
Interactive Mechanism Modeling from Multi-view Images

Mingliang Xu∗ Mingyuan Li∗ Weiwei Xu† Zhigang Deng‡ Yin Yang§ Kun Zhou†

∗Zhengzhou University †State Key Lab of CAD&CG, Zhejiang University
‡University of Houston §University of New Mexico

(a) Input multi-view data (b) Modeling (c) Interactive modeling (d) Refined result

Figure 1: (a) An example of point cloud data reconstructed from multi-view images of a piston-engine model. (b) The extracted 3D part
models are overlaid on the image with cyan color, and the three red strokes indicate the current part drawn by the user. The details added
to the refined result in (d), i.e. the holes of the driving gear, are generated in Blender software based on the 3D modeling results using
our approach in (c) within 3 minutes. The whole modeling process only takes around 25 minutes on an off-the-shelf computer. The red
arrows visualize the allowed motion of its movable parts. Please see the accompanied video for the kinematic simulation of the reconstructed
mechanism model.

Abstract

In this paper, we present an interactive system for mechanism mod-
eling from multi-view images. Its key feature is that the generated
3D mechanism models contain not only geometric shapes but also
internal motion structures: they can be directly animated through
kinematic simulation. Our system consists of two steps: interactive
3D modeling and stochastic motion parameter estimation. At the
3D modeling step, our system is designed to integrate the sparse
3D points reconstructed from multi-view images and a sketching
interface to achieve accurate 3D modeling of a mechanism. To re-
cover the motion parameters, we record a video clip of the motion
of an input mechanism and adopt stochastic optimization to recover
its motion parameters by matching the edge information in video
frames and the projected 2D silhouettes of the 3D parts. Experi-
mental results show that our system can achieve the 3D modeling
of a range of mechanisms from simple mechanical toys to complex
mechanism objects.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Curve, surface, solid, and
object representations

Keywords: Interactive modeling, multi-view images, sketch-
based modeling, motion structure optimization, mechanism mod-
eling

1Mingliang Xu and Mingyuan Li are joint first authors.

1 Introduction

Mechanism modeling is one of the central tasks in commercial
CAD software, such as Autodesk Inventor and Solidworks. A typi-
cal mechanism modeling procedure usually includes two steps: cre-
ate 3D part models and design joint constraints among the parts so
as to achieve the desired motion. However, the state-of-the-art CAD
software packages focus on providing professional tools for expert
users to create mechanisms; it is a non-trivial task for an average
user to learn the necessary knowledge to use such software pack-
ages efficiently to create various mechanism models.

Motivated by the recent progress in image-based interactive model-
ing [Sinha et al. 2008; Chen et al. 2013], in this paper we propose a
multi-view image-based mechanism modeling system for a variety
of users who may only have preliminary knowledge in mechanism
design. The system is designed to utilize the visible geometric re-
lationship between parts in the images to guide users in complex
mechanism modeling. Even though there exist a variety of 3D mod-
eling algorithms from multi-view images [Hartley and Zisserman
2004; Seitz et al. 2006], it is technically challenging to straightfor-
wardly extend these methodologies to model high-quality, function-
ing 3D mechanism models. First, as a complex man-made object,
a mechanism typically consists of many interlinked parts, which
leads to severe occlusions among them in 2D images. Therefore,
existing multi-view 3D modeling approaches would fall short to
handle such cases. Second, its internal motion structure, includ-
ing the motion constraints among parts, is essential to realize the
functional design of a mechanism. Nevertheless, identifying such
a motion structure is non-trivial, because this would require algo-
rithms not only to model the 3D shape of each part accurately but
also to robustly estimate its underlying motion constraints, i.e., the
joints among different parts.

The major contribution of this paper is the development of a novel
interactive mechanism modeling approach based on multi-view im-
ages, which enables us to tackle the above technical challenges on

the accurate reconstruction of both part shapes and motion param-
eters of mechanisms:

• Inspired by [Chen et al. 2013], we extend the stroke-based
sweep modeling interface to create 3D parts. Our interactive
modeling interface not only enables users to create the 3D
shape of each part from the view where it is mostly visible
using generalized cylinders or cube shapes but also facilitates
users to determine the accurate shape and placement of each
part in 3D through the integration of the sparse point cloud
data reconstructed from them. Besides, new snapping oper-
ations are introduced to assist the estimation of correct ge-
ometric relationships between parts, and the part details can
be added through parametric modeling. Furthermore, we also
develop an alignment algorithm, a variant of the inter-part op-
timization in [Chen et al. 2013], to optimize the modeling re-
sult to enforce the alignment constraints among parts, such as
parallelism, orthogonality, and attachment. The algorithm is a
single step optimization with 3D point cloud registration term
and additional snapping constraints.

• In order to recover the motion structure of a mechanism, we
record a video clip of its movements under a specific view. A
stochastic motion parameter estimation algorithm is designed
to estimate the types of joints between parts and the motion
parameters of each part so that the motion of 2D part silhou-
ettes matches the motion of edges detected in the acquired
motion video. The joint types are treated as discrete variables,
and their possible values are estimated through the geomet-
ric shape of their intersections according to the mechanism-
specific domain knowledge [Slater 2011]. The formed dis-
crete configuration space is searched using a tree-like repre-
sentation of mechanism to avoid combinatorial explosion, un-
der the assumption that the motion of the mechanism can be
kinematically controlled. The kinematic loops are supported
in our system.

We have tested our system on a variety of mechanical objects, rang-
ing from mechanical toys to real mechanisms. The modeling time
is around 10 to 30 minutes on an off-the-shelf computer, depend-
ing on the complexity of the mechanism. Our experimental results
show that our system is capable of effectively reconstructing var-
ious mechanism objects from multi-view images, and the recon-
structed 3D mechanism models can be directly used for a variety of
animation and functional demonstration applications.

2 Related Work

Multi-view 3D modeling: The goal of multi-view 3D modeling is
to create complete 3D models from the captured images, and its the-
ory is rigorously formulated in the seminal textbook [Hartley and
Zisserman 2004]. A comprehensive survey of multi-view 3D mod-
eling research is given in [Seitz et al. 2006]. Generally, the pipeline
of multi-view 3D modeling consists of three steps: the calibration
of intrinsic and extrinsic camera parameters [Zhang 2000; Song
et al. 2013], dense correspondences among multiple images [Fu-
rukawa and Ponce 2007; Valgaerts et al. 2012; Ahmadabadian et al.
2013], and stereo triangulation to compute 3D points. Multi-view
3D modeling has also been extended to handle large-scale images
from the Internet, such as photo tourism [Snavely et al. 2006] and
Rome city modeling [Agarwal et al. 2011].

Our work is mostly related to the interactive architecture modeling
from a collection of photos in [Sinha et al. 2008]. However, dif-
ferent from the 3D plane construction in [Sinha et al. 2008], our
work focuses on the shapes of mechanical part primitives and their
motion constraints in order to obtain both geometry and structure
information of a mechanism.

Sketch-based 3D modeling: Sketching interface, in contrast to
WIMP (Windows, Icon, Menu, Pointer), is a metaphor of pen-ink
user interaction, which is preferred by designers for the concept
design of 3D products. It has been applied to a variety of applica-
tions, such as 3D object modeling [Igarashi et al. 1999; Xu et al.
2014], architecture modeling [Chen et al. 2008], volumetric model-
ing [Owada et al. 2007; Schmidt et al. 2007; Owada et al. 2004], the
interpretation of concept sketches [Shao et al. 2013] and 3D shape
retrieval [Eitz et al. 2012b; Eitz et al. 2012a]. In [Yin et al. 2014], a
skeleton-driven morph-to-fit method is developed to reconstruct 3D
shapes from incomplete point clouds as an ensemble of generalized
cylinders through a sketching interface. A survey of sketch-based
modeling techniques is given in [Olsen et al. 2009].

