
Chen X, Xu WW, Yeung SK et al. View-aware image object compositing and synthesis from multiple sources. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 31(3): 463–478 May 2016. DOI 10.1007/s11390-016-1640-8

View-Aware Image Object Compositing and Synthesis from Multiple

Sources

Xiang Chen 1, Member, ACM, Wei-Wei Xu 1, Member, IEEE, Sai-Kit Yeung 2, Member, IEEE, and
Kun Zhou 1,∗, Fellow, IEEE

1State Key Laboratory of Computer Aided Design and Computer Graphics, Zhejiang University

Hangzhou 310058, China
2Vision, Graphics and Computational Design Group, Singapore University of Technology and Design

Singapore 487372, Singapore

E-mail: {xchen.cs, weiwei.xu.g}@gmail.com; saikit@sutd.edu.sg; kunzhou@acm.org

Received November 28, 2015; revised March 7, 2016.

Abstract Image compositing is widely used to combine visual elements from separate source images into a single image.

Although recent image compositing techniques are capable of achieving smooth blending of the visual elements from different

sources, most of them implicitly assume the source images are taken in the same viewpoint. In this paper, we present an

approach to compositing novel image objects from multiple source images which have different viewpoints. Our key idea

is to construct 3D proxies for meaningful components of the source image objects, and use these 3D component proxies to

warp and seamlessly merge components together in the same viewpoint. To realize this idea, we introduce a coordinate-

frame based single-view camera calibration algorithm to handle general types of image objects, a structure-aware cuboid

optimization algorithm to get the cuboid proxies for image object components with correct structure relationship, and

finally a 3D-proxy transformation guided image warping algorithm to stitch object components. We further describe a novel

application based on this compositing approach to automatically synthesize a large number of image objects from a set of

exemplars. Experimental results show that our compositing approach can be applied to a variety of image objects, such

as chairs, cups, lamps, and robots, and the synthesis application can create novel image objects with significant shape and

style variations from a small set of exemplars.

Keywords image cloning, 3D proxy, probabilistic modeling, data-driven method

1 Introduction

Image compositing is a useful operation and an im-

portant topic in computer graphics. The fundamen-

tal goal is to create a new image by putting together

imaging contents from different sources. In most of the

situations, the processing units are the image objects

and the research focus is on how to blend them seam-

lessly onto a new background image. A well-known

example technique is the gradient domain compositing

introduced in Poisson Image Editing[1] which attracted

significant research attention in the last decade[2-5] and

is now the standard for seamless image compositing.

Another popular research direction is image collage

in which the focus is on selecting and arranging mul-

tiple visual elements from separate source images, and

combining them into a single image[6-11]. To achieve vi-

sually pleasing results, all the studies above assume the

chosen objects have the same or very similar viewpoints

to the compositing background.

In this paper, we would like to take one step further

into a lower level operation to perform components-

based compositing. We introduce view-aware image

object compositing, a new approach to compositing

novel image objects from multiple-source images which

have different viewpoints. The main technical challenge
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is that the collected images lack 3D information re-

quired in both the component structure analysis and

the stitching of components in different viewpoints into

a new image object in a novel viewpoint. The prob-

lem becomes particularly severe when the images are

from different sources (e.g., downloaded from Internet)

and taken in various viewpoints. To this end, we pro-

pose a new coordinate-system based single-view camera

calibration algorithm that is more suitable for general

image objects that have limited geometric clues. With

the estimated camera parameters, we then compute

the cuboid proxies for image object components with

the correct structure relationship via a structure-aware

cuboid optimization algorithm. Finally, we stitch the

components by a 3D-proxy transformation guided im-

age warping algorithm to obtain the final object com-

posite.

Based on our view-aware image object compositing,

we further propose a novel image object synthesis appli-

cation that can automatically synthesize a large num-

ber of image objects from a small given set of exemplar

images. Like in 3D shape synthesis[12-13], we generate

new image objects by combining components of a set

of input images, and emphasize the importance of the

correct relationship between components in the synthe-

sis. We propose an analysis-and-synthesis approach to

solve the problem. In the analysis stage, we construct

a Bayesian graphical model to encode shape styles,

camera parameters, structural relationships and com-

plex dependencies among components. In the synthe-

sis stage, we sample the graphical model to obtain the

viewpoint and component set information, and merge

the components seamlessly to produce new image ob-

jects.

In summary, we present a component-level view-

ware approach to image object compositing, and make

the following technical contributions:

• A structure-aware cuboid optimization algorithm

to generate the cuboid proxies for image object compo-

nents with correct structure relationship;

• A 3D-proxy transformation guided image warping

algorithm to stitch object components from different

images into a new image object. The correspondence

information required in the 2D affine transformation is

automatically derived from the 3D proxy transforma-

tion;

• A novel image object synthesis application to au-

tomatically synthesize a large number of image objects

from a set of exemplars;

• A Bayesian graphical model which integrates

the structural relationships and viewpoint information.

This provides a convenient way to control the viewpoint

variations in the synthesis.

We have created a consistently labeled image

dataset with a variety of image objects, such as chairs,

cups, lamps, toy planes and robots, and tested our com-

posting and synthesis techniques on the dataset. Ex-

perimental results show that with a reasonable amount

of interactive analysis work of image objects, our ap-

proach can composite and synthesize a large amount of

man-made image objects with a variety of shapes and

appearances (as illustrated in Fig.1).

