to the model "before pause".

FPFH Correspondence
ORB Correspondence

Before pause After restart
Figure 8: Based on ORB feature and FPFH feature correspondences
and the RANSAC method, the model “before pause” and depth im-
age “after restart” can be registered correctly.

7. Experimental Results

We implemented our approach on a desktop computer equipped
with an Intel i-7 7700K 4.2 GHz CPU and an NVIDIA
GTX 1080Ti GPU with 11G GDDR5 video memory. The depth
cameras used in our experiments are Occipital structure sensor and
Xiton Pro, and their depth resolution is set to be 640× 480. The
structure sensor is installed on an iPad Pro equipped with a color
sensor with 2592×1936 resolution. We have extensively tested our
system as various objects as reported in Table 1.

Comparison with KinectFusion and ElasticFusion: The com-
parison results are shown in Fig. 9. It can be seen that the ICP-based
registration in Kinectfusion is not capable of handling nonlinear
shape distortions, and errors get accumulated quickly. Such a prob-
lem will be exaggerated when the target is a small object. Similar-
ly, ElasticFusion also focuses on 3D reconstruction of large-scale
scenes. While ElasticFusion allows deformable registration oper-
ations, they are handled locally or incrementally in most cases to
save the computational cost. Therefore, we still can observe accu-
mulated misalignments in the final results by them. As aforemen-
tioned, our method is specially tuned for 3D object reconstruction.
We allow a more aggressive registration strategy that performs a
global deformable registration frequently (every 50 frames when a
fragment is formed). Each ED-based registration not only fuses a
batch of new depth readings into the model but also aims to correct
the current residual error and seek for a better global configuration.

With and without object extraction: One of the main advan-
tages of our method is the automated object extraction step that can
locate the target object with minimal user intervention and isolate
the depth pixels around the object. The advantage of this process is
also reported in Fig. 9. No matter one chooses to use locally rigid
registration (KinectFusion) [NIH∗11], local-global deformable reg-
istration (ElasticFusion) [WLS∗15], or global deformable registra-
tion (our method), removing irrelevant depth readings will always
improve the reconstruction quality noticeably.

Comparison with DynamicFusion and ElasticFragment: Al-
though the dynamic fusion method in [NFS15] also employs the
embedded deformation graph method to register depth images, it
lacks an explicit global registration step to handle loop closures
as the global non-rigid registration of fragments in our method.
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E
xt

ra
ct

io
n

N
o 

ex
tr

ac
tio

n
E

xt
ra

ct
io

n
N

o 
ex

tr
ac

tio
n

Figure 9: We compare the reconstruction results using KinectFusion [NIH∗11], ElasticFusion [WLS∗15] and our method. Clearly, performing
objection extraction effectively improves the resulting 3D models.

Model
# of frames

Size (cm)
Object Fusion & Global non-rigid Meshing &

(fragments) extraction rigid registration registration texturing
Formular canister (Fig. 16) 2400 (48) 13×11×20 13.21s/5.5ms 48.97s/20.4ms 1.94s/0.8ms 37.84s
Detergent bottle (Fig. 16) 2400 (48) 15×8×19 13.33s/5.6ms 49.32s/20.6ms 1.97s/0.8ms 38.65s

Toy dinosaur (Fig. 16) 2100 (42) 41×11×15 11.67s/5.6ms 42.45s/20.2ms 1.56s/0.9ms 30.05s
Casual shoe (Fig. 16) 1600 (32) 28×11×10 8.64s/5.4ms 32.87s/20.5ms 1.03s/0.6ms 34.47s
Sports shoe (Fig. 1) 1450 (29) 29×12×11 8.05s/5.6ms 29.69s/20.5ms 0.88s/0.6ms 38.69s

Boot (Figure 16) 2200 (44) 25×9×17 12.34s/5.6ms 44.01s/20.0ms 1.68s/0.8ms 29.07s
Pot turtle (Fig. 3) 2350 (47) 15×10×9 12.93s/5.5ms 47.50s/20.2ms 1.86s/0.8ms 33.34s

Toy Mario (Fig. 16) 2500 (50) 13×8×23 13.45s/5.4ms 49.94s/20.0ms 2.05s/0.8ms 34.38s
Toy monkey (Fig. 14) 1300 (26) 17×13×27 6.87s/5.3ms 26.79s/20.6ms 0.76s/0.6ms 32.56s

Banana (Fig. 1) 1900 (38) 25×20×6 10.33s/5.4ms 35.12s/18.5ms 1.33s/0.7ms 35.77s
Toy horse (Fig. 1) 1700 (34) 25×12×23 9.66s/5.7ms 34.35s/20.2ms 1.13s/0.7ms 37.15s

Table 1: Statistics of reported 3D reconstruction results. # of frames (fragments) indicates the number of frames and the number of formed
fragments in the captured RGB-D sequences for all the tested objects. Their dimensions in centimeter is recorded in columns, Size. The 4th
to 6th columns are the total time in seconds and time per frame in millisecond for three steps: 1) object extraction, 2) surfel fusion and rigid
registration, 3) global non-rigid registration. The last column is the total time in seconds for meshing and texturing.

As illustrates in Fig. 10, our pipeline achieves better 3D recon-
struction results of the same 3D objects in Fig. 9. The results of
the dynamic fusion method are also obtained after the objects are
segmented out from the depth images. Our online, fragment-based
non-rigid registration can be viewed as a GPU implementation of
the offline elastic fragment method in [ZMK13]. However, the
advantage of our method is that the frame-by-frame registration
can be corrected by the global registration online in the recon-
struction. Fig. 11 shows a comparison of the online and offline
registration results. Both methods produce high-quality registra-
tion results in the experiment, and the result of the elastic frag-
ment method is obtained using the implementation at https:
//github.com/qianyizh/ElasticReconstruction.