Our method is inspired by the recent work on combining sketching
interface with image edge information for sweeping-based model-
ing [Chen et al. 2013], named 3-sweep modeling. While the 3-
sweep system focuses on 3D modeling from a single photo, the goal
of our work is to model mechanism objects with complex struc-
tures, which is difficult to be completely captured in a single view
due to unavoidable internal occlusions. Our algorithm also supports
the integration of sparse point cloud information and image edges
to get an illustrative 3D mechanism model to aid product design.

Multi-component 3D models: An important research topic in the
processing of a multi-component 3D model is how to maintain the
proper constraints among its components. For example, the editing
of a multi-component 3D mesh model emphasizes the importance
of the motion, symmetry, and primitive shape preserving constraints
for high-quality editing results [Xu et al. 2009; Gal et al. 2009;
Zheng et al. 2011; Kraevoy et al. 2008]. Such constraints have also
been considered in various research efforts on multi-component
model processing, including hierarchy analysis [Wang et al. 2011],
internal structure visualization [Li et al. 2008], image-based model-
ing [Xu et al. 2011; Zheng et al. 2012] and component-based geom-
etry synthesis [Kalogerakis et al. 2012; Xu et al. 2012; Shen et al.
2012]. A comprehensive survey of structure-aware processing of
multi-component models can be found in [Mitra et al. 2013a].

For a mechanism with multiple parts, Niloy et al. [2013b] proposed
a method to visualize its possible motion. Recently, several ap-
proaches have been presented to design and fabricate mechanism
objects using 3D printing technique [Zhu et al. 2012; Bächer et al.
2012; Ceylan et al. 2013; Coros et al. 2013; Thomaszewski et al.
2014]. In computer vision community, significant efforts have been
devoted to detecting rigid parts of an articulated object from im-
age sequences, and analyzing mainly the relative rotational motion
between the parts [Jacquet et al. 2013; Ycer et al. 2015]. There
also exist research works on modeling mechanism from point-cloud
data. However, they mainly focus on extracting geometric primi-
tives, such as cylinders and 3D parts, and did not attempt to recover
the motion structure of mechanisms [Huang and Menq 2002; Bey
et al. 2011]. The goal of our work is to facilitate the 3D modeling
of functional mechanism objects, and the output of our system is
multi-part mechanism models which are ready to be the input of
the above editing, analysis, and visualization algorithms.

3 Multi-view Modeling Preliminaries

Based on user strokes drawn on 2D images, we need to estimate
their 3D positions in order to reconstruct 3D part shapes. In other
words, given multi-view images as the input, for a 2D pixel, we
need to estimate its global Z value so as to decide its 3D position in
the world coordinate system. Our approach first optimizes for theZ
values and then compute the globalX and Y coordinates for a pixel
(x, y) using the projection matrix calculated in the construction of
sparse point cloud data, described below.

e1

e2

e3
e4

S3

S1
S2

e1

e2

e3

e4

S1S2
S3

Figure 2: Three-strokes interface for single part modeling. The first
two strokes represent the profile and the third stroke is for extruding
the profile. The red dots indicate the sparse 3D points around the
end points of the drawn strokes.

Let us first denote the intrinsic and extrinsic matrices associated to
a view i by Ki and Ei = {Ri,Ti}, where the intrinsic matrix Ki

is a 3 × 3 matrix, Ri a 3 × 3 rotation matrix, and Ti is a 3 × 1
translation vector. Given a 3D coordinate V = {X,Y, Z}, the
well-known projection formula can be written as:

v̄i = P(X,Y, Z) = Ki(RiV + Ti), (1)

where v̄i = {x̄i, ȳi, z̄i} is the homogeneous coordinate of the pro-
jected pixel coordinate. Afterwards, the 2D pixel coordinate can be
easily calculated by {xi = x̄i

z̄i
, yi = ȳi

z̄i
}. Given a pixel coordinate

{xi, yi} at a specific view and its global Z value, we can easily
derive its global {X,Y } coordinates as two linear functions of Z
from Eq.1:

X = fX (Z) = axZ + dx

Y = fY (Z) = ayZ + dy
(2)

where the coefficients, {ax, ay, dx, dy}, are computed through
{xi, yi} and the entries of Ki and Fi. For the detailed derivation
of Eq. (2), please refer to the appendix.

Fig. 1 illustrates the basic interface and pipeline of our system. The
transparent cyan shapes are the created mechanical parts, while the
three red strokes illustrate the basic stroke-based interface to create
the next part. The 3D point cloud data is reconstructed from multi-
view images using VisualSFM software [Wu 2015].

4 Single Part Modeling

In this section, we describe the interactive part modeling step in-
cluding its user interface, depth value calculation, and the paramet-
ric model to add details to the 3D objects.

4.1 3D Part Generation Pipeline from Images

We use three steps to create the 3D shape of a single part. First, the
user selects a proper view where the part to be constructed is mostly
visible. It can be done by selecting an image or navigating through
the 3D point cloud data. Second, the user needs to decide whether
the part should be constructed directly based on the sparse point
cloud data, or constructed by snapping to the surface or the edges
of already modeled parts. Third, the user draws the base profile and
sweeping axis to generate the part shape.

Simple primitives: Simple primitives such as generalized cylin-
ders and cubes are supported in our system. We adopt the stroke
interface similar to [Chen et al. 2013], where the first two consecu-
tive strokes are used to specify the base profile, and the third stroke
serves as the axis for the sweeping operation. The places to draw

the strokes are selected from the silhouette of the part in the image.
As shown in Fig. 2, the three straight strokes {S1, S2, S3} are con-
nected to each other, and we denote the four end points of the three
strokes as {e1, e2, e3, e4}.

We further allow the base profile to be a free-form, non-uniform B-
Spline curve to model parts with complex shapes [Cao et al. 2014].
See Fig. 5 for an example of the modeling of a crank in the image.
In this case, we allow the user to draw the first two strokes to spec-
ify the plane for the free-form base profile. There could also exist
very thin parts in a mechanism, for example, the two thin rectangles
beside the piston cylinder (see Fig. 1). Our system allows the user
to only draw the base profile and extrude the third dimension with
a user-specified thickness parameter through the third stroke.

Some parts are more conveniently modeled by the union of several
sweeping primitives. As an example, in Fig.1, the slider connect-
ing to the piston is modeled as the union of a cylinder and a cube.
In that case, we allow the user to group these decomposed sweep-
ing surfaces into one part to ease the following motion parameter
estimation.

Derivation of Z values for stroke end points: The end points of
the first two strokes define the base profile. For a cylinder, the first
stroke is supposed to define the diameter of the base circle, and the
end point e3 of the second stroke indicates a point on the circle.
However, often none of the sparse 3D points corresponds to some
specified 2D end points. We then derive an equation to calculate
the Z3 value based on the perpendicular relationship between two
edges−−→e1e3 and−−→e2e3 in 3D. IfZ1 andZ2 for e1 and e2, respectively,
are known, the Z3 for e3 can be determined via the following per-
pendicular condition:

−−→e1e3 · −−→e2e3 =(fX(Z3)− fX(Z1)) ∗ (fX(Z3)− fX(Z1))

+ (fY (Z3)− fY (Z1)) ∗ (fY (Z3)− fY (Z1))

+ (Z3 − Z1) ∗ (Z2 − Z1) = 0

(3)

Eq. 3 is a quadratic function of Z3, and our approach picks its so-
lution closest to Z1 in the local coordinate system of the selected
view. For Z1 and Z2, we require the user to draw stroke end points
on the corresponding points computed from multi-view images,
where the Z values can be easily determined. In the case where
only Z1 is known, we assume Z2 has the same value in the local
coordinate system of the selected view (Fig. 2). The Z values of
a cube can also be estimated through the perpendicular condition
between the first and second strokes.