2 Related Work

Image Compositing and Synthesis. The main goal

of both image compositing and synthesis is to cre-

ate a visually pleasing image from multiple-source im-

(a) (b)

Fig.1. (b) Creative image objects varying in viewpoints, structures and appearances synthesized from (a) a set of exemplars.



Xiang Chen et al.: View-Aware Image Object Compositing and Synthesis 465

ages. For image compositing, the focus is usually on

new blending approaches to creating a seamless com-

position of selected contents. Earlier studies include

multi-resolution spline technique[14-15] and composit-

ing operators[16]. Since the introduction of Poisson Im-

age Editing[1], gradient domain compositing[2-5] has be-

come the standard for seamless image compositing in

the last decade. More recently, Xue et al.[17] improved

the visual realism of the composites by adjusting the

appearance of the compositing objects.

Image synthesis[18-20] on the other hand usually fo-

cuses more on the selection and arrangement of con-

tents. A representative line of work is the image col-

lage in which multiple images are composited together

under certain constraints to form a single image. It

is pioneered by the interactive digital photomontage[6]

and then various methods have been proposed, such

as digital tapestry[7], autocollage[8], picture collage[9],

Sketch2Photo[10], Photosketcher[11], cross-depiction[21],

Arcimboldo-like[22] collage and the most recent circle

packing collage[23].

Most image compositing and synthesis algorithms

mentioned above implicitly assume the compositing

contents have the same viewpoints with the source im-

age, e.g., structured image hybrids[24], and do not han-

dle the camera parameters. In photo clip art[24], the

authors attempted to infer the camera pose from ob-

ject heights. Their method, however, does not handle

actual 3D relationships which prohibit operations in-

volving perspective changes such as out-of-plane rota-

tion (see Fig.2 for direct compositing without the con-

sideration of viewpoints). Carroll et al.[25] presented a

set of user interfaces to add perspective constraints like

vanishing points and optimized them for image manipu-

lation. This technology can interactively warp image

contents and be applied for scene-level image composit-

ing. Zheng et al.[26] explicitly optimized the camera

and geometry parameters by representing image objects

as 3D cuboid proxies. Our work also employs the 3D

proxies representation, but in a more challenging setup

that involves spatial structures of multiple components

within non-cuboid objects. Recently, Chen et al.[27] uti-

lized generalized cylinder to represent components in an

image and enable interactive editing on the image. In

contrast, our work focuses on compositing and synthe-

sis of image object components from multiple sources

in the same category. Miao et al.[28] presented a system

for generating 3D symmetric freeform shapes from 2D

sketches.

(a)

(b) (c)

Fig.2. Direct compositing without the consideration of view-
points could lead to unrealistic results. (a) Source images. (b)
Direct compositing. (c) View-aware compositing.

Data-Driven 3D Model Synthesis. One particular

application of our compositing technique is image ob-

ject synthesis from a set of exemplar images, which

can also be considered as the 2D counterpart of data-

driven 3D modeling pioneered by Funkhouser et al.[29]

Their modeling by example system allows users to

search a database of segmented 3D parts and assem-

ble new shapes interactively with the retrieved com-

ponents. Follow-up studies take user sketch for com-

ponents retrieval[30-32] or let users interchange parts

from a small set of compatible shapes[33]. More recently,

Chaudhuri and KoHun[34] proposed a data-driven ap-

proach to suggest suitable components for incomplete

shapes and develop a probabilistic representation of

shape structure that provides more semantically and

stylistically compatible suggestions[35]. Their proba-

bilistic reasoning approach is further extended for syn-

thesizing complete shapes[12]. Our image object syn-

thesis application adopts a similar probabilistic model,

but on the relationships of object components in image

space.

3 View-Aware Image Object Compositing

Our image compositing approach takes a repository

of images of a particular object as the input, analyzes

their structures and extracts the corresponding cam-

era parameters semi-automatically. We fit a set of 3D

cuboid proxies according to the underlying structure

and build a graph to represent the image object. The
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image components are stitched together into a complete

object with correct perspective under the guidance of

3D proxies.

As shown in Fig.3, our approach consists of two

main stages.

3D Cuboid Proxy Construction. We first estimate

camera parameters of images by single-view calibra-

tion methods and then construct 3D cuboid proxies of

each segmented component based on non-local relation-

ships (e.g., reflectional symmetries) to handle perspec-

tive effects. Then we propose a graphical representation

to store the estimated 3D cuboid proxies and contact

points between components. We also store the esti-

mated camera parameters in the graph for each image

object.

Proxy-Guided Component Compositing. After con-

structing the structure-aware 3D proxies for all the

components, we can construct new image objects by

stitching the components using 3D proxies and contact

points information extracted in the first stage. We also

optimize colors harmony for the components by leve-

raging color theme compatibility scores and the color

palettes computed from the input images or training

dataset.

Before going into the algorithmic details, we would

like to describe the graph representation of the image

objects. The representation is useful for final composit-

ing and the later image object synthesis application

(Section 4).

Input Images 3D Cuboid Proxies
3D Translation and Scaling

Warping and Conjoining
2D Image Components

1) 2D Affine Warping

Composited Image Object
Before Color Optimization

Final Composite After
Color Optimization

2) 2D Contact Points
    Translation

Composited Image Object

After 3D Conjoining

Conjoining 3D Proxies

(a) (b)

Fig.3. Overview of our view-aware image object compositing approach. (a) 3D cuboid proