
Keyframe-Based Video Object Deformation

Paper ID: 000

Abstract

This paper presents a novel deformation system for video

objects. The system is designed to minimize the amount

of user interaction, while providing flexible and precise

user control. It has a keyframe-based user interface. The

user only needs to manipulate the video object at some

keyframes. Our algorithm will smoothly propagate the edit-

ing result from the keyframes to the rest frames and auto-

matically generate the new video object. The algorithm is

able to preserve the temporal coherence as well as the shape

features of the video objects in the original video clips. We

demonstrate the potential of our system with a variety of

examples.

1. Introduction

Video editing is the process of re-arranging or modify-

ing segments of video to form another piece of video. It has

long been used in film industry to produce studio-quality

motion pictures. With the advent of recent interactive sys-

tems to cutout dynamic foreground objects from a video se-

quence [4, 10, 14, 19], nowaday video editing can be easily

performed at object level. A example operation is video ob-

ject cut and paste, which is widely used in movie production

to seamlessly integrate the video object into new scene for

special effects.

Recently, many research efforts have been devoted to

video object editing. Non-photorealistic rendering (NPR)

technique has been generalized to render video objects in

cartoon-look style [1, 21]. For the editing of motion, Liu

et al. [15] presented a motion magnification technique to

amplify the small movements of vide objects. Jue et al.

[20] present to use cartoon animation filter to exaggerate

the animation of video objects to create stretch and squash

effect. All these techniques are very useful to generate new

video objects with different styles or motions, and there-

fore achieve interesting video effects. However, to the best

of our knowledge, few work has been done on interactive

editing of the shape of video objects, or video object defor-

mation.

In this paper, we present a novel system for video object

deformation. Our system has the following features:

⋄Keyframe-based editing: Our system has a keyframe-

based user interface. The user only needs to manipulate

the video object at some keyframes. At each keyframe,

the user deforms the 2D shapes in the same way as tra-

ditional image deformation. Our algorithm will smoothly

propagate the deformation result from the keyframes to

the rest frames and automatically produce the new video

object. In this way, it is able to minimize the amount of

user interaction, while providing flexible and precise user

control.

⋄Temporal coherence preserving: Our algorithm can pre-

serve the temporal coherence of the video object in the

original video clip.

⋄Shape feature preserving: Our algorithm is effective in

preserving shape features of the video object while gener-

ating visually pleasing deformation.

To develop such a system, we need to address the fol-

lowing challenges.

First, we need a shape representation for video objects.

Unlike static image object, video object is dynamic in na-

ture. Therefore, its shape is changing with time. We first

use the recent interactive video cutout tool [14] to extract

the foreground video objects. Then a keyframe-based con-

tour tracking technique [1] is employed to get the boundary

Bezier curves of the video object. The shape of the video

object is subsequently represented as the region bounded by

these boundary curves.

Secondly, to preserve the temporal coherence of video

objects, the keyframe editing results need to be smoothly

propagated from keyframes to the rest frames such that the

whole video object can be deformed consistently. At each

keyframe, the user manipulates the deformation handles to

deform the shape. We use a least-squares handle propa-

gation algorithm to smoothly propagate the handle editing.

Then 2D shape deformation can be applied to each frame

given the propagated handle constraints. This handle prop-

agation algorithm can elegantly preserve the temporal co-

herence because it tries to minimize an energy function that

represents the temporal properties of original temporal han-

dle trajectory.

Finally, although the nonlinear 2D shape deformation

algorithm described in [22] can preserve shape features

and achieve physically plausible results in the interactive

keyframe editing, it may generate unsatisfactory results for

the rest frames with the propagated handle constraints (see

Fig. 4). This is because the deformation solver may stick

into a bad local minimum due to the abrupt change of han-

dle positions in these rest frames, while the handle posi-

tions are smoothly changed in keyframe editing. Inspired

by the subspace method in [8], we propose a dimension

reduction technique by projecting the deformation energy

onto the subspace formed by the control points of bound-

ary Bezier curves. Performing energy minimization in this

subspace greatly improves the stability and convergence of

the nonlinear deformation process, and thus leads to much

better deformation results.

The remainder of this paper is organized as follows. The

following section reviews related work. Section 3 briefly

describes the main steps of our video object deformation

system. Algorithm details of each step are presented in sec-

tion 4. In section 5, we introduce how we edit video ob-

jects with self-occlusion. Experimental results are shown in

Section 6, and the paper concludes with some discussion of

future work in Section 7.