Fig.3 illustrates the difference of the modeling result between our
procedure and the 3-sweep method [Chen et al. 2013]. As we esti-
mate the Z value with the assistance of the sparse 3D points from
multi-view images, its modeling result from one view can match
with other views, which is not guaranteed by the 3-weep method
with an arbitrarily estimated Z value. Therefore, our modeling re-
sult is more suitable to mechanism modeling with non-trivial geo-
metric relationships among parts.

Snapping operations: Parts in a mechanism are often attached to
each other. We thus introduce a new concept of snapping opera-
tions to exploit this relationship to obtain accurate placements of
the parts, which would help to resolve the ill-conditioned inverse
projection from 2D points in an image to 3D points. The 3D surface
and/or edge for the snapping operations can be determined manu-
ally or automatically by checking whether the drawn base profile is
inside the 2D region of the created parts. Our system supports the
following two types of snapping operations.

• 3D object snapping, defined to snap a part to the surface of
already created 3D objects. When the user draws strokes to
specify the base profile of a part, our system detects whether

(a) (b)

(c) (d)

Figure 3: A comparison between our modeling method and 3-
sweep method [Chen et al. 2013]. The cylindrical piston modeled
by the 3-sweep method (a), but it does not have the right 3D posi-
tions in other views (b). The resulting 3D model by our method with
the assistance of sparse 3D points (c), and it has the right positions
in other views (d).

r b

O

r t
Base circle

Top circle

Involute

(a) Gear tooth (b) Involute (red line)

r b
Thickness

Tooth pitch
kα

kαkθ

kr

Figure 4: Spur gear (a). The profile of its tooth is generated using
the involute shown in (b).

the end points of the strokes are on the surface of already
drawn objects through the OpenGL selection mechanism. If
so, the depth values of the end points are set to be the depth
values extracted from the Z-buffer at those points.

• Silhouette snapping, defined to snap a part to the silhouette of
created 3D objects. Our system detects whether the end points
of the drawn strokes are sufficiently close (e.g., below a user-
specified threshold) to the silhouette of already drawn objects.
If so, the depth values of the end points are set to be the depth
value of the point on the silhouette that is the closest to the
drawn end points. The silhouettes of the drawn 3D objects are
determined through edge detection in their OpenGL rendering
result of the current view.

The above 3D object snapping operations are performed prior to
the silhouette snapping operations in our system. Note that the user
can manually turn on/off snapping operations when the system per-
forms wrong snapping operations.

Figure 5: Parts with a free-form base profile. (Left) The first two
strokes are used to define the plane for the base profile. (Middle) A
free-form profile is drawn on the plane. (Right) The third stroke is
used to extrude the base profile to form the part.

4.2 Part Details and View Selection

Part details: Although the combination of primitive shapes and the
extrusion of free-form profile curves can cover most shapes of the
mechanical parts in our experiments, it will be tedious for the user
to model the details of mechanical parts, such as gear tooth, using
such operations. To address this issue, our system supports the use
of parametric models to add geometric details to those mechani-
cal parts. Without the loss of generality, we take the generation
of the tooth shape of spur gears as an example using the popular
involute method in Mechanics [Slater 2011; Wikipedia 2015], as
illustrated in Fig. 4(b). In our current implementation, the tooth
number, height, and thickness ratio are manually specified. A gen-
eral rule in mechanics is that the tooth size of two pairing gears
should be roughly the same to transfer the motion smoothly. Thus,
for two pairing gears, if the tooth number of one gear is determined,
then that of the other can be determined accordingly (refer to [Slater
2011] for details). Our system adopts this rule to save the manual
efforts in gear chains.

View selection: In the modeling of a mechanical part from multi-
view images, the user can select a specific view with the largest
visibility of the part to handle occlusions. Besides directly select-
ing images, we also allow the user to rotate the object in 3D view;
once a 3D view is selected, we can automatically determine its cor-
responding 2D image by selecting the captured image whose extrin-
sic matrix is closest to the current 3D view. After view selection,
all the modeled parts are rendered into the current view, facilitating
the stroke drawing and snapping operations in the part modeling.

5 Part Alignment Optimization

Mechanism objects are classical examples of man-made objects and
their parts typically conform to global alignment constraints, such
as parallelism, orthogonality, and attachment constraints [Li et al.
2011]. In [Chen et al. 2013], these constraints are represented by
the alignment constraints among the vectors formed by the anchor
points of a primitive and optimized to improve the quality of the
modeling results. We also adopt the anchor point idea for global
alignment constraints but reinforce them to integrate the snapping
constraints.

Moreover, since the 3D information required to derive the 3D posi-
tions of anchor points are nicely initialized by the multi-view recon-
struction result, our optimization algorithm does not need to start
with the guess of depth information as in [Chen et al. 2013]. It
directly optimizes the 3D positions of anchor points according to
various alignment constraints. In this section, we first briefly de-
scribe the selection of anchor points and then details the snapping
constraints and our optimization algorithm.

Anchor points representation: The anchor points {Cij , j =
1..mi} for a part Pi are usually selected to be the end points
of its central axes. In this way, the parallelism constraint be-

tween parts can then be represented by the parallelism of the cen-
tral axes of two parts. The anchor points are selected differently
for different primitive shapes. For a generalized cylinder, we

Ci1

Ci2

Ci3

Ci4

Ci5

Ci6

use two end points on its main axis as
the optimization variables while keeping
its radius constant. Thus, the value of
m is 2 in this case. For a cube shape,
we approximate its shape using six an-
chor points (i.e., m = 6) that stay on
the three main axes passing through the
cube center (see the right inset). Thus,
the cube can be translated and scaled if
the lengths of the main axes are changed
while optimizing the positions of its an-
chor points.

The six types of constraints between the anchor points of mechani-
cal parts used in [Chen et al. 2013], including parallelism, orthogo-
nality, collinear axis endpoints, overlapping axis endpoints, copla-
nar axis endpoints, and coplanar axes, are also supported in our
system.

Snapping constraints: They are used to snap an arbitrary point of
a part to one plane or edge of another part, as illustrated in Fig.
6, which is called point-on-line and point-on-plane constraints in
this paper. Note that the points to be snapped are not anchor points
but usually the stroke endpoints drawn by the user in these two
constraints.

The snapping constraints are integrated into the optimization by
representing the position of a point, for a part, by the linear com-
bination of its anchor points. Specifically, for any point vk

i of a
created 3D part Pi, its 3D coordinates can be represented by the
combination of its anchor points as vk

i =
∑

j w
k
ijCij . Arbitrary

lines and planes can also be derived from the 3D positions of an-
chor points subsequently. The coefficients are computed after the
single part modeling and kept constant in the alignment optimiza-
tion.

Such a representation is suitable for generalized cubes with three
pairs of anchor points, which can be viewed as their local coordi-
nate systems. However, it is not applicable to generalized cylinders
with only one pair of anchor points. We thus only allow to apply
the point-on-line or point-on-plane constraint at their anchor points,
and only the top and bottom cap planes of a cylinder are allowed to
be the planes in the point-on-plane constraint.

Alignment constraints optimization: The energy function is de-
signed to maximize the projection accuracy of anchor points while
preserving the identified constraints. Specifically, it can be formu-
lated as follows:

E =
∑
i,j

‖P(Cij) ∗ z̄ij − [xij , yij]‖2 + wd

∑
m

‖dist(vm , en)‖2

Subject to : Sil(Cij , Cln) = 0, i, l = 1 · · ·K
Gi(Cij , Cin) = 0, j, n = 1 · · ·mi

(4)

In the first term, z̄ij represents the z component of the projected
homogeneous coordinate, the projection function P (.) is defined in
Eq. 1, and [xij , yij] is the 2D pixel coordinate of its projection on
the view where the part is drawn. The values of [xij , yij] are kept
constant as the initial drawn positions in the optimization proce-
dure. Therefore, our objective function is designed to minimize the
variation between the initially drawn parts and the optimized parts:
the anchor points are only allowed to move around the initial posi-
tions. Sil represents the identified semantic constraint between two

Without snapping Our result

Figure 6: Comparison with/without snapping constraints. Left:
optimization without snapping constraint. Note the misalignment
at the two cubes in the magnified view. Right: our optimization
with snapping constraints. The boundary of two cubes are perfectly
snapped.

parts Pi and Pl, while Gi represents the orthographic constraint
between a pair of anchor vectors of a cube part Pi.

