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ABSTRACT

We propose an acoustic-VR system that converts acoustic signals
of human language (Chinese) to realistic 3D tongue animation se-
quences in real time. It is known that directly capturing the 3D ge-
ometry of the tongue at a frame rate that matches the tongue’s swift
movement during the language production is challenging. This
difficulty is handled by utilizing the electromagnetic articulogra-
phy (EMA) sensor as the intermediate medium linking the acous-
tic data to the simulated virtual reality. We leverage Deep Neural
Networks to train a model that maps the input acoustic signals to
the positional information of pre-defined EMA sensors based on
1,108 utterances. Afterwards, we develop a novel reduced physics-
based dynamics model for simulating the tongue’s motion. Unlike
the existing methods, our deformable model is nonlinear, volume-
preserving, and accommodates collision between the tongue and
the oral cavity (mostly with the jaw). The tongue’s deformation
could be highly localized which imposes extra difficulties for ex-
isting spectral model reduction methods. Alternatively, we adopt
a spatial reduction method that allows an expressive subspace rep-
resentation of the tongue’s deformation. We systematically evalu-
ate the simulated tongue shapes with real-world shapes acquired by
MRI/CT. Our experiment demonstrates that the proposed system is
able to deliver a realistic visual tongue animation corresponding to
a user’s speech signal.

Index Terms: H.5.1 [Information Systems]: Multimedia Informa-
tion Systems—Artificial, augmented, and virtual realities ;

1 INTRODUCTION

The human tongue is a muscular organ that plays an essential
role during speech production. A high-quality visual representation
of the human tongue for specific speech sounds is of importance in
the domain of speech research and has numerous potential applica-
tions. For example, in the rehabilitation of speech disorders [16], a
realistic visualization of 3D tongue motion could provide a visible
paradigm that helps an individual achieve the correct articulation of
the tongue during the production of various speech sounds.

Unfortunately, the detailed mechanism that drives the de-
formable motion of the human tongue remains largely unknown to
the research community – there exist many challenges, both practi-
cal and theoretical, that are still underexplored. Firstly, the tongue
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Figure 1: A snapshot of the interface of the proposed system.

is an interior organ inside of the oral cavity. As such, ordinary opti-
cal sensors like video cameras are not suited to retrieve the motion
data. Secondly, the tongue’s movement during the production of
speech is swift. For instance, a complete production of a single
vowel-consonant-vowel (VCV) syllable takes only tenths of a sec-
ond. Therefore, most 3D imaging modalities like computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) are not able to
follow such quick movements. The ultrasound imaging (US), while
widely used in many tongue related research, produces only 2D in-
formation and contains noise which requires post-processing. More
importantly, the contour information at the tongue tip is frequently
missed. Restoring or constructing the per-frame correspondence for
a given US sequence is challenging and relies heavily on manual
labelling, which is subjective and tedious. Lastly, the anatomical
structure of the tongue is quite complex [14, 49], requiring several
intrinsic and extrinsic muscles to be tightly coordinated during the
speech sound production. An accurate mathematical description for
the speech motor control is still beyond the knowledge for speech
scientists [23, 35]. The inverse dynamics method turns out to be a
promising solution to this problem [7, 17, 42, 48, 57]. This method
does not require an active muscle-activation-driven motor to con-
trol the tongue’s motion. Instead, it unitizes the pre-defined bio-
mechanical parameters of the vocal tract to reconstruct the tongue
motion by enforcing certain constraints during the simulation.

The proposed framework further advances the existing inverse
dynamics models and advances the frontier of creating a realis-
tic virtual reality representation of the invisible vocal tract. While
our framework also employs the idea of inverse dynamics, many
novel techniques have been developed which complement and are
orthogonal to the state-of-the-arts. First of all, the tedious sensor
setup is hidden in our system to the end user. To this end, we use
deep learning to train a mapping mechanism that directly converts
input acoustic signals to feature vectors (position information) of
articulators. The training uses a database consisting of complete
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and meaningful sentences (in Chinese) instead of simple CV sylla-
bles (i.e. as in [57]). Secondly, our framework equips a dedicated
nonlinear finite element method (FEM) simulator using a technique
called spatial reduction and domain decomposition. Nonlinear de-
formations of the tongue can be simulated accurately in real time.
This method allocates low-dimensional simulation degrees of free-
dom (DOFs) more effectively than standard modal reduction tech-
niques [6, 9]. The nonlinear deformation pattern is well captured
by quadratic DOFs associated with each domain and is smoothly
blended across the entire tongue model. The nonlinear volume pre-
serving constraint is fully addressed in our framework. At each
simulation time frame, we compute a displacement and velocity
correction that effectively suppresses the volume change. A data-
driven method is used to create a pressure subspace to facilitate an
efficient volume conservation at the simulation runtime. The simu-
lated tongue shapes are compared to real-world MRI-CT data. The
results show that our framework delivers a high-quality animated
tongue dynamics which could be of great potential for a wide range
of medical scenarios and clinic applications. In summary, some
noteworthy technical features of our framework are:
• Plug and play: We leverage the deep learning method to train

a speech inversion mechanism from acoustic signals to articula-
tors’ positions (§ 5). Hence, from an end user’s point of view,
tedious experiment setup is skipped, and the speech production
can be performed in a comfortable and sensor-free environment,
which drives the visual animated dynamic model in real time.

• Nonlinearity in real time: Our inverse dynamic simulator uses
a series of novel numerical techniques that accurately capture lo-
cal nonlinear deformations of the tongue while retaining the en-
tire simulation algorithm within a low-dimensional configuration
(§ 6 & § 7). Volume preservation is achieved by using displace-
ment/velocity correction within the pressure subspace (§ 8).

• High-quality: Our framework is empowered by real-world and
subject-specific data from various imaging modalities (§ 4). The
model’s quality at each step of the framework is systematically
evaluated in an objective way (§ 9).

2 RELATED WORK

The human tongue is a critical articulator for speech sound pro-
duction. Investigating its behavior and contribution to speech pro-
duction has been of interest to researchers in linguistics, phonetics
and physiology. Due to the interdisciplinary nature of this work,
we only briefly cover a few of the most relevant existing studies in
acoustic signal processing, speech inversion and FEM tongue mod-
eling in this section.

Acquisition of the tongue’s geometry The human tongue
is an interior organ and its motion is inaccessible to regular optical
sensors like video cameras. The rapidly developing MRI systems
have been used as an important data source [4, 5] for gathering
3D tongue shapes. To capture the tongue motion, three sagittal
directions of MRI images [46] were used to record the 2D con-
tours of tongue in three sagittal planes. However, the MRI acqui-
sition frequency is too low for capturing the rapid tongue motion
during real language production. Recent advances of high-speed
MRI [26] have shown significant potentials of real-time shape ac-
quisition [11, 20, 27]. However, they are still not yet able to capture
intact 3D geometric information of the tongue. X-ray CT imag-
ing systems have higher temporal resolutions [45]. However, they
expose the speaker to radiation. Thus, they are not applicable for
massive data collection. Ultrasound or US systems [38, 41] have
also been widely used for modeling tongue movements at a very
high frequency (100 Hz for instance). However, they often miss the
tracking of the tongue tip [24, 28, 47] because of the surrounding air
gaps, and the resulting images are always noisy. Hence, restoring
the frame-to-frame correspondence over the tongue 2D contour for

Figure 2: An overview of our acoustic-VR system.

an US sequence is a challenging problem which requires significant
overhead [1, 19, 25].

Speech inversion Our framework is also related to speech
inversion, a technique that estimates vocal tract shapes or articula-
tors’ positions based on input speech signals. Speech inversion has
been performed by the codebook searching method by synthesizing
sounds from the entire space of control parameters of an articula-
tory model [3, 33]. The problem with this approach is that the syn-
thesis includes articulations that never occur in real human speech
production. Clearly, the relationship between the acoustic and artic-
ulatory features is highly nonlinear and may not be bijective. Fur-
thermore, the articulator’s movements are not solely determined by
the phoneme being pronounced, but also by the succeeding or pre-
ceding phonemes (the so called co-articulation phenomenon). In
past decades with the increasing popularity of machine learning
techniques, a number of methods have been proposed to tackle this
problem using statistical learning such as the Hidden Markov model
(HMM) [18, 58], the Gaussian mixture model (GMM) [51], the ar-
tificial neural network (ANN) [36], and the deep neural network
(DNN) [52]. Wu and colleagues [56] tested the performance of
the aforementioned techniques on the acoustic-articulatory English
speech corpus MNGU0 (http://www.mngu0.org/). The results in-
dicated that DNN-based acoustic-articulatory mapping tended to
yield the best performance, and our framework also uses the DNN
model to achieve a high-quality speech inversion.

FEM-based tongue dynamics Biomechanical models of
the tongue using FEM methods are widely used [8, 13, 43]. An
active biomechanical model takes the muscle activations as the in-
put to simulate the speech motors. Interesting results have been re-
ported using active models. For instance, Stavness and colleagues
developed an algorithm that is able to automatically estimate the
internal activation of a muscle group [44]. The limitations of this
approach is that the state-of-the-art active model is only able to sim-
ulate general tongue movements like upward or lateral bending.
Subtle and localized deformations on the tongue are still difficult
to be directly generated. Conversely, the inverse dynamics tech-
nique or the passive model that builds the unknown motion based
on pre-known constraints [7, 42, 57] have some notable advantages
over the active methods. They allow us to restore the 3D motion
of the tongue with partial information that is more accessible than
full-scale activation control.

Real-time deformable model Simulating the human
tongue is a problem well suited for FEM deformable models. Since
the FEM simulation of nonlinear deformation is known to be time-
consuming, a technique referred to as model reduction is widely
used in the computer graphics and animation community [40],
which is able to improve performance by orders-of-magnitude. The
idea is to build a displacement subspace consisting of representative
deformed shapes and restrict the nonlinear integration within the
constructed subspace. Standard model reduction uses the modal
analysis that decomposes the dynamics into a set of linear vibra-
tions [34] which is only valid for small-scale linear elasticity. Yang
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and colleagues [57] used an extended modal analysis method called
modal warping [9] to simulate the tongue’s dynamics. Because this
method is still based on linear elasticity, it is not able to produce
plausible tongue dynamics for full words and sentences. Nonlinear
elasticity can also be dealt with using modal analysis [6] however,
subspace bases are global eigenvectors and less expressive for lo-
calized deformation.

3 SYSTEM OVERVIEW

As sketched in Fig. 2, our framework takes real human speech sig-
nals (in Chinese) as input, and outputs realistic tongue animation
sequences in real time corresponding to the speech being produced.
The input speech signals are first mapped to articulator’s positions
through a DNN-based speech inversion. The DNN is trained using
an acoustic-articulatory corpus consisting of 1,108 complete sen-
tences (§ 5). The output of the speech inversion is the estimated
position information corresponding to four electromagnetic articu-
lography (EMA) sensors at the tongue’s tip, blade, dorsum and rear
on the mid-sagittal plane. This information serves a set of constraint
equations for the FEM tongue simulator. Our simulator is geomet-
rically nonlinear. The finite element mesh of the tongue is obtained
by fusing the MRI and CBCT volumes of the same subject, whose
contour is manually outlined by domain experts and triangularized
afterwards (§ 4). We developed a novel reduced deformable simu-
lator using blended quadratic domains. While this simulator is low-
dimensional and model reduced, the nonlinear DOFs are assigned
according to the location of EMA sensors so that local deforma-
tion can be well captured (§ 6). The global and general tongue’s
motion is calculated by smoothly blending the local domain-wise
deformations in a material-aware manner (§ 7). Our simulator also
addresses the nonlinear volume preserving constraint efficiently in
a pressure subspace (§ 8). Collision detection and resolving is also
handled in our system using the penalty method. As most FEM-
related computation is done within a low-dimensional subspace,
our system is real-time and able to produce plausible animations
directly from human speech. The following sections describe each
major technical component of our system in detail.

4 DATA ACQUISITION

Our system is built upon real-world, subject-specific data includ-
ing the tongue’s geometry, feature positions from EMA coils, and
the associated acoustic signals. This section elaborates on the data
acquisition procedure.

Figure 3: Experiment setting for data acquisition. (a) the SIEMENS
MRI system. (b) NDI Wave EMA system. (c) Gathering the articu-
lary movement data using EMA. (d) Placing EMA coils on the tongue.

Construction of the 3D tongue model Our 3D tongue
model is built using both MRI (for soft tissues like the tongue, soft
palate, and the pharyngeal wall) and cone beam CT (CBCT) (for
bony structures) of an individual subject. The MRI data is recorded
using the SIEMENS MAGNETOM Trio, a Tim system with 3 tesla

magnetic field strength, 64 ms echo time, 340 ms repetition time, 31
sagittal slice planes, 3 mm slice thickness, 3.6 mm slice interval, 256
by 256 mm field of view, and 192 by 192 pixel resulting image size
(Fig. 3 (a)). The rightmost and leftmost planes are located at 54 mm
from the mid-sagittal plane. The “rest shape”of the tongue is de-
fined as the averaged tongue shape for 36 Chinese vowels (9 vowels
with 4 different tones) and 73 consonants in symmetric VCV syl-
lables including fricative, stop, affricate, nasal, as well as lateral1.
Detailed phonetic information is reported in Fig. 4.

Figure 4: VCV syllables used for MRI-based tongue shape retrieval.

During MRI data acquisition, the subject took the supine posi-
tion and was asked to perform the required VCV syllables after a
short period of warm-up practice. Each VCV sequence was pro-
duced with a consonant, surrounded by vowels, e.g. [a]–[t]–[a].
All articulations were artificially sustained during the ten-second
acquisition time. For consonants, the subject made the initial VC
transition before the acquisition, then held the articulation while
breathing out very slowly (for fricatives) or holding his breath (for
stops) and finally made the rest CV transition after the MRI scan.
Other bony structures attached to the tongue such as teeth and jaw
are acquired by a LargeV HiRes 3D dental CBCT. This device
is primarily used for dental surgery and delivers much less radia-
tion to the subject than regular CT systems. Afterwards, a rigid
body registration is applied to align the MRI and CBCT volumes
(Fig. 5 (b)). Finally, the volumetric tetrahedral mesh is built using
Tetgen [39] based on the extracted surface information.

Acoustic-articulatory corpus The NDI Wave system
(Fig. 3 (b)) is employed to record acoustic and articulator posi-
tion recordings simultaneously. The articulators use electromag-
netic transducer coils glued to the vocal-tract articulators to record
precise measurements of their positions. There are 1,108 phonet-
ically balanced Chinese sentences in total selected to serve as the
recording prompts. In the EMA experiment, coils or sensors are
attached to the Tongue Rear (TR), Tongue Dorsum (TD), Tongue
Blade (TB), Tongue Tip (TT), Lower Incisor (LI), Lower Lip (LL)
and Upper Lip (UL) in the mid-sagittal plane. Another two coils at-
tached to the ridge of nose serve as a reference (as shown in Fig. 5
(a)). As a result, we can easily extract the global rigid body mo-
tion associated with head’s movement as in [57]. The same subject
participates in the EMA experiment. The acoustic signals and artic-
ulatory data are recorded simultaneously. The sampling frequencies
are 16,000 Hz for acoustic signals and 100 Hz for the articulatory
signal, respectively. A third-order Savitzky-Golay filter [29] with
the frame size of 21 is applied to smooth the trajectory of coils at-
tached to articulators to suppress their jittery motions.

5 DNN-BASED SPEECH INVERSION

Speech inversion is the first step in our system. It refers to the pro-
cedure that estimates the vocal tract shape or articulators’ positions
based on speech signals. We develop a DNN-based mapping mech-
anism bridging the acoustic speech and the articulatory movement,
taking the features representing the acoustic speech as the initial
input and outputting the articulatory features at EMA sensors.

1We note that there does not exist a well defined rest configuration of the
tongue, and the most comfortable position of the tongue varies significantly
by individuals. Therefore, the median shape of the tongue while performing
a series of standard pronunciations is a more meaningful starting point.

114



Figure 5: (a) EMA sensors’ placement and (b) the aligned MRI-
CBCT-EMA volume.

Traditional DNN is constructed by stacking a series of trained
Restricted Boltzmann Machines (RBMs) [32], where a hidden layer
of the preceding RBM serves as the visible layer of the following
RBM. At the top, a regression layer with linear units is added to
the RBM stacks. This method has been proven to be simple and
effective in many applications. The activation of each unit can be
formulated as: I(n),i = ∑ j w(n),i jo(n−1), j + b(n), j, where I(n),i is the
input of the ith unit in the nth layer. o(n−1), j is the output of the jth

unit from the (n−1)th layer. b(n),i is the bias of the jth unit in the nth

......

layer. The distribution of I(n),i
varies during the training as the
parameters of the previous lay-
ers change. This issue down-
grades the learning rates, re-
quires a more dedicated param-
eter initialization, and makes it
hard to train models with sat-
urating nonlinearities. To deal
with this problem, we employ a batch normalization strategy as pro-
posed in [21]. This method performs the normalization over a part
of the model’s architecture (orange blocks in the inset) as:

x̃(n),i =
x(n),i−µ(n),i√

σ2
(n),i + ε

, x(n),i = ∑
j

w(n),i jo(n−1), j +b(n), j, (1)

and the final output becomes:

x(n),i = γ(n),ix̃(n),i +β(n),i. (2)