2. Related Work

This paper is inspired by a lot of previous works on video

object cutout, animation editing and 2D shape editing. We

discuss here only those most related works.

Video Object Cutout The most common method for

video object cutout might be blue screen matting [18].

However, it is restricted to controlled studio environments.

Video object cutout in natural scene is a more challenging

task. Image segmentation techniques, such as mean shift

and graph cut, have been generalized for video cutout. In

[14, 19], a video is over-segmented first and then 3D graph

cut is invoked to label the pixels of video to be foreground

or background. Since the graph cut is built on the regions

from over-segmentation, per-pixel level postprocessing is

necessary to get high quality matte. Boundary tracking can

also be used to extract video object in natural scene [6, 11],

which is also called “rotoscoping”. Recently, Agarwala et

al. [1] have combined space-time optimization with user

guidance for rotoscoping. In contrast, Chuang et al. [4]

proposed to track trimap, instead of boundary, to generate

high quality video mattes.

Image and Video Object Editing Object level editing

gains its popularity because it allows the user to manipu-

late the image or video at a more meaningful level. Barrett

et al. [3] proposed an object-based image editing system,

which allows the user to animate the static object in image.

A more recent work drives the 2D character in image with

3D motion data [7]. Compared with image object, video

object has an additional temporal dimension, which leads

to much increased data complexity and new technical chal-

lenges. Video tooning [21] generalized NPR to video ob-

ject to create cartoon-style animation by solving the spatial-

temporal coherence problem with mean shift segmentation

and mean shift guided interpolation. Agarwala et al. [1]

also presented a NPR system for video object. However,

their algorithm is based on the roto-curves from tracking.

While these two methods focus on changing the style of

video object, Liu et al. [15] presented a motion magnifi-

cation technique to visualize the small movement of video

objects, which they call motion layer. To extract motion lay-

ers, they first cluster feature points into correlated motions,

and then preform segmentation to group pixels into motion

layers. More recently, Jue et al [20] propose to use car-

toon animation filter to the temporal trajectory to centroid

and outline vertices of the video object to create squash and

stretch effect. Our video object deformation system pro-

vides a more general way to manipulate the shape of video

objects.

2D Shape Deformation with Feature Preservation Re-

cent 2D shape deformation algorithms aim to produce vi-

sually pleasing results with simple operations and to pro-

vide interactive feedback to users. Igrashi et al. [9] de-

veloped an interactive system that allows the user to de-

form a 2D triangular shape by manipulating a few points.

To make the deformation as-rigid-as-possible [2], they pre-

sented a two-step linearization algorithm to minimize the

distortion of each triangle. However, it might cause unnat-

ural deformation results due to its linear nature. On the

other hand, the algorithm based on moving least squares

[17] does not require a triangular mesh and can be applied

to general images. The 2D shape deformation algorithm in

[22] solved the deformation using nonlinear least-squares

optimization. It tries to preserve two geometric properties

of 2D shapes: the Laplacian coordinates of the boundary

curve of the shape and local areas inside the shape. The

resulting system is able to achieve physically plausible de-

formation results and runs in real time. We therefore use

this algorithm for keyframe shape editing.

Our work is also inspired by the recent research trend

on generalizing static mesh editing techniques to the edit-

ing of mesh animation data [12, 23]. We try to generalize

static image object editing techniques to deform video ob-

ject. This brings several technical challenges as we men-

tioned in the last section.

3. System Overview

As illustrated in Figure 1, our video object deformation

system performs the following steps in a typical editing ses-

sion:

Video object cutout

Video object shape
generation

Keyframe editing

Deformation
propgation

Novel video object
generation

Figure 1. System flowchart. (a) Input video
object. (b) Tracking result, note only the
boundaries of the region of editing interest

are precisely tracked. (c)Interactive keyframe
deformation (d) Resulting video object.

1. Video Object Cutout: Given an input video, we first

extract the foreground object from the video using the

segmentation based video cutout technique [14]. The

result is a sequence of foreground images with alpha

channels indicating the opacity of each pixel.

2. Video Object Shape Generation: The key-frame

based rotoscoping technique in [1] is used to track the

contours of the video object in the foreground images.

We first manually draw several Bezier curves along

the boundary of the video object at some keyframes.