The second term is used to minimize the distances between sparse
3D points and the reconstructed model, where en is the closest part
of a 3D point vm. The computation of the distance function dist
is related to the part type. For a generalized cylinder, the distance
is computed as the absolute difference between the closest distance
from its central axis and a 3D point and the radius of the cylinder.
The distance between a 3D point to a cube is just the closest dis-
tance from the point to any of its six planes. All the distance func-
tions can be represented by the coordinates of the anchor points.
If the closest distance between a part and a 3D point is within a
threshold (default 0.5), or the closest point on a part according to
the distance function is within the volume of the part, the 3D point
is deemed to belong to the part. The weight wd is set to be 10−4

in our implementation. It is small since we do not want the op-
timization result to be overweighted by the substantial noise in the
reconstructed point cloud. The energy function in Eq.4 is optimized
by the augmented Lagrangian method [Jorge and Stephen 2006].

6 Motion Parameters Estimation

While we have the basic geometry of the parts in a mechanism af-
ter the interactive modeling step, it is still not enough to reveal its
kinematic structure: the interaction between connected parts to re-
alize the functional design (i.e., target motion) of the mechanical
assembly. As shown in [Mitra et al. 2013b; Zhu et al. 2012], the
motion of a mechanism is initialized at the driving part and trans-
ferred to other parts through its kinematic chain, i.e., the joint types
between connected parts and the shape of each part. Therefore, we
design a motion parameter estimation algorithm to determine these
three kinds of information, namely, the motion of the driving part,
the joint types between connected parts, and the shape parameters
of each part. The necessity of re-estimating the shape parameters is
due to that the shapes of certain occluded parts might be incorrect
or they might not be sufficiently accurate to reproduce the target
motion. For example, as shown in Fig. 1, the slider connected to
the piston is occluded; therefore, it is difficult to obtain its correct
length at the interactive modeling step, which would result in inac-
curate motion as illustrated in Fig. 8.

We thus use a pre-recorded video clip of the mechanism motion as
the input of our motion parameters estimation algorithm, which is

Aj Aj

θ

O O

Aj

Figure 7: The computation of rotation angle. Top row: The two
frames of the driving gear in an input motion video. Bottom row:
The two front views of the gear by homography transformation. The
lines connect corresponding feature points, and the rotation angle
can be estimates through dot product between the vectors formed
by connecting the rotation center and the feature points.

Figure 8: The stochastic shape parameter optimization results.
Left column: Although the part silhouettes usually match with the
edges well in the first frame of the video clip of mechanism mo-
tion, the mismatching between the silhouettes and the edges, in-
dicated by short red line segments, still occur in the subsequent
video frames due to the inaccurate shape parameters from model-
ing. Right column: The optimization results. The mismatches are
corrected through the shape parameter optimization.

taken at one of the viewpoints used in the aforementioned multi-
view modeling pipeline. Prior to the optimization, the moving parts
are detected by checking whether there is optical flow information
in their visible projected regions in the first video frame [Sun et al.
2010] or manually specified by the user. However, since optical
flow algorithms rely on accurate correspondences between video
frames, such correspondences may not be sufficiently robust to be
used to recover the rigid motion of mechanism parts that typically
do not have salient textures. To this end, in our approach, we first
adopt a feature tracking method to obtain the detailed motion of the
driving part by adding a few artificial marks on it. Then, the mo-
tion parameters of the rest parts are optimized by checking whether
their projected silhouettes sufficiently match the edges at each video
frame. The user also needs to specify the driving part manually to
start the optimization process.

6.1 Joint Types

We treat a mechanism as a collection of rigid bodies inter-connected
to transmit rigid motions, and a joint connects two parts to form a
kinematic pair. Different joint types impose distinct motion con-
straints between two parts. Figure 9 summarizes the four main
types of joints used in our mechanism modeling experiments: fixed
or welded joints, revolute joints, gear-2-gear contact joints, and
point-on-line joints.

Rules-based guess for joint types: As pointed out in [Mitra et al.
2013b; Xu et al. 2009], the relative motion of two parts connected
via a joint should be a slippable motion that does not lead to the
penetration of parts and it can be determined by the type of their in-
tersection surface. Particularly, the slippable motion is a rotation at
a cylindrical intersection surface, corresponding to a revolute joint,
and a sliding motion at a planar intersection surface, correspond-
ing to a sliding joint in this paper. As such, we can categorize the
joint types based on the slippable motion of the intersection surface,
and further derive a set of rules to have a reasonable guess on the
possible joint types as follows:

• If a generalized cylinder is connected to the surface of an-
other part, we can soundly guess that the joint between them
would be an either fixed or revolute joint, since the intersec-
tion surface in this case is either a generalized cylinder whose
slippable motion is rotation or a generalized cylinder that can
be a shaft to transfer the motion so it is fixed to that part.

• If a generalized cylinder or a slim cube serves as a connecting
rod and it is connected to the interior of another part, we can
guess that there is a fixed joint or sliding joint. For the sliding
joint, its sliding direction is selected as the axis of the local
coordinate system. Only the line direction that can keep the
length of the connecting rod constant in motion is feasible,
which can be tested in kinematic simulations.

• If two gears are in contact, it is unquestionable there exists a
gear-2-gear contact joint to transfer the rotational motion from
one gear to the other.

• If a cube is placed on a plane, we assume that there is a point-
on-line joint, and the line directions parallel to the surface are
two axes of the local coordinate system of the cube, since the
slippable motion for a plane is sliding.

To the end, we can obtain a possible, small set of joint types for
each pair of connected parts, i.e., they serve as the possible values
of discrete joint types.

6.2 Motion Estimation of the Driving Part

It is critical to obtain the accurate motion of the driving part of a
mechanism, since it actually determines the entire motion of the
mechanism through its kinematic chain. In our algorithm, the mo-
tion of the driving part is referred to as how it moves in each frame
of the recorded motion video. For example, the rotational motion
of the driving part is calculated as the rotational angle at each frame
with respect to a rotation axis.

Since the viewpoint of the input video is usually selected to ensure
parts with large motions are visible, the perspective effect poses
difficulties in the computation of rotational angles. We choose to
remove the perspective distortion of the primitive driving part by
homography transformation and then calculate the rotational angle
through feature matching [Lowe 2004]. As shown in Fig. 7, the
circle of the driving gear in the recorded viewpoint is transformed
to its front view at two consecutive frames i and i + 1. With the

(a) Fixed joint (b) Gear-to-Gear

(c) Revolute joint (d) Sliding joint

Figure 9: Joints. (a) The two parts connected via fixed joint move
in the same direction. (b) The gear-to-gear joint can transfer the
rotational motion from one gear to another. (c) The relative motion
of a revolute joint is rotation. (d) The sliding (point-on-line) joint
indicates that the block can slide on the planar surface of another
part.

corresponding feature points, we can calculate the rotation angle
with respect to the rotation axis as follows:

θi,i+1= avg
∑
j

arccos

−−→
OAj ·

−−→
OAj∣∣∣−−→OAj

∣∣∣ · ∣∣∣∣−−→OAj

∣∣∣∣ (5)

where Aj and Aj are two corresponding feature points, and O is
the center of rotation which is computed by the projection of the
3D rotation center of the modeled driving gear. The homography
transformation is computed by choosing four points on the 3D gear
and their projections on the front view by setting up a virtual or-
thographic camera whose principal axis is the rotation axis of the
gear.