Here, µ(n),i and σ2
(n),i are the mean and variance of x(n),i. γ(n),i and

β(n),i are scaling and shifting parameters applied to the normalized
x̃(n),i. All the parameters are evolved using the iterative momentum
gradient method as:

Wi+1 = Wi +∆Wi+1 ∆Wi+1 = d ·∆Wi−η · ∂L
∂W

bi+1 = bi +∆bi+1 ∆bi+1 = d ·∆bi−η · ∂L
∂b

γγγ i+1 = γγγ i +∆γγγ i+1 ∆γγγ
i+1 = d ·∆γγγ

i−η · ∂L
∂γγγ

βββ
i+1 = βββ

i +∆βββ
i+1

∆βββ
i+1 = d ·∆βββ

i−η · ∂L
∂βββ

µµµ i+1 = µµµ i +∆µµµ i+1 ∆µµµ
i+1 = d ·∆µµµ

i−η · ∂L
∂βββ

σσσ2i+1
=σσσ2i

+∆σσσ2i+1
∆σσσ

2i+1
= d ·∆βββ

i−η · ∂L
∂βββ

,

(3)

where W, b, γγγ , βββ , µµµ and σσσ2 are the aggregated training parameters
w, b, γ , β , µ and σ2 for a certain layer in the matrix/vector form.
L is the loss over the training set. The superscript [·]i indicates the
iteration index. The partial derivatives of ∂L/∂W, ∂L/∂b, ∂L/∂γγγ ,

∂L/βββ , ∂L/µµµ and ∂L/σσσ2 can be calculated using the backpropaga-
tion algorithm as:

∂L
∂W(n)

=
1
m

m

∑
l=1

o(l)
(n−1)

 ∂L(l)

∂x(l)
(n)

> , ∂L
∂b(n)

=
1
m

m

∑
l=1

 ∂L(l)

∂x(l)
(n)

> ,
∂L

∂γ(n),i
=

m

∑
l=1

∂L(l)

∂ I(l)
(n),i

x̃(l)
(n),i,

∂L
∂β(n),i

=
m

∑
l=1

∂L(l)

∂ I(l)
(n),i

,

∂L
∂ µ(n),i

=− 1
m

m

∑
l=1

∂L(l)

∂ x̃(l)
(n),i

1√
σ2
(n),i + ε

− 2
m

m

∑
l=1

∂L(l)

∂σ2
(n),i

(
x(l)
(n),i−µ(n),i

)
,

∂L
∂σ2

(n),i
=

1
m

m

∑
l=1

∂L(l)

∂σ2
(n),i

,

(4)
where o(l)

(n) is the output of the nth layer. The summation index l
iterates all the m samples in a mini-batch. Other intermediate partial
derivatives can be computed as:

∂L(l)

∂x(l)
(n)

=
∂ I(l)

(n)

∂x(l)
(n)

∂L(l)

∂ I(l)
(n)

,
∂ I(l)

(n),i

∂x(l)
(n),i

=
γ(n),i√

σ2
(n),i + ε

,

∂L(l)

∂ I(l)
(n−1)

=
∂o(l)

(n−1)

∂ I(n−1)
W(n)

∂ I(l)
(n)

∂x(l)
(n)

∂L(l)

∂ I(l)
(n)

,
∂L(l)

∂ x̃(l)
(n),i

=
∂L(l)

∂ I(l)
(n),i

γ(n),i,

∂L(l)

∂σ2
(n),i

=−1
2

∂L(l)

∂ x̃(l)
(n),o

(
x(l)
(n),i−µ(n),i

)(
σ

2
(n),i + ε

)− 3
2
.

The recorded speech signals are segmented into frames with a
hanning window. Each frame contains a speech segment of 25
ms, and is encoded by the log-energy and 12-order Mel-frequency
cepstral coefficients (MFCC) augmented with their delta and delta-
deltas. The frame shift between consecutive frames is 10 ms to
match the sampling rate of EMA sensors. The dataset is parti-
tioned in three sets: a validation and a testing set of 110 utter-
ances each, and a training set consisting of the other 880 utterances.
Both EMA and MFCC feature vectors are normalized by subtract-
ing their global mean and dividing by the standard deviation of each
dimension, respectively.

6 REAL-TIME DEFORMABLE SIMULATION OF TONGUE

The tetrahedral finite element mesh used for the 3D tongue model
consists of 11,083 nodal points and 56,794 tetrahedral elements.
Simulating such high-dimensional mesh with over 30K DOFs at
the rate in sync with the acoustic input is challenging. Yang and
colleagues [57] adopted a simplified dynamic model extending the
linear elasticity using the modal warping technique [9] to allevi-
ate this problem. Unfortunately, we found that the simulator was
only able to generate plausible results for repeated CV trainings
(e.g. [ta]–[ta]–[ta]). It often produced unnatural motion patterns
for real speech production of complete words and sentences. The
reasons are twofold. First, the modal warping method is still based
on linear elasticity and its nonlinear deformation comes from a ge-
ometric warping correction, which is not physics-based. Second,
modal analysis constructs global subspace basis vectors while dur-
ing language production, the tongue’s deformation could be highly
nonlinear and localized. As reported in the previous study [12],
the human tongue undergoes a compression up to ∼ 200% and an
elongation up to∼ 160% when producing certain speech sounds. In
other words, we need a new numerical framework that is able to per-
form the deformation integration in real time and effectively capture
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the nonlinear local deformations. In this section, we detail a novel
spatial reduction method that allocates nonlinear simulation DOFs
via quadratic domains. Each domain houses 30 DOFs grouped into
3 translation DOFs, 9 affine DOFs, 9 quadratic homogenous DOFs,
as well as 9 quadratic heterogenous DOFs. We assign each EMA
sensor a domain and an additional one for the tongue’s interior in
order to capture local deformation nearby the sensor while keeping
the overall simulation in a low-dimensional subspace. Our model
also fully addresses the volume preserving constraint rather than
relying on tweaking Poisson’s ratio as in [57].