Then the tracking algorithm will locate the optimal po-

sition of the curves in the rest frames. These Bezier

curves are then organized into a boundary polygon

and our algorithm automatically inserts a set of points

into the interior region of the polygon and generates

a 2D graph by connecting the vertices of the bound-

ary polygon and the inside points (see Section 4.1 for

details). Finally, we get a sequence of 2D shapes:

{Si, i = 1, ..., N}.

3. Keyframe Editing: The user can deform the 2D shape

Sk at any frame k. The edited frame will subsequently

become a keyframe. During deformation, the user

only needs to specify deformation handles {Hk
j , j =

1, ..., l} at frame k, and then drags the handles to new

positions Ĥk
j . The 2D shape deformation algorithm

[22] is used to automatically deform the shape Sk into

Ŝk.

4. Deformation Propagation: With the user edited han-

dle Ĥk
j at keyframe k, a handle propagation algorithm

computes the new position of handle Ĥi
j at each frame

i by using a least squares optimization. Then a shape

deformation algorithm using dimension reduction is

applied at each frame i to meet the new positional con-

straints from handles Ĥi
j and simultaneously generate

the deformed 2D shape Ŝi.

5. New Video Object Generation: Using the foreground

images as textures, we can render the new 2D shapes

{Ŝi, i = 1, ..., N} to produce the new foreground im-

ages, which is a novel video object ready for integra-

tion into any new background image or video.

Note that the contour tracking in Step 2 is a challenging

task in computer vision because of the complexity of mo-

tion. By applying it to foreground images only, we are able

to reduce the difficulty greatly. Our system also supports

the deformation of video objects with self-occlusions. To

achieve this, we allow to model the shape of video object

with multiple polygons and the polygons may occlude each

other. Please see Section 5 for details.

4. Video Object Deformation

4.1. Video Object Shape Representation

The output of the contour tracking algorithm is the po-

sitions of the Bezier curves at each frame. We still need

to make use of these curves to construct a 2D shape repre-

sentation for the video object. Instead of asking the user to

do this frame by frame tediously, we first build a 2D graph

for the video object with some user interaction at the first

frame. Then the algorithm will automatically transfer the

graph to the rest frames.

As shown in Figure 2(a), after tracking, the boundary of

the walking teapot at the first frame is represented in Bezier

curves. In this paper, we use cubic Bezier curves:

g(t) = p0(1−t)3+3p1t(1−t)2+3p2t
2(1−t)+p3t

3, (1)

where pi is the control points, and t ∈ [0, 1] is a scalar

parameter.

The Bezier curves are then automatically discretized into

connected line segments by uniformly sampling the param-

eter t (Figure 2(b)).

(a) (b)

(d)(c)

Figure 2. Creation of 2D Graph. (a) 2D shape
in bezier curves. The dots in red represent

the control points. (b) Discretization of bezier
curves. The sampled points are represented
in blue dot. (c) Organized polygons (filled in

different colors) (d) Final 2D Graph.

To define the interior region of the shape, the user needs

to specify how the line segments are arranged into polygons.

In Figure 2(c), we organize the line segments into four poly-

gons. In this way, we can manipulate the four components

of the teapot: the handle, the body, and feet and the mouth.

A few interior points are then inserted into each polygon

and then connected to form 2D graphs (Figure 2(d)).

Formally, we can denote the 2D graph as {V0,E0} ,

where V0 is the set of n vertices in the graph, and E0 is

the set of edges. V0 consists of two parts: V0
p, which con-

tains m vertices on the shape boundary, and V0
g contains

n − m interior vertices of the graph. V0
g can be easily rep-

resented as a linear combination of V0
p by using mean value

coordinates [5] computed for each polygon:

V0
g = MpV

0
p, (2)

where Mp is a matrix of mean value coordinates.

The transferring algorithm is relatively simple. For each

frame i, since each Bezier curve has its corresponding curve

in the first frame, we can easily get the boundary polygons

(i.e., Vi
p) through sampling the Bezier curves with the same

parameters t as in the first frame. Then we directly copy the

interior points and edge information from the 2D graph in

the first frame, and calculate the interior vertex positions

Vi
g using the same mean value coordinates Mp computed

in the first frame:

Vi
g = MpV

i
p. (3)

As a result, video object shape is represented as a se-

quence of 2D graphs {Vi,Ei}, i = 1, ..., N . These graphs

differ in positions, but have the same topology. Now the

user can deform the shape at any keyframe using the algo-

rithm in [22].