The initial rotational motion calculated by Eq. 5 can be further op-
timized by checking how the image regions of the driving gear in
two consecutive frames are matched. Specifically, we optimize the
rotational motion using the following objective function:

Erot =

W∑
m

H∑
n

∣∣∣Iim,n − Ii+1
rot(m,n)

∣∣∣2 (6)

where W and H are the dimensions of the gear in the front view,
and rot(m,n) denotes the function to rotate the image coordinate
{m,n} at frame i to frame i + 1. To reduce the influence of the
background on the optimization, we first render the 3D gear at the
starting video frame and only choose the pixels inside its projected
region during the optimization. Thus, in Fig. 7, the pixels inside the
holes of the gear are eliminated from the optimization.

If the driving motion is a linear translation, we can similarly com-
pute its 3D motion through corresponding feature points. One extra
computation is to transform the translation in pixel unit to the cor-
responding 3D motion on the translation axis based on the known
projective information.

6.3 Stochastic Estimation Algorithm

If the projected silhouettes of each part are close to the matched
edges in each video frame, we deem the current set of motion pa-
rameters are sufficiently accurate to reproduce the recorded motion.
Therefore, the objective function for motion parameters estimation
is designed to be the summed squared distance between the sil-
houette pixels and their corresponding edge pixels in video frames,

Rod

 Central axis

Y

X

Z

Driving gear

Gear

Rod

Length

Radius

Radius Thickness

Crank

Slider

Cylinder

Radius
Handle
 length

Slider
length

X Y

Z

Driving crank

X Scale

Z Scale Y Scale

Cube

Length

Thickness

Figure 10: Shape parameters. They are indicated by the texts, ex-
cept two local coordinate systems and part names.

0 20 40 60 80 100 120 140 160 180 200
47

48

49

50

51

52

53

54

55
Robot-arm

Coordinate
Descent
Simulated
Annealing

Piston-engine
Coordinate
Descent
Simulated
Annealing

Energy

Iteration

Figure 11: The convergence plots of the simulated annealing algo-
rithm in our approach for two test models: Piston-engine and robot
arm.

denoted by silhouette matching energy. It can be formulated as fol-
lows:

E(J ,P) = min
J ,P

n∑
i

(

mi∑
j

‖ẽij(J ,P)− eij‖2/mi) (7)

where J denotes the set of joint types and P denotes the set of part
shape parameters. The pixel j at frame i on the 2D silhouettes of the
3D part is denoted by ẽji , and it is computed by extracting the edge
pixels from the rendered result of the 3D part at each frame with
the optimized camera settings in multi-view reconstruction. It can
be easily done by retrieving the frame buffer in OpenGL rendering
pipeline. Also, eij denotes the edge pixel at video frame i, corre-
sponding to ẽji . We determine eij in the following two steps: (i)
we first identify the closest edge pixel in the recorded video frame
i; (ii) if the closest distance is below a user-specified threshold (10
pixels in our experiments) and the angle between the normals at
these two pixels is below a threshold (45◦ in our experiments), the
closest edge pixel is accepted as the eij . If such a eij cannot be iden-
tified using the above protocol, ‖ẽij(J ,P)− eij‖ in the above Eq. 7
is set to a large penalty value (in our experiments it is set to 1000).
The correspondences between edge pixels and silhouette pixels of
all the frames except the first frame need to be re-computed once
the parameters are updated in the optimization process. The rea-
son for the first frame exception is due to the reason that the drawn
parts usually well match with the boundary edges at the first frame,
where the mechanism is not in motion. We extract edges from the
video frames using the classic canny edge detector [Canny 1986].

Stochastic optimization: Since it is technically infeasible to con-
struct an analytical function to map the joint type and part shape
parameters to the silhouettes of the parts in motion, we minimize
Eq. 7 with stochastic optimization techniques, where joint types are
discrete random variables and part shape parameters are continuous
random variables. Furthermore, due to the reason that joint types
can be initially guessed with sound prior knowledge in mechanism
theory (Section 6.1), each joint has a small set of possible types.
Therefore, we separate the optimization process into two stages: the
joint types are first exhaustively searched and then the set of joint
types with smallest silhouette matching energies are retained for
the subsequent shape parameter optimization. Specifically, we will
keep two sets of joint types with two smallest silhouette matching
energies and optimize the shape parameters for them, respectively,
if the difference of their silhouette matching energies is below a
threshold. Finally, the joint types and the shape parameters leading
to the smallest matching energy are accepted as the optimal solu-
tion.

Joint type search: The search for joint types starts with organizing
the connection graph, with possible loops, of parts into a tree-like
representation as in [Zhu et al. 2012], where a node denotes a part
and an edge denotes a joint. First, our algorithm traverses the graph
in a breadth-first manner to form an array of the nodes, starting
from the driving part. Second, we detect the shortest loop for the
node with the smallest array index. The loop can pass the driving
parts, but the driving parts are not included in the formed loop. An
edge can only appear in a loop once, and we group the parts and
the joints in the loop into a virtual part. All the nodes in the virtual
part should be marked as visited and ignored in the subsequent loop
detection. However, the virtual part itself is put at the position of
the node with the smallest index, since other possible loops can be
detected from the virtual part again. Third, if the graph is loop-
free, our algorithm organizes the virtual or real parts into a tree
representation of the mechanism, choosing the driving part as the
root node. For a mechanism that might have more than one driving
parts, the driving parts are specially treated as one grouped driving
part in current implementation to ease the tree representation.

A
B

C

D

E
F

Afterwards, our algorithm searches for joint
types exhaustively on one path from the root
to a leaf node, and then proceed to other paths
in the tree while ignoring the joints already
searched. As illustrated in the right inset, sup-
posing each edge has two choices of joint type,
the joint type search for the whole tree can be
done in 20 times, since the shared edges only
need to be searched once. For instance, af-
ter the path formed by edges {A,B,C,D} is
searched, later the shared two edges (i.e., A, B)
do not need to be searched again. In this way, this search is more
efficient than a purely combinatorial method, which is 64 times in
this case. For a virtual part, its number of possible joint types is
the product of the numbers of possible joint types of all its grouped
joints, and it is simulated by the joint constraint equations and rigid-
ity constraint of each part as in [Coros et al. 2013]. In the worst
case, all the parts might be grouped into one virtual part and our
search will be degenerated to an exhaustive search method.

Shape parameter optimization: The shape parameters are opti-
mized through the simulated annealing algorithm, inspired by the
shape parameter optimization algorithm in [Zhu et al. 2012]. We
minimize a Boltzmann-like objective function as follows:

f(x) = exp

(
− Ẽ(P)

T

)
(8)

where Ẽ(P) is the cost function computed for E(J ,P) by fixing

1 2

3
4

5
6

7

8
Base

1

3
2 4

5

6
7

8

Driving parts: 1 2

Figure 13: Left: The robot arm mechanism. Right: Its connection
graph. It parts are labeled by numbers. The dashsed line between
the two driving gears indicates that they are inter-connected in this
mechanism.

the joint parameters found at the above joint type search step. A
new state P ′ is proposed at each iteration and accepted with a prob-
ability calculated below.

α(P ′|P) = min

(
1,
f(P ′)
f(P)

)
. (9)

The annealing parameter T is initialized to be 0.1, and its value is
decreased by a factor of 0.9 every 50 iterations.

Our random shape parameter generation procedure to explore the
configuration space P works in a two-phases protocol. First, we
pick a mechanical part and one of its shape parameters with a uni-
form distribution. Second, the new shape parameter is sampled
from a Gaussian distribution [N (s, δ2

s)], where s is the current
value of the parameter, and the distribution variance, δs, is set to
1
10

of its value after the modeling step, since we assume the mod-
eling result after alignment optimization is reasonably close to the
optimal shape parameters that influence the final motion.