Kinematics For a given material point P on the tongue model,
we denote x = [x1,x2,x3]

> and u = [u1,u2,u3]
> as its rest shape

position and displacement. A nearby domain imposes a quadratic
influence to its displacement components such that ui = x>Qix+
a>i x+ ti for i = 1,2,3. Qi ∈ R3×3 is a symmetric tensor encoding
the iso-quadratic DOFs. We put its three diagonal DOFs into a vec-
tor such that qoi = [Q11,Q22,Q33]

> and refer to it as homogenous
DOFs. Similarly, the vector qei = [2Q12,2Q23,2Q13]

> containing
off-diagonal elements of Qi is referred to as heterogenous DOFs.
The affine DOFs a ∈ R3 describes how ui is linearly related to its
rest position, and ti is a translation DOF. Each type of deformable
DOFs from different domains are convexly combined, and the dis-
placement of P can be written as:

ui = ∑
j

w j
t (x)t

j
i +w j

a(x)a
j>
i x+w j

o(x)q
j>
oi x̃+w j

e(x)q
j>
ei x̂, (5)

where w j
t , w j

a, w j
o and w j

e are location-dependent weight coefficients
indicating how much domain j affects different types of deformable
DOFs. x̃ = [x2

1,x
2
2,x

2
3]
> and x̂ = [x1x2,x2x3,x1x3]

> are second-
order homogenous and heterogenous vectors of P. By stacking all
the deformable DOFs from the jth domain into a single vector q j ∈
R30 such that q j = [t j> ,a j>

1 ,a j>
2 ,a j>

3 ,q j>
o1 ,q

j>
o2 ,q

j>
o3 ,q

j>
e1 ,q

j>
e2 ,q

j>
e3 ]
>,

the displacement of P can be concisely expressed as a matrix-vector
product:

u = G jq j =
[
G j

t |G
j
a|G j

o|G j
e

]
q j, (6)

where
G j

t = w j
t I G j

a = w j
aI⊗x>

G j
o = w j

oI⊗ x̃> G j
e = w j

eI⊗ x̂>.

We call matrix G j the geometric displacement matrix as it depends
soley on the rest shape of the tongue mesh. The generalized coor-
dinate q j uniquely determines the kinematic of P:

u̇ = ∑
j

G jq̇ j, ü = ∑
j

G jq̈ j. (7)

Reduced dynamics Let ei denote the canonical basis vec-
tors of R3, and we drop the domain superscript [·] j in this paragraph
for the sake of a succinct formulation. Based on Eq. (5), each row
of the deformation gradient tensor F = [F1,F2,F3]

> ∈R3×3 can be
written as Fi = Fti +Fai +Foi +Fei + ei, where

Fti = ∑∇wtti Fai = ∑a>i x∇wa +waa>i
Foi = ∑q>oi

x̃∇wo +woq>oi
X̃ Fei = ∑q>ei

x̂∇we +weq>ei
X̂,

and

X̃ =

 x2 x1 0
0 x3 x2
x3 0 x1

 , X̂ =

 2x1 0 0
0 2x2 0
0 0 2x3

 .
Once we have computed F, we can evaluate the nonlinear Green

strain, E = 1
2 (F
>F− I), and proceed to express the strain energy

density Ψ as well as the first Piola-Kirchhoff stress tensor (PK1)
based on the chosen material model. Previous research [12, 13, 53],
indicates that an isotropic and homogenous material model for the
tongue is applicable as the variation of Young’s modulus at differ-
ent parts of the tongue is very small. Accordingly we choose to use
the St. Venant-Kirchhoff (StVK) model since it is capable of pro-
ducing most desired nonlinear deformation effects of the tongue.
The Young’s modulus is set as 6,912 and the Poisson’s ratio is set
as 0.49. Extending our method to accomodate other materials like
Neo-Hookean is straightforward under our framework.

With the StVK material, the energy density and PK1 are formu-
lated as: Ψ = µE : E+ λ

2 tr2(E) and P = F[2µE+λ tr(E)I], respec-
tively, where λ and µ are the Lamé parameters. The per-domain
reduced internal force f̃int and its gradient ∂ f̃int/∂q are:

f̃int =−
∫ (

P
∂F
∂q

)
dV,

∂ f̃int

∂q
=−

∫ [(
∂P
∂F

∂F
∂q

)>
∂F
∂q

]
dV.

(8)
Here, ∂F/∂q∈R3×3×30 is a third-order block-sparse tensor, which
can be understood as the superposi-
tion of three layers as shown at right.
The ith layer represents the matrix
∂Fi/∂q and it hosts four sub-matrices,
namely ∂Fti/∂ t, ∂Fai/∂a, ∂Foi/∂qo,
and ∂Fei/∂ae. All of these sub-
matrices are block-sparse as the par-
tial derivative yields a nonzero block
only when the subscript of the generalized coordinates agree. Each
nonzero block can be easily calculated as:

∂Fti
∂ ti

= ∇wt
∂Fai

∂ai
= ∇wa⊗x+waI

∂Foi

∂qoi

= ∇wo⊗ x̃+woX̃>
∂Fei

∂qei

= ∇we⊗ x̂+weX̂>.

(9)
Applying temporal discretization using the implicit Euler inte-

gration leads to the final nonlinear system to be solved at each time
step: (

M̃−hC̃−h2 ∂ f̃int

∂q

)
∆q̇ = h̃fext +h2 ∂ f̃int

∂q
q̇, (10)

where M̃ is the reduced mass matrix, which can be evaluated block-
wisely: M̃i j =

∫
ρGi>G jdV (ρ = 1 as the tongue consists of mostly

water); f̃ext is the generalized external force; h is the time step size;
and C̃ is the reduced damping matrix.

Figure 6: The domain partition of the input tongue mesh as well as
the weight distribution for each domain.