4.2. Handle Editing Propagation

During keyframe editing, the user selects some vertices

as deformation handles and drags them to new positions.

The updated positions of the handles will serve as posi-

tional constraints to drive the 2D shape deformation algo-

rithm. Therefore, a handle editing propagation algorithm is

necessary to smoothly propagate the handle editing result

from keyframes to the rest frames such that the 2D shape

at each frame can be deformed properly. In order to pre-

serve the temporal properties of the handle in the original

sequence of 2D graphs, we formulate the handle propaga-

tion as a least squares optimization problem as in [23].

Since a handle may contain multiple vertices, we define

a single local coordinate frame for each handle to force all

vertices inside this handle to move together rigidly, which

prevents severe distortion of the overall shape of the han-

dle. Formally, let us denote a user specified handle i at

frame k as Hk
i = {ck

i ,Fk
i , {vk

ij
|j = 0, ..., ni − 1}}, where

{vk
ij
|j = 0, ..., ni − 1} is the set of vertices inside this han-

dle, ck
i and columns of Fk

i define the center and axes of

the local coordinate frame. ck
i can be the centroid of the

vertices and the initial axes can be defined arbitrarily since

we only consider the rotation between the initial and altered

axes. Note that once a handle is specified at some keyframe

by the user, we can easily get a set of corresponding han-

dles in all frames by using the same indices of the vertices

inside the handle. The center of all the corresponding han-

dles ck
i , k = 1, ..., N forms a curve in temporal domain, and

a local coordinate axes Fk
i is associated with each center.

The temporal properties of the handle is defined as the

rotation invariant coordinate of each center in its neighbor-

ing local coordinate system. Precisely, for each center ck
i ,

we can compute its rotation invariant coordinate using the

following formula in the original animation:

ck
i − cl

i = Fl
id

k→l
i , l ∈ Nk, (4)

where Nk represents the index set of the immediate

neighbors of ck
i , |Nk| ≤ 2, and dk→l

i represents the so-

called rotation invariant coordinate of ck
i . It is obvious that

dk→l
i is the local coordinate of ck

i in its immediate neigh-

boring local coordinate frames.

During handle propagation, we try to preserve the dk→l
i

, since it represents the temporal properties computed from

the original video. Therefore, we formulate the following

Propagation result

Original trajectory

Figure 3. Handle editing propagation. The de-
formed shape and handle propagation result

are represented in solid lines, while the dash
lines represents the original shape and orig-
inal temporal trajectory of handle. Note the

frame axes (represented by arrow lines) are
associated with handles at each frame.

quadratic energy for handle propagation:

∑

k

∑

l∈Nk

‖ĉk
i − ĉl

i − F̂l
id

k→l
i ‖2 (5)

where ĉl
i represents the target position of the handle i at

frame l, and F̂l
i represents the target local coordinate frame

axes. Since dk→l
i remains the same value computed from

Equation (4), the target positions and local coordinate frame

axes solved from Equation (5) will have the same temporal

properties as those in the input 2D shape animation.

To make Equation (5) a linear least squares problem,

we simply interpolate corresponding handle rotations at

keyframes over the rest nodes on the temporal curve to

get the orientations of all the new local coordinate frames,

{F̂k
i }. Handle rotations are represented as unit quaternions,

and the logarithm of the quaternions are interpolated using

Hermite splines [13]. The user can optionally designate an

influence interval for a keyframe to have finer control over

the interpolation.

Once these new local frames are known, the equations

in (5) over all unconstrained handle centers give rise to an

overdetermined linear system and can be solved using least

squares minimization. The new world coordinates of the

vertices inside each handle at an intermediate frame can be

obtained by maintaining their original local coordinates in

the new local coordinate frame at that handle.

4.3. 2D Shape Deformation Using Dimen-
sion Reduction

Once the handle editing is propagated to all frames, we

are ready to independently deform the 2D shape at each

frame using the nonlinear shape deformation algorithm of

[22]. However, although the algorithm in [22] works well

in interactive keyframe editing, it may produce bad results

for the rest frames due to the abrupt change of handle posi-

tions in these rest frames. Inspired by the subspace method

in [8], we propose a dimension reduction technique by pro-

jecting the deformation energy onto the subspace formed by

the control points of the boundary Bezier curves. Perform-

ing energy minimization in this subspace greatly improves

the stability and convergence of the nonlinear deformation

process, and thus leads to much better deformation results.