The shape parameters for each part are illustrated in Fig.10. We
allow the translation of the driving gear to control the location of
the kinematic chain in the mechanism, which is denoted by XY Z
in Fig. 10. The shape parameters for a gear and a cylindrical rod are
the same, where the length of the cylinder is denoted by thickness in
the case of gear. For a crank part, the length of its handle indicates
the distance between the slider center and the crank center in the
local Z axis, which influences the movement of the slider. Each
part in our system has a local coordinate system, and we choose the
Z axis to point to their child parts. Besides the shape parameters,
as in [Zhu et al. 2012], all the parts are allowed to move along the
local Z axis of their parent parts.

Discussion: We only optimize the motion parameters with respect
to a video clip of the mechanism recorded from a single viewpoint.
In general, the information from a single view point is insufficient to
determine its 3D counterpart. However, in our case since the parts
in the mechanism move with rigid motion, their motion information
can be robustly recovered based on the edge features from a single
viewpoint as investigated in model-based object tracking [Chin and
Dyer 1986; Kragic and Christensen 2003], given the accurately re-
constructed camera and 3D shape information. The main reason
is that the reconstructed part shapes already reasonably match with
the sparse 3D point cloud, and the shape parameters control the
global shape of the parts, which means their changes directly in-
fluence how the rigid motion of the parts is matched with that in
video.

(a) (b) (c)

Three-gears

Windmill

Crank-block

Clock

Robot arm

Figure 12: Mechanism models created by our system. (a) Multi-view images with sparse point cloud data. (b) Interactive modeling results.
(c) Refined results. The holes and bevels are generated in Blender software within 10 minutes.

Name #Parts Parts in Motion Modeling Alignment Joint guess Stochastic optimization
Piston-engine 31 10 25m 1.38s 20 198.4s
Three-gears 13 8 12m 0.53s 16 180.3s
Crank-block 11 6 15m 0.39s 8 170.4s
Robot-arm 17 8 20m 0.59s 128 205.7s

Clock 49 12 20m 1.16s 34 228.2s
Windmill 57 15 30m 0.87s 134 210.6s

Table 1: Statistics of the reconstructed models. #parts denotes the total number of the parts of the reconstructed mechanism. All the times
were measured in seconds.

Simulated annealing Coordinate descent

Figure 14: Left: the shape parameter optimization result by the
simulated annealing algorithm in our method. Right: the optimiza-
tion result by the coordinate descent method. The red lines indicate
the uncorrected mismatches by the coordinate descent method.

7 Experimental Results

We have implemented the system on a desktop PC with Intel I5
CPU (2.67G HZ) and 8G memory. The modeling algorithm has
been tested on six mechanism objects ranging from simple mechan-
ical toys to small-scale real mechanisms. The statistics of each re-
constructed mechanism are listed in Table 1 .

Interactive modeling: We tested our modeling system on four real
mechanisms, the piston-engine in Fig. 1 and the other three mech-
anisms: simple three-gears, crank-block and robot arm, in the first
three rows in Fig. 12. For the two relatively simple mechanisms
(simple three-gears, and crank-block), their interactive modeling
time was around 12-15 minutes. The piston-engine mechanism has
31 parts, and its crank part is of free-from profile curve. It is rela-
tively complicated and its modeling time was around 25 minutes.

As illustrated in Fig. 13, the robot arm mechanism has 8 parts. A
four-bar linkage is used to transfer the motion from the two driving
gears to the longest arm on the top of the mechanism. We write a
program to control the two electric motors, i.e. the two metal boxes
in Fig. 13, to drive the two revolute joints of the four-bar linkage.
Therefore, the motion of its two driving parts can be directly deter-
mined; the motion estimation for the driving parts can be avoided
for this specific case. The motors and the links between them and
the driving parts are not included in the modeling results for the
clarity purpose.

The last two rows of Fig. 12 illustrate the modeling results of two
mechanical toys. The first mechanical toy has many parts, but most
of them are generalized cylinder shapes. Thus, it is relatively simple
for our modeling system to obtain the 3D modeling result. It took
only 20 minutes to obtain the modeling result shown in Fig. 12(b).
Another mechanical toy modeling result is shown the last row of
Fig. 12, where the wings of the windmill are modeled by flat cubes.

Stochastic optimization: Fig. 11 illustrates the convergence of the
simulated annealing algorithm to search for the shape parameters.
The number of iterations is approximately proportional to the num-

(a)
Unit: mm

1.500
1.259
1.017
0.775
0.533
0.292
0.050

-0.050
-0.292
-0.533
-0.775
-1.017
-1.259
-1.500

(b)

Figure 15: Validation results. (a) The visualized distance errors
for the crank-block model. (b) The real windmill toy (left) and its
3D printed replication (right). Please see the accompanying video
for their animation comparison.

ber of shape parameters to be optimized. Therefore, for the piston-
engine model of 21 shape parameters, the number of its iterations,
150, before convergence is larger than that for the robot arm mech-
anism with 15 shape parameters. Fig. 8 illustrates the corrected
mismatches between the part silhouettes and the part edges in one
video frame after stochastic optimization.

We also compared the simulated annealing algorithm used in our
method with coordinate descent optimization algorithm, where the
gradient of each shape parameter is numerically computed. The
reason we chose coordinate descent method over gradient decent
method is that the geometric constraints between parts are mu-
tually influenced and thus they are hard to maintain correctly if
all the shape parameters are optimized simultaneously. Fig. 11
shows that the simulated annealing method can achieve lower sil-
houette matching energies than the coordinate descent method for
this highly nonlinear mapping from part shape parameters to 2D
silhouettes, due to its ability to avoid the local minimum. Also, a
side-by-side comparison of the silhouette matching results of the
robot arm model is shown in Fig. 14.

Table 1 lists the number of guesses in the exhaustive search of joint
types. For simple toy examples whose joint types are dominated by
gear-2-gear contact, the joint type choices for these examples are
mainly the connection between gears to cylinders for the purpose
of installation. The windmill toy has a long kinematic chain of 10
parts through the driving gear to the final motion of windmill, which
contain 3 gear-2-gear contacts to transmit the motion. In our algo-
rithm, the joint type search times for the windmill toy are 128 for
the chain and 6 for the other 3 joints between gear and installation
cylinders, totally 134, which can be finished in around 30 seconds
on our quad-core computer. According to our loop detection algo-
rithm, all the parts of the robot arm, except #8, are in one loop as
illustrated in Fig. 13. Since the joints in the loop can only be fixed
or revolute joints with respect to their cylindrical intersection, 128
times of joint type search is needed for this model.

Validation: The validation study, as shown in Fig. 15a, is to illus-
trate the quantitative error between our modeling result and the real
mechanism shown in the second row of Fig. 12. The real mech-
anism was fabricated using a 3D printer, and then we took photos
to reconstruct its 3D model. Thus, the reconstructed 3D model can
be directly compared to the original model to study the modeling
accuracy of our approach. The dimension of the real mechanism is
180mm × 180mm × 75mm, and the surface approximation er-
ror as shown in Fig. 15a is small, usually below 1mm. We also
fabricated a mechanism toy model using a 3D printer to validate
the motion parameters estimation result. The accompanying video
shows that the estimated motion parameters are sufficiently accu-
rate to reproduce very similar motion to the original model.

8 Discussion and Conclusion

In this paper, we present a modeling system to create a variety of
3D mechanisms from multi-view images. It consists of two main
steps: The first step is a stroke-based interactive interface to create
the 3D shapes of mechanism parts through the integration of the
edge information in images and the sparse 3D point cloud recon-
structed from the multi-view images. The second step estimates the
joint types between the parts and further optimizes their shape pa-
rameters to reproduce the mechanism motion, using a pre-recorded
video clip of the motion of a mechanism.

Limitations and future work: In our current system, the type of
a joint or the relative motion between a pair of parts is constrained
according to the part types and their intersection surface in mecha-
nism theory. This is the reason we design a set of rules to guess joint
types. However, the set of rules in our current system only supports
the four main types of joints. Ideally, they can be further expanded
to cover more types of joints in mechanism design, such as geneva
and escape mechanisms. Also, the part type information is man-
ually specified via our interactive user interface; an automatic or
semi-automatic part type recognition algorithm can help to reduce
such manual efforts.