Global rigid registration vs global non-rigid registration: Nex-

t, we show that non-rigid registration is also an important recipe of
a high-quality reconstruction even for still objects. For this purpose,
we replace our deformable registration subroutine with a standard
rigid registration. While global rigid registration appears to yield
a plausible result at the first sight, a zoom-in view tells us other-
wise. As reported in Fig. 12, many vertices are ill-registered to the
object’s surface due to the nonlinear deformation during the scan.
Such mismatched vertices visually blur the model and they could
lead to dangling triangles on the final mesh. On the other hand, our
ED-based non-rigid registration greatly improves the result. As we
can see from Fig. 12, most vertices are tightly aligned to the object
surface.

With and without photographic metric: Another important in-
gredient is the photometric energy Ephoto term in the objective
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DynamicFusion Our methodRGB image

Figure 10: Comparison with DynamicFusion [NFS15].

RGB image ZMK13 Our method

Figure 11: Comparison with ElasticFragment [ZMK13].

function defined in Eq. (8). The geometry metric only captures the
local shape variation between fragments. When a fragment does not
have strong geometric features, for instance, a flat thin board would
be an extreme case, it is possible that vertices are actually misregis-
tered even if the corresponding geometric energy is low. An exam-
ple can be seen in Fig. 13. Without employing Ephoto, the fragments
are misaligned by a translational displacement even with a low Egeo
value. After plugging Ephoto, the registration re-position the frag-
ment to fit the consistency in the RGB color space. The quality of
the result, especially for texturing the model, is improved.

System performance: Our implementation makes significant use
of GPU computing. The surfel fusion was implemented using
the OpenGL Shading Language, while the object extraction,
camera pose tracking, and ED-based global non-rigid registration
were implemented using CUDA. For a typical small object with
30 to 50 fragments, the total GPU memory footprint is around
1.5 gigabytes. The time used for each module during scanning is
reported in table 1. With the GPU implementation of the GMS
method [BLM∗17], the automatic object extraction can be done
within 5-6 milliseconds per frame. The ICP based rigid registra-
tion between 2 frames can finish within 13-15 milliseconds, and the
surfel fusion took 4-5 milliseconds. The computational time for the
global non-rigid registration depends on the number of fragments
in the input data. At the beginning, it is around 20 milliseconds for
10 fragments and will increase to 60-70 milliseconds for 50 frag-
ments. As the global non-rigid registration is only called when a
new fragment arrives, our approach can still run at 30fps using t-
wo threads: a data thread responsible for recording RGBD frames
and a registration thread for object extraction and non-rigid regis-
tration. For “pause and restart” during scanning, typically it took
about 0.8-1.0 seconds for the RANSAC method, and our system
discarded frames captured in this period.

More results: Besides the examples shown in Fig. 1, more tex-
tured reconstruction results can be found in Fig. 16. It can be seen

Rigid registration Non-rigid registration

Figure 12: Even for still objects, non-rigid registration is important.
Using only global rigid registration produces many “diffusive” and
ill-aligned vertices due to the nonlinear distortion. Our ED-based
deformable registration yields better results

Without photometric term With photometric term Models with texture

Figure 13: The photometric energy term resolves the registration
ambiguity during the reconstruction especially for object’s frag-
ment without sharp geometric features.

that our system can produce high-quality 3D reconstruction for s-
mall objects using Occipital structure sensor. The photometric met-
ric further improves the texture quality. Even the ingredient infor-
mation on the formula canister is legible. The RGB images and
depth map captured by the structure sensor installed on the iPad
Pro is sent back to the desktop PC for segmentation and registra-
tion via WiFi network. Moreover, we also tested our algorithm us-
ing Xtion Pro depth camera. As shown in Fig. 14, the reconstructed
objects are also of high quality. We also measured the geometric
reconstruction error of our method using a synthetic chair mod-
el. The chair model is normalized into a bounding box of 1-meter
side length and rendered into depth images using virtual camera
trajectories. As shown in Fig. 15, the maximal Hausdorff distance
between the original chair model and the reconstructed model is
0.0037m (the relative reconstruction error is thus 0.37%), and the
points with large errors mostly appear along the sharp edges of the
model, where the surfel fusion procedure might smooth their posi-
tions.

Xtion Pro results

Figure 14: Using Xtion Pro depth camera, our system can also pro-
duce high-quality 3D reconstruction.
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Reconstruction Result Hausdorff DistanceOriginal Model

Original Model Reconstruction Result Hausdorff Distance

Figure 15: Relative reconstruction error measured using a synthetic
chair model.

8. Discussion and Conclusion

In this paper, we present an efficient pipeline specially crafted for
3D object reconstruction. Since we focus on 3D object reconstruc-
tion, the proposed pipeline isolates the target object’s depth infor-
mation. Targeting small-scale objects also allows us to choose more
aggressive registration strategies. Our system couples an ED-based
deformable registration with a rigid registration. The deformable
registration is performed over all the received fragments to correct
the residual error, and it well captures the nonlinear distortion of
the object, and the entire optimization routine is implemented on
the GPU. All of these technical features converge to a stable, effi-
cient, and high-quality 3D reconstruction system.

Limitations and future work: Nevertheless, our current system
still has many limitations that enlight us several exciting future di-
rections to explore. We currently assume the object is placed on
an open area without occlusions from other objects. How to extend
our system to deal with multiple objects with potential occlusions
is an interesting and challenging future direction we would like to
pursue. There exist opportunities to minimize the data transfer be-
tween CPU and GPU, which is the speed bottleneck of our algorith-
m. We also want to study better nonlinear optimization procedures
on GPU as PCG heavily relies on vector inner product, which is not
superior on GPU.
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