In the following, we will first briefly describe the deforma-

tion energy, and then introduce how it can be represented as

a function of the control points of the Bezier curves only.

To facilitate discussion, we omit the frame index in the fol-

lowing equations.

The deformation energy in [22] can be written as:

‖LV−δ(V)‖2+‖MV‖2+‖HV−e(V)‖2+‖CV−U‖2,

(6)

where V is the point positions of the 2D graph, ‖LV −
δ(V)‖2 is the energy term for Laplacian coordinates preser-

vation, ‖MV‖2+‖HV−e(V)‖2 corresponds to local area

preservation, and ‖CV − U‖2 represents the position con-

straints from the handles. Please refer to [22] for details on

how to compute each term. Note that U contains the target

positions of the handles. In keyframe editing, U is changed

smoothly because the user moves the mouse continuously.

In the rest frames, U is computed from handle propagation

and may change abruptly.

The above energy can be simplified into the following

formula:

min
V

‖AV − b(V)‖2 (7)

where:

A =

L

M

H

C

,b(V) =

δ(V)
0

e(V)
U

.

V consists of two parts: Vp and Vg . Since Vp is sam-

pled from the Bezier curves according to Equation (1), it

can be represented as a linear combination of the control

points of the Bezier curves:

Vp = BP, (8)

where P is the control point postions and B is the parameter

matrix that maps P to Vp.

Recall that the interior points Vg are computed from Vp

using mean value coordinates (Equation (3)), we have:

Vg = MpVp = MpBP. (9)

Therefore, the point positions V can be represented as a

linear combination of the control points:

V =

(

Vp

Vg

)

=

(

B

MpB

)

P = WP. (10)

(a) Keyframe editing (b) propagation result

Our reduced sovler [Weng et al. 2006]

Figure 4. Comparison between the nonelin-

ear 2D shape deformation solver and our di-
mension reduced solver. (a) The deformed
shape at keyframe with the original shape

represented in dash lines. (b) propagation re-
sult at one frame. The nonlinear 2D shape
deformation in [22] causes serious distortion

at the mouth of teapot , while result from our
dimension reduced solver is natural.

Replacing V with WP in Equation (7), we get:

min
P

‖AWP − b(WP)‖2 (11)

This is a nonlinear least squares problem since b is a

nonlinear function dependent on the unknown control point

positions. It can be solved using the inexact iterative Gauss-

Newton method as described in [8]. Precisely, the inexact

Gauss-newton method converts the nonlinear least squares

problem in Equation (11) into a linear least squares problem

at each iteration step:

min
Pk+1

‖AWPk+1 − b(WPk)‖2, (12)

where Pk is the control point positions solved from the k-

th iteration and Pk+1 is the control point postions we want

to solve at iteration k + 1. Since b(WPk) is known at

the current iteration, Equation (12) can be solved through a

linear least squares system:

Pk+1 = (WT AT AW)−1WT AT b(WPk) = Gb(WPk).
(13)

Note that G = (WT AT AW)−1WT AT only depends

on the 2D graph before deformation and is fixed during de-

formation. It can be precomputed before deformation.

The model reduction we use in Equation (10) is based

on the matrices B and Mp. Both have nice properties: each

component of the matrices are positive and the sum of each

row of the matrices equals to one. Therefore, this dimension

reduction greatly reduces the nonlinearity of b according to

the analysis in [8]. Hence the stability of the inexact Gauss-

Newton solver is improved significantly.

Figure 4 shows a comparison between the nonlinear de-

formation solver in [22] and our improved solver. Due to the

(a) (b) (c)

Figure 5. Occlusion example. (a) The rest
shape. Lines indicates the polygons we

choose for this occlusion example. (b) The
editing result without inpainting. Black area
indicates the originally occluded region. (c)

The editing result with inpainted texture.

abrupt change of the handle position, the solver in [22] pro-

duces unnatural deformation results, while our solver gen-

erates satisfactory result. Please see the companion video

for an animation comparison.

5. Handling Video Object with Self-Occlusion

Video objects in real-life often have complex topology.

Self-occlusions frequently occur when one part of the ob-

ject occlude another, especially in articulated video objects.

Figure 5 illustrates a simple example. One leg of the charac-

ter is occluded by by his another leg. It makes the animation

of his legs difficult.