7 DOMAINS’ WEIGHT COEFFICIENTS

Analogous to shape functions, weighting functions superimpose
quadratic transformations from domains yielding global deforma-
tions. To this end, we present an efficient algorithm to calculate the
weight distribution for each domain to accurately reflect the mate-
rial properties of the tongue and augment the geometric displace-
ment matrix (Eq. (6)). Our method is fully material-and-geometric-
aware, and possesses important traits such as locality, smoothness
and interpolation.
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Intuitively, the weighting function w(x) ought to align with the
visual impression of how the deformation fades away from the seed
of the domain, where the maximum local displacement occurs. Ap-
parently, a straightforward way to obtain such deformation dissipa-
tion is to solve a static equilibrium by imposing an external force
fs ∈ R3 at the domain seed and anchoring all other seeds. Unfortu-
nately, this problem is ill-defined as we have infinite choices of fs –
obviously they give different weighting distributions when used.

We resolve this ambiguity by restricting fs along the principle
direction p of a domain, which can be understood as the “most de-
formable direction” such that the domain undergoes the largest dis-
placements when fs aligns with it (i.e. fs = p). Mathematically, it
can be formulated as a quadratically constrained quadratic program
(QCQP) problem as:

maximize
p

|u|2

subject to
[

K B>a
Ba 0

][
u
λ

]
=

[
B>s p

0

]
,

and |p|2= 1,

(11)

where Bs and Ba are two binary matrices picking the domain’s seed
on which fs is applied, and anchor seeds to incorporate boundary
conditions. λ is the unknown multipliers. In general, QCQP is
NP-hard and a polynomial-time solution may not be available. For-
tunately as Eq. (11) only activates equality constraints, it can be
directly solved. To do so, we explicitly write down its inversion: up

uw
λ

=

 Hpp Hpw Hpλ

H>pw Hww Hwλ

H>pλ
H>wλ

Hλλ

 p
0w
0λ

 . (12)

Here, the matrix H is the inverse of the constrained stiffness matrix
in Eq. (11), which is often referred to as the flexibility matrix. We ar-
range all DOFs into groups such that subscript p is for 3 DOFs asso-
ciated with the seed where the unit force fs = p is applied; subscript
w is associated with all other nodal DOFs for which the weighting
is to be calculated; and subscript λ is for multipliers’ DOFs. Span-
ning the first rows in Eq. (12), the target function can be simplified:

|u|2 = p>(HppHpp +HpwH>pw)p

, p>Ap.
(13)

Note that A is SPD, and we diagonalize it using the eigen decom-
position: D = diag(d1,d2,d3) =ΦΦΦ

>AΦΦΦ, d1 ≤ d2≤ d3 leading to:

|u|2 = (ΦΦΦp)> diag(d1,d2,d3)(ΦΦΦp) .

= d1 p2
1 +d2 p2

2 +d3 p2
3

≤ d3 (by the fact that |p|2= p2
1 + p2

2 + p2
3 = 1).

The maximum value of |u|2 will be obtained when p = φφφ 3, the
eigenvector corresponding to the largest eigenvalue of A.

After p is ready, the weighting function over the domain can be
numerically computed by prescribing p as the constrained displace-
ment. We notice that completely anchoring all the neighbor seeds
as well as the domain boundary (i.e. fixing all of their x, y and z
freedoms) produces an over-damped weighting. Accordingly, we
lift up the boundary condition and only restrict their displacements
along the principle direction, while tangential movements towards
p are still allowed. In other words, each 3 by 3 sub-block of an
identity matrix in Ba corresponding to a anchor node on the mesh
is changed to p>. Fig. 7 left shows the comparative results of a
standard bending simulation of a load-end cantilever beam using
different weighting functions. It can be seen that our method yields
a natural and smooth nonlinear bending.

We subdivide the tongue mesh into five domains as shown in
Fig. 6. Four of them are seeded at the corresponding EMA sensors.
The fifth one is at the mass center of the tongue mesh. The domain’s
partition is obtained by performing flooding from the seed. The
weight distribution of the domains is visualized using the red-white
color map.

8 PRESERVING VOLUME WITHIN THE SUBSPACE

As a muscular organ, the human tongue consists of 99% of water,
which preserves its volume during speech production. To achieve
this effect, we introduce an auxiliary pressure variable which pro-
vides a volume adjustment of both displacement and velocity vec-
tors to the simulated tongue mesh at each frame. This method
has been explored by the computer graphics community [22, 50].
However, a fullspace displacment/velocity amendment is needed to
solve the pressure terms for each element, which is O(n2) at run-
time and downgrades the performance of the real time simulation.
We leverage the fact that the nonlinear tongue deformation driven
by EMA sensors is of a low rank and efficiently handle the volume
preserving constraint in a reduced space.

Let V0 denote the volume of the original tongue mesh Ω. It can
be computed as V0 =

∫
Ω

dx. Its deformed volume Vt at time t can
be calculated similarly as: Vt =

∫
Ωt

dy =
∫

Ω
|F(x)|dx, where y =

x+u is the deformed nodal position. Noting that |F|= |I+∇u|≈
1+divu, the volume change between V0 and Vt can be first-order
approximated as:

∆V =Vt −V0 =
∫

Ω

(|F(x)|−1)dx≈
∫

Ω

divudx. (14)

We introduce a virtual pressure term p ∈ Rn to cancel ∆V which
results in a “pressure force” of −∇p. Inserting −∇p into the time
integration yields:

∆V ≈ div
(

M−1
∇p−v

)
·h, (15)

where h is the time step size, which is set as 0.01 in our system.
Discretizing Eq. (15) at each tetrahedral element on the mesh al-
lows us to solve p by inverting an n by n matrix. This matrix is
constant and can be pre-factorized. Thus, the runtime evaluation of
p requires a complete O(n2) forward-backward substitution at each
time step. The resulting p is used to obtain a displacement correc-
tion ∆u =−h ·M−1∇p. We follow the same idea as Irving and col-
leagues [22] and apply another velocity correction ∆v to make the
velocity field as divergence-free as possible. Doing so effectively
stabilizes potential oscillations under nonlinear constraints.