The joint type search in our current method performs exhaustive
search for every combination of joint types of a virtual part, which
is less optimized, indeed. We plan to address this issue by develop-
ing pruning algorithms to remove infeasible combinations as soon
as possible in the search process. For example, if one joint of a
four-bar linkage is fixed, then the part rigid constraints are violated
in motion. Thus, all the joint type combinations that have that fixed
joint should be avoided. To this end, a smart algorithm to do early
judges on whether a joint type configuration is feasible would help
to improve the search efficiency.

Our current modeling method requires the part to be at least par-
tially visible for the purpose of its 3D modeling, which limits its
application to mechanisms with severe occlusions. In such cases, it
is difficult to perform the reverse engineering of a complex mech-
anism as a whole. A common strategy is to divide and conquer
- decompose a complex mechanism into multiple meaningful sub-
modules and model them separately. An interesting research di-
rection would be to tackle the occlusion problem by estimating the
invisible parts according to the motion of the visible parts with re-
spect to the mechanic constraints.

In the future, we also plan to integrate sketch-based interface for the
modeling of 3D curves and free-form shapes to create more com-
plex mechanisms, breaking the modeling limitation of generalized
cylinders or cubes. Furthermore, to improve the accuracy of the re-
constructed mechanism models, we also plan to investigate how to
apply our interface to reconstruct parts from dense 3D point clouds
from a 3D scanner or depth data captured by off-the-shelf depth
cameras.

Acknowledgements

We would like to thank the anonymous reviewers for their construc-
tive comments; Mingliang Xu is partially supported by NSFC (No.
61472370, No. 61672469 and No. 61379079) and the national
key technology research and development program of China un-
der Grant No. 2013BAH23F01. Weiwei Xu is partially supported
by NSFC (No. 61272392 and No. 61322204). Kun Zhou is par-
tailly supported by NSFC (No. 61272305). Zhigang Deng is par-
tially supported by national science foundation (NSF) IIS-1524782
and national science foundation of China (NSFC) No. 61328204.
Yin Yang is partly supported by national science foundation (NSF)
CHS-1464306, and CNS-1637092.

Appendix

The Eq. 2 can be derived by the expansion of the Eq. 1. For the
purpose of clarity, we drop the subscript i, the index of an image,
in the derivation. Let us first define the entries for the intrinsic K
and extrinsic rotation matrix R as:

K =

 f1 0 cx
0 f2 cy
0 0 1

 ,R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (10)

while the translation is denoted by T = {t1, t2, t3}t.

Given an input 3D point {X,Y, Z}, its 2D projection in homoge-
neous coordinate {x̄, ȳ, z̄} can be derived according to Eq. 1: x̄

ȳ
z̄

 =

 m11X +m12Y +m13Z +m14

m21X +m22Y +m23Z +m24

r31X + r32Y + r33Z + t3

 (11)

where:

m11 = f1r11 + cxr31,m12 = f1r12 + cxr32

m13 = f1r13 + cxr33,m14 = f1t1 + cxt3

m21 = f2r21 + cyr31,m22 = f2r22 + cyr32

m23 = f2r23 + cyr33,m24 = f2t2 + cyt3

(12)

Since the pixel coordinate {x, y} is related to the homogenous coor-
dinate by xz̄ = x̄ and yz̄ = ȳ, Eq. 11 implies two linear equations
of {X,Y }, which can be easily solved to obtain:

X = fX (Z) = axZ + dx

Y = fY (Z) = ayZ + dy
(13)

The coefficients in the equation is detailed as follows:

ax =
a1
x − a2

x

n1 − n2
, dx =

d1
x − d2

x

n1 − n2

ay =
a1
y − a2

y

n1 − n2
, dy =

d1
y − d2

y

n1 − n2

(14)

where

a
1
x = (m22 − r32y)(m13 − r33x), a

2
x = (m12 − r32x)(m23 − r33y)

d
1
x = (m22 − r32y)(m14 − t3x), d

2
x = (m12 − r32x)(m24 − t3y)

a
1
y = (m11 − r31x)(m23 − r33y), a

2
y = (m13 − r33x)(m21 − r31y

d
1
y = (m11 − r31x)(m24 − t3y), d

2
y = (m14 − t3x)(m21 − r31y)

n1 = (m11 − r31x)(m22 − r32y), n2 = (m12 − r32x)(m21 − r31y)
(15)

References

AGARWAL, S., FURUKAWA, Y., SNAVELY, N., SIMON, I., CUR-
LESS, B., SEITZ, S. M., AND SZELISKI, R. 2011. Building
rome in a day. Commun. ACM 54, 10 (Oct.), 105–112.

AHMADABADIAN, A. H., ROBSON, S., BOEHM, J., SHORTIS,
M., WENZEL, K., AND FRITSCH, D. 2013. A comparison
of dense matching algorithms for scaled surface reconstruction
using stereo camera rigs. ISPRS Journal of Photogrammetry and
Remote Sensing 78, 0, 157 – 167.

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H.
2012. Fabricating articulated characters from skinned meshes.
ACM Trans. Graph. 31, 4 (July), 47:1–47:9.

BEY, A., CHAINE, R., AND RAPHAEL, M. 2011. Reconstruction
of consistent 3d cad models from point cloud data using a priori
cad models. In Proceedings of ISPRS, vol. 12.

CANNY, J. 1986. A computational approach to edge detection.
IEEE Trans. Pattern Anal. Mach. Intell. 8, 6, 679–698.

CAO, Y.-P., JU, T., FU, Z., AND HU, S.-M. 2014. Interactive
image-guided modeling of extruded shapes. Comput. Graph. Fo-
rum 33, 7, 101–110.

CEYLAN, D., LI, W., MITRA, N. J., AGRAWALA, M., AND
PAULY, M. 2013. Designing and fabricating mechanical au-
tomata from mocap sequences. ACM Trans. Graph. 32, 6, 186.

CHEN, X., KANG, S. B., XU, Y.-Q., DORSEY, J., AND SHUM,
H.-Y. 2008. Sketching reality: Realistic interpretation of archi-
tectural designs. ACM Trans. Graph. 27, 2 (May), 11:1–11:15.

CHEN, T., ZHU, Z., SHAMIR, A., HU, S.-M., AND COHEN-OR,
D. 2013. 3-sweep: extracting editable objects from a single
photo. ACM Trans. Graph. 32, 6, 195.

CHIN, R. T., AND DYER, C. R. 1986. Model-based recognition in
robot vision. ACM Comput. Surv. 18, 1, 67–108.

COROS, S., THOMASZEWSKI, B., NORIS, G., SUEDA, S., FOR-
BERG, M., SUMNER, R. W., MATUSIK, W., AND BICKEL, B.
2013. Computational design of mechanical characters. ACM
Trans. Graph. 32, 4 (July), 83:1–83:12.

EITZ, M., HAYS, J., AND ALEXA, M. 2012. How do humans
sketch objects? ACM Trans. Graph. 31, 4 (July), 44:1–44:10.

EITZ, M., RICHTER, R., BOUBEKEUR, T., HILDEBRAND, K.,
AND ALEXA, M. 2012. Sketch-based shape retrieval. ACM
Trans. Graph. 31, 4 (July), 31:1–31:10.

FURUKAWA, Y., AND PONCE, J. 2007. Accurate, dense, and ro-
bust multi-view stereopsis. In CVPR ’07, 1–8.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D.
2009. iwires: An analyze-and-edit approach to shape manipu-
lation. ACM Trans. Graph. 28, 3 (July), 33:1–33:10.

HARTLEY, R. I., AND ZISSERMAN, A. 2004. Multiple View Ge-
ometry in Computer Vision, second ed. Cambridge University
Press, ISBN: 0521540518.