To enable editing of video objects with complex topol-

ogy, our system allows to model the shape of the video ob-

ject with multiple polygons. These polygons may occlude

each other. For each polygon, a depth value is assigned by

the user to determine its rendering order. With this setting,

the user is able to manipulate the meaningful parts of video

object after generating the interior graph for each polygon.

However, we still need to solve the following two problems.

First, once the polygons are deformed, some originally

occluded regions in the video object may become exposed.

However, there is no texture information for these regions

in the extracted foreground images. To solve this incom-

plete texture problem, we adopt existing video inpainting

technique [16] to automatically generate textures for these

occluded region. Figure 5(c) shows the inpainting result.

Note the occluded region of the right leg now is filled with

inpainted texture.

Figure 6. Editing of an elephant video object: from plane walking to stand walking. Top row:original

video object. Bottom row:editing result.

Video object Frames Bezier curves Graph vertices Solving time Keyframes Propagation time

Teapot 73 12 698 2.93ms 1 4.69s

Elephant 90 10 1269 4.93ms 7 10.04s

Walking man 61 14 658 2.577ms 6 3.32s

Flame 100 2 519 1.36ms 4 2.998s

Fish 100 5 365 1.44ms 10 3.241s

Table 1. Statistics and timings. Solving time means the time for each iteration. Keyframes indicates
the number of frames edited to achieve the result, and the propagation time means the time required

to propagate the keyframe editing to the entire sequence.

Secondly, the contour tracking algorithm may output un-

expected results when occlusions occur. Although there ex-

ist some tracking algorithms that can handle self-occlusions

[24], currently we simply decide the positions of the Bezier

curves in the occluded regions by interpolating the positions

from neighboring keyframes. If the simple interpolation

cannot generate satisfactory results, the user can manually

adjust the positions of the Bezier curves.

6. Experimental Results

We have implemented our system on a 3.7Ghz PC with

1GB of memory. An editing session of our system has two

stages: keyframe editing and deformation propagation. In

keyframe editing, our system runs in real-time due to the

high speed of our 2D shape deformation solver. In defor-

mation propagation, we propagate the handle editing results

from keyframes to the rest frames and then perform offline

computation to solve Equation (11) for every frame. The

statistics and timing of the two stages are listed in table 1

for the editing results presented in this paper. Please also

see the companion video for all deformation results.

Figure 7 demonstrates that our system is very easy to use.

In this editing example, the user only needs to set the first

frame as keyfame, deforms it into the desired shape, and

specifies the influence area of the keyframe to be the entire

sequence, our system will automatically generate a novel

teapot walking sequence (see the accompanying video for

the editing process).

Two more complicated results with self-occlusions are

shown in Figure 6 and Figure 8. In Figure 6, an elephant is

made stand-up. The large scale deformation in this example

is made possible by the power of our dimension reduced 2D

shape deformation solver. Figure 8 demonstrates that our

system is capable of editing complex motion, like human

walking. The input video object is a man walking on the

ground, and we make it walk upstairs.

The candle flame in Figure 9 exhibits highly nonrigid

motions. After editing, all subtle motions of the flame are

well preserved. This clearly demonstrates that our system

can preserve the temporal coherence of the video object in

the original video clip. In Figure 10, the motion of a swim-

ming fish video object is exaggerated to create motion mag-

nification like effect.

7. Conclusion and Future Work

We have presented a novel deformation system for video

objects. The system is designed to minimize the amount of

user interaction, while providing flexible and precise user

control. It has a keyframe-based user interface. The user

only needs to deform the video object into desired shape at

some keyframes. Our algorithm will smoothly propagate

the editing result from the keyframes to the rest frames and

automatically generate the new video object. The algorithm

can preserve the temporal coherence as well as the shape

features of the video objects in the original video clips.

Although our deformation system can generate some in-

teresting results, it is still immature and has several restric-

tions. First, the handle propagation algorithm requires the

2D shapes of video object to have the same topology, which

greatly restricts the motion complexity of the video object.

Our method will not work if the shape boundary of video

object experiences topology change in motion. Secondly,

the 2D handle editing result propagation algorithm does not

take the perspective projection effect into consideration, it

may cause undesirable deformation results.

References

[1] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz.

Keyframe-based tracking for rotoscoping and animation.