Data-driven pressure subspace Since the deformable
motion of the tongue driven by the EMA coils is obviously of low
rank, we further construct a reduced pressure subspace and solve
Eq. (15) within the subspace. Our method is data-driven, based
on the recorded articulatory corpus consisting of 1,108 complete
Chinese sentences. Each EMA frame i includes a vector si of 3D
positions of TT, TB, TD and TR sensors. We evaluate the finite
difference acceleration as: (si+1 + si−1 − 2si)/2∆t2 to obtain the
inflection points of each sensor’s trajectory. Frames with small ac-
celeration magnitude are chosen as key frames (Fig. 7 right). While
there are hundreds of thousands of EMA frames, we found that us-
ing 100 key frames is sufficient to construct a high-quality subspace
for the volume correction. For each selected key frame ki, we solve
a nonlinear static equilibrium by imposing volume preserving con-
straint, and record the associated correcting pressure vector pki such
that: [

K(u) C>(u)
C(u) 0

][
u
λ

]
=

[
f
0

]
, (16)

where C(u) encodes the required nonlinear constraints for both po-
sition constraints at EMA sensors and volume preservation. New-
ton’s method is used to solve this nonlinear problem, which requires
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Figure 7: Left: In this illustrative example, we compare a simple bending simulation of a standard load-end cantilever beam (with three domains)
using (a) our method, (b) weighting computed with a completely fixed boundary condition, (c) weighting computed along the direction perpen-
dicular to the principle direction, and (d) using harmonic coordinates. Right: We pick key frames (grey blocks) by checking the finite difference
acceleration magnitude of each EMA sensor and compute the corresponding pressure field. Selected pressure vectors and the corresponding
tongue shapes are visualized as well using the red-white color map.

the evaluation of the tangent stillness matrix K(ui) at each interme-
diate ui of the ith iteration as well as the Jacobi of the constraint
matrix, which can be calculated as ∇C = [B>s D]>. Here Bs is a
constant binary matrix picking the nodal DOFs corresponding to
the EMA sensors. D ∈ Rn×3n is the discretized matrix representa-
tion of the div operator. In the dynamic integration, the first-order
approximation of the volume change (e.g. Eq. (14)) is applied to
an incremental displacement update occurring within a single time
step. Together with the velocity correction, the volume preserving
constraint can always be well satisfied. However, in our subspace
construction a given key frame often corresponds to a deformed
configuration of the tongue deviating significantly from the rest
shape. Indeed, solving Eq. (15) is numerically equivalent to per-
forming one Newton iteration to solve the nonlinear system. Typi-
cally, we need three to five iterations to fully suppress ∆V . Finally,
a modified Gram-Schmidt process (MGS) is applied to all the com-
puted pki , which serves as the basis vectors for the pressure sub-
space. In this manner the displacement and velocity corrections can
be efficiently calculated within milliseconds and impose a nominal
computation penalty to the simulator.

Figure 8: Collision detec-
tion is limited at few se-
lected collision points.

Other implementation details
We employ Rayleigh damping and
the mass and stiffness damping coeffi-
cients are set as 6.22 and 0.11 as re-
ported in [12, 53]. In order to ef-
ficiently evaluate the reduced internal
force and its gradient, we use the Cuba-
ture scheme proposed by An and col-
leagues [2]. The idea is to avoid evalu-
ating f̃int and ∂ f̃int/∂q at each element,
which is a O(n) runtime procedure. In-
stead, the Cubature scheme selects a
set of few key elements and approx-
imates them as the weighted summation of per-element internal
force and force gradient. We refer the reader to the related doc-
uments [2, 54] for a detailed exposition of the Cubature method. In
our implementation, the training data for the Cubature is selected
in a similar way as for constructing the pressure subspace, yet con-
sists of 500 training poses. The DNN-based speech inversion feeds
Eq. (10) the positional information of the TT, TB, TD and TR sen-
sors based on the acoustic signals. We use the Lagrange multiplier
method to deform the tongue mesh so that positional constraints can
be precisely satisfied.

We monitor the collisions between the tongue and the jaw. As the
collision patterns between them are highly coherent, the collision
detector simply tracks only selected collision points as shown in
Fig. 8. If a collision is detected, a damped spring is applied to
resolve it.

Figure 9: Applying the volume preserving constraint yields more nat-
ural tongue shapes, and our subspace volume preserving is able
to effectively suppress volume change during tongue’s deformation.
The first row of snapshots is the shapes without volume preserving.
The second and the third rows are the results using fullspace method
and our method. It can be seen that our method is able to produce
almost identical results compared to the fullspace volume correction.
With our method, the volume change during the tongue simulation is
always less than 2%.

9 EXPERIMENTAL RESULT

In addition to the data acquisition equipment described in § 4,
the numerical part of our framework was implemented using
Microsoft Visual C++ 2013 on a desktop PC with an
Intel i7-5960 CPU and 32GB of DDR4 RAM. The GUI was
implemented using QT. All the numerical algorithms were imple-
mented using the Eigen C++ template (the Cholesky LDLT rou-
tine is used for solving Eq. (10)). Our simulation runs at 60+ FPS
including collision and volume preservation.