HUANG, J., AND MENQ, C.-H. 2002. Automatic cad model re-
construction from multiple point clouds for reverse engineering.
J. Comput. Inf. Sci. Eng. 2, 3, 160–170.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A sketching interface for 3d freeform design. In Proc. of SIG-
GRAPH’99, 409–416.

JACQUET, B., ANGST, R., AND POLLEFEYS, M. 2013. Artic-
ulated and restricted motion subspaces and their signatures. In
CVPR, IEEE Computer Society, 1506–1513.

JORGE, N., AND STEPHEN, W. 2006. Numerical Optimization.
Springer-Verlag New York.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Trans. Graph. 31, 4 (July), 55:1–55:11.

KRAEVOY, V., SHEFFER, A., SHAMIR, A., AND COHEN-OR, D.
2008. Non-homogeneous resizing of complex models. ACM
Trans. Graph. 27, 5 (Dec.), 111:1–111:9.

KRAGIC, D., AND CHRISTENSEN, H. I. 2003. Confluence of
parameters in model based tracking. In ICRA, IEEE, 3485–3490.

LI, W., AGRAWALA, M., CURLESS, B., AND SALESIN, D. 2008.
Automated generation of interactive 3d exploded view diagrams.
ACM Trans. Graph. 27, 3.

LI, Y., WU, X., CHRYSATHOU, Y., SHARF, A., COHEN-OR, D.,
AND MITRA, N. J. 2011. Globfit: Consistently fitting primitives
by discovering global relations. ACM Trans. Graph. 30, 4 (July),
52:1–52:12.

LOWE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision 60, 2, 91–110.

MITRA, N., WAND, M., ZHANG, H. R., COHEN-OR, D., KIM,
V., AND HUANG, Q.-X. 2013. Structure-aware shape process-
ing. In SIGGRAPH Asia 2013 Courses, SA ’13, 1:1–1:20.

MITRA, N. J., YANG, Y.-L., YAN, D.-M., LI, W., AND
AGRAWALA, M. 2013. Illustrating how mechanical assemblies
work. Commun. ACM 56, 1 (Jan.), 106–114.

OLSEN, L., SAMAVATI, F. F., SOUSA, M. C., AND JORGE, J. A.
2009. Sketch-based modeling: A survey. Computers & Graphics
33, 1, 85–103.

OWADA, S., NIELSEN, F., OKABE, M., AND IGARASHI, T. 2004.
Volumetric illustration: Designing 3d models with internal tex-
tures. ACM Trans. Graph. 23, 3 (Aug.), 322–328.

OWADA, S., NIELSEN, F., NAKAZAWA, K., AND IGARASHI, T.
2007. A sketching interface for modeling the internal structures
of 3d shapes. In ACM SIGGRAPH 2007 Courses, SIGGRAPH
’07.

SCHMIDT, R., WYVILL, B., SOUSA, M. C., AND JORGE, J. A.
2007. Shapeshop: Sketch-based solid modeling with blobtrees.
In ACM SIGGRAPH 2007 Courses, SIGGRAPH ’07.

SEITZ, S., CURLESS, B., DIEBEL, J., SCHARSTEIN, D., AND
SZELISKI, R. 2006. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In CVPR’06, vol. 1, 519–528.

SHAO, T., LI, W., ZHOU, K., XU, W., GUO, B., AND MITRA,
N. J. 2013. Interpreting concept sketches. ACM Trans. Graph.
32, 4, 56:1–56:10.

SHEN, C.-H., FU, H., CHEN, K., AND HU, S.-M. 2012. Structure
recovery by part assembly. ACM Trans. Graph. 31, 6 (Nov.),
180:1–180:11.

SINHA, S. N., STEEDLY, D., SZELISKI, R., AGRAWALA, M.,
AND POLLEFEYS, M. 2008. Interactive 3d architectural model-
ing from unordered photo collections. ACM Trans. Graph. 27, 5
(Dec.), 159:1–159:10.

SLATER, N., 2011. Mechanisms and mechanical devices source-
book. McGraw-Hill.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo
tourism: exploring photo collections in 3d. ACM Trans. Graph.
25, 3, 835–846.

SONG, L., WU, W., GUO, J., AND LI, X. 2013. Survey on camera
calibration technique. In Intelligent Human-Machine Systems
and Cybernetics (IHMSC), 2013 5th International Conference
on, vol. 2, 389–392.

SUN, D., ROTH, S., AND BLACK, M. J. 2010. Secrets of optical
flow estimation and their principles. In IEEE CVPR, 2432–2439.

THOMASZEWSKI, B., COROS, S., GAUGE, D., MEGARO, V.,
GRINSPUN, E., AND GROSS, M. 2014. Computational design
of linkage-based characters. ACM Trans. Graph. 33, 4 (July),
64:1–64:9.

VALGAERTS, L., BRUHN, A., MAINBERGER, M., AND WEICK-
ERT, J. 2012. Dense versus sparse approaches for estimating the
fundamental matrix. International Journal of Computer Vision
96, 2, 212–234.

WANG, Y., XU, K., LI, J., ZHANG, H., SHAMIR, A., LIU, L.,
CHENG, Z., AND XIONG, Y. 2011. Symmetry hierarchy of
man-made objects. Computer Graphics Forum 30, 2, 287–296.

WIKIPEDIA, 2015. Involute. http://en.wikipedia.org/
wiki/Involute/.

WU, C., 2015. Visualsfm: A visual structure from motion system.
http://ccwu.me/vsfm/.

XU, W., WANG, J., YIN, K., ZHOU, K., VAN DE PANNE, M.,
CHEN, F., AND GUO, B. 2009. Joint-aware manipulation of
deformable models. ACM Trans. Graph. 28, 3.

XU, K., ZHENG, H., ZHANG, H., COHEN-OR, D., LIU, L., AND
XIONG, Y. 2011. Photo-inspired model-driven 3d object mod-
eling. ACM Trans. Graph. 30, 4 (July), 80:1–80:10.

XU, K., ZHANG, H., COHEN-OR, D., AND CHEN, B. 2012. Fit
and diverse: set evolution for inspiring 3d shape galleries. ACM
Trans. Graph. 31, 4, 57.

XU, B., CHANG, W., SHEFFER, A., BOUSSEAU, A., MCCRAE,
J., AND SINGH, K. 2014. True2form: 3d curve networks from
2d sketches via selective regularization. ACM Trans. Graph. 33,
4 (July), 131:1–131:13.

YCER, K., WANG, O., SORKINE-HORNUNG, A., AND SORKINE-
HORNUNG, O. 2015. Reconstruction of articulated objects from
a moving camera. In IEEE ICCV, 823–831.

YIN, K., HUANG, H., ZHANG, H., GONG, M., COHEN-OR, D.,
AND CHEN, B. 2014. Morfit: Interactive surface reconstruction
from incomplete point clouds with curve-driven topology and
geometry control. ACM Transactions on Graphics (Special Issue
of SIGGRAPH Asia) 33, 6, 202:1–202:13.

ZHANG, Z. 2000. A flexible new technique for camera calibration.
IEEE TPAMI 22, 11, 1330–1334.

ZHENG, Y., FU, H., COHEN-OR, D., AU, O. K.-C., AND
TAI, C.-L. 2011. Component-wise controllers for structure-
preserving shape manipulation. Comput. Graph. Forum 30, 2,
563–572.

ZHENG, Y., CHEN, X., CHENG, M.-M., ZHOU, K., HU, S.-M.,
AND MITRA, N. J. 2012. Interactive images: Cuboid proxies
for smart image manipulation. ACM Trans. Graph. 31, 4 (July),
99:1–99:11.

ZHU, L., XU, W., SNYDER, J., LIU, Y., WANG, G., AND GUO,
B. 2012. Motion-guided mechanical toy modeling. ACM Trans.
Graph. 31, 6 (Nov.), 127:1–127:10.

http://en.wikipedia.org/wiki/Involute/
http://en.wikipedia.org/wiki/Involute/
http://ccwu.me/vsfm/