ACM Trans. Graphics, 23(3):584–591, 2004.
[2] M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-as-possible

shape interpolation. In SIGGRAPH 2000 Conference Pro-

ceedings, pages 157–164, 2000.
[3] W. A. Barrett and A. S. Cheney. Object-based image editing.

ACM Transactions on Graphics, 21:777–784, 2002.
[4] Y.-Y. Chuang, A. Agarwala, B. Curless, D. H. Salesin, and

R. Szeliski. Video matting of complex scenes. ACM Trans.

Graphics, 21(3):243–248, 2002.
[5] M. S. Floater. Mean value coordinates. Comp. Aided Geom.

Design, 20(1):19–27, 2003.
[6] M. Hoch and P. C. Litwinowicz. A semi-automatic system

for edge tracking with snakes. International Journal of Com-

puter Vision, 1(4):321–331, 1996.
[7] A. Hornung, E. Dekkers, and L. Kobbelt. Character anima-

tion from 2d pictures and 3d motion data. ACM Transactions

on Graphics, 26:1–9, 2007.
[8] J. Huang, X. Shi, X. Liu, K. Zhou, L. Wei, S. Teng, H. Bao,

B. Guo, and H.-Y. Shum. Subspace gradient domain defor-

mation. ACM Trans. Graphics, 25(3):1126–1134, 2006.
[9] T. Igarashi, T. Moscovich, and J. F. Hughes. As-rigid-

as-possible shape manipulation. ACM Trans. Graphics,

24(3):1134–1141, 2005.
[10] N. Joshi, W. Matusik, and S. Avidan. Natural video matting

using camera arrays. ACM Trans. Graphics, 25(3):779–786,

2006.

[11] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active

contor models. International Journal of Computer Vision,

1(4):321–331, 1987.

[12] S. Kircher and M. Garland. Editing arbitraily deforming sur-

face animations. ACM Trans. Graphics, 25(3):1098–1107,

2006.

[13] D. H. U. Kochanek and R. H. Bartels. Interpolating splines

with local tension, continuity, and bias control. In SIG-

GRAPH 1984 Conference Proceedings, pages 33–41, 1984.

[14] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and paste.

ACM Trans. Graphics, 24(3):595–600, 2005.

[15] C. Liu, A. Torralba, W. T. Freeman, F. Durand, and E. H.

Adelso. Motion magnification. ACM Transactions on

Graphics, 24(3):321–331, 2005.

[16] K. A. Patwardhan, G. Sapiro, and M. Bertalmio. Video in-

painting of occluding and occluded objects. In Proceed-

ings of IEEE International conference on Image Processing,

pages 69–72, 2005.

[17] S. Schaefer, T. McPhail, and J. Warren. Image deformation

using moving least squares. ACM Trans. Graph., 25(3):533–

540, 2006.

[18] A. R. Smith and J. F. Blinn. Blue screen matting. In

SIGGRAPH 1996 Conference Proceedings, pages 259–268,

1996.

[19] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F.

Cohen. Interactive video cutout. ACM Trans. Graphics,

24(3):585–594, 2005.

[20] J. Wang, S. Drucker, M. Agrawala, and M. F. Cohen. The

cartoon animation filter. ACM Trans. Graphics, 25(3):1169–

1173, 2006.

[21] J. Wang, Y. Xu, H.-Y. Shum, and M. F. Cohen. Video toon-

ing. ACM Trans. Graphics, 23(3):574–583, 2004.

[22] Y. Weng, W. Xu, Y. Wu, K. Zhou, and B. Guo. 2d shape

deformation using nonlinear least squares optimization. The

Visual Computer, 22(9-11):653–660, 2006.

[23] W. Xu, K. Zhou, Y. Yu, Q. Tan, Q. Peng, and B. Guo. Gra-

dient domain editing of deforming mesh sequence. In SIG-

GRAPH 2007 Conference Proceedings, to appear.

[24] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-

vey. 38(4):1–45, 2006.

(a) (b)

Figure 7. Editing of teapot. (a) Keyframe editing. Left is the rest shape. (b) Propagation result. Only

one keyframe is edited in this result.

(a) (b)

Figure 8. Walking editing. (a) 2 frames in original video. (b) The editing result.

Figure 9. Editing of a flame video object.
Top row: Original video object. Bottom
row: Editing result.

Figure 10. Editing of a fish video object.
Top row: Original video object. Bottom
row: Editing result.