Evaluation of the speech inversion During the speech in-
version, in order to determine the number of hidden units of each
layer, we first conduct an experiment on a neural network with one
hidden layer. The number of hidden units varies from 50 to 1,600.
The results indicate that the neural network with 400 hidden units
should achieve a good performance. Therefore, we construct a deep
neural network with 6 hidden layers. The momentum d (e.g. in
Eq. (3)) is set to be 0.8. The initial learning rate is set to be 0.0004,
and decays with the proportion of 0.9. Each mini-batch contains
1,024 examples. The maximum number of training epoch is set to
be 50. The evaluation of the DNN-based speech inversion is per-
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Figure 10: Side-by-side comparisons between simulated tongue shapes (textured) and real-world shapes extracted from MRI-CBCT fused
images (in cyan)

“I feel like that I was giggling over there.” (我觉得我在哪偷笑)

“Someone says that it is nonsense.” (有人说这是瞎折腾)

“Except that, all the other ID information like birthdate and home address is identical.” (除此之外，出生日期住址等身份信息完全一致)

“Joey Yung looks at Zequan Zen, a local magician’s flower conjuring trick.” (容祖儿全神贯注看着本地魔术师曾泽权变出鲜花) 

Figure 11: More snapshots of the tongue during speech production. The input acoustic signal waves are also provided.

formed over the 110 utterances out of the collected corpus that do
not participate in the DNN training. We compute the root mean-

squared error (RMSE) defined as: εRMSE =
√

1
m ∑

m
i=1|x̃−x|2, for

each EMA sensor to see how much deviation we have between the
sensor’s position and DNN trained model. Here, m = 110. x̃ and
x are the sensors’ positions as the output from the DNN and their
observed coordinates. εRMSE for all the sensors is less than 3 mm.
Specifically, the deviations are 2.93 mm for the TR sensor, 2.56 mm
for the TD sensor, 1.2 mm for the TB sensor, and 0.87 mm for the
TT sensor. We also compute the cross correlation coefficient to

evaluate similarity of the motion trajectories. The correlation co-
efficient between the trained and real EMA sensors’ trajectory is
0.81. In addition, we further applied our DNN to the MOCHA
database [55]. Our DNN model produces comparable results (aver-
age εRMSE = 1.09 mm and correlation is 0.89) as other paradigms
for the inverse speech mapping (e.g. in [37]).

Evaluation of subspace volume preserving Next, we
quantitatively evaluate the performance of the proposed subspace
volume preserving method. Fig. 9 shows a representative exam-
ple of a deformable tongue motion when the entire tongue mesh
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is moving downwards. Without enforcing the volume conservation
constraint, the volume change of the entire mesh can be as high as
15%. Fullspace volume preservation as in [22] is able to correct this
issue but takes 500−600 ms to solve Eq. (15) in the fullspace. This
correction must be calculated twice for both corrective displace-
ment and velocity. Our subspace volume preserving algorithm can
be completed less than 20 ms and the visual difference between the
fullspace volume preservation and our method is indistinguishable.

Evaluation of the FEM simulator Evaluating the resulting
deformed tongue shapes is crucial for us to understand the qual-
ity of the proposed simulator. However, there does not exist a
“gold standard” that could serve as the ground truth to conclusively
tell if a given tongue’s shape is valid or not. Indeed, the current
knowledge of tongue placement is quite limited even for certifi-
cated Speech-Language Pathologists (SLP) [30]. Previous work on
the tongue modeling borrowed experiences from domain experts
and conducted qualitative visual evaluations [57]. While such ap-
proach is able to more or less estimate the quality of the visual
tongue model, it is highly subjective. Occasionally, even certifi-
cated SLPs are not able to tell if a motion looks “right” or not. In
this work, thanks to the various medical imaging systems adopted,
we are able to quantitatively evaluate the quality of the simulated
tongue shapes. Our ground truth is obtained in a similar manner
as for constructing a subject-specific tongue mesh (§ 4) by fusing
and aligning both MRI and CBCT volumes. We compared the sim-
ulated shapes and the ones extracted from the 3D images for 10
representative poses. To the best of our knowledge, it is the first
quantitative evaluation for FEM based tongue models that lever-
ages full 3D real-world data. Fig. 10 reports the side-by-side com-
parison. We also computed the Hausdorff distance [10] between the
simulated shape and captured ones. We first eliminate the shape dif-
ferences induced by uniform scaling and rigid body transformation.
To do so, a shape matching [31] is performed to find the optimal ro-
tation between a pair of meshes (i.e. the simulated and captured
ones). After that, a scaling factor s can be computed, and the Haus-
dorff distance is evaluated finally. The average shape difference is
less than 5% of for all the 10 examples listed in Fig. 10. Visually,
our simulator replicates real-world tongue shapes plausibly. How-
ever, it can also be seen from this comparison that localized denting
deformation under the tongue tip is not well captured, which oc-
curs due to the contraction of the underlaying muscle group. As
our DOF assignment and domain decomposition are based on the
placement of EMA sensors, and such localized sharp deformation
is probably beyond our subspace expressivity. After all, we only
use 150 DOFs to simulate the complex nonlinear motion of the
tongue (over 30K fullspace DOFs). More results are reported in
Fig. 11. The sound waves along with the original Chinese language
and the corresponding English translations are also provided. We
refer readers to the accompanying video for more animated results.

10 LIMITATION AND FUTURE WORK

We propose a real-time system that creates a vivid VR representa-
tion of the human tongue in a sensor free manner based on input
acoustic signals. To achieve this objective, we use a two-step in-
verse map: the first inverse map converts speech sounds to a pre-
defined articulators’ 3D trajectory, which is further utilized in an
inverse dynamic based simulator. In order to achieve real-time per-
formance, we carefully shape the simulator to find a good trade-off
between the performance and accuracy. Our simulator is versatile
and accommodates collision handling and volume preservation.

There are also several limitations of the current system, which
leave us many exciting directions to explore in the near future. First
of all, it is still unknown to us that using four EMA sensors at the
mid-sagittal plane is the optimal setting for the follow-up inverse
simulation or if extra sensors might improve our results. While
putting quadratic domains according to the sensors’ locations gives

a satisfactory result in general, some local deformation is missed
(highlighted in Fig. 10). Therefore, performing the domain parti-
tion in a way that better reflects the tongue’s anatomy [15] may be
a potential improvement. We will work closely with our collabo-
rators and domain experts to find the answer to this fundamental
question. We will also apply our system to other languages. Since
our DNN-based method works well for the MOCHA database, it is
expected that our system should perform well on the English lan-
guage. Using an active model instead of a passive model to synthe-
size the articulation of the tongue is also an ambitious future work
for us. Combing machine learning, physics-based modeling, and
multi-modality data fusion seems to be a worthy idea.
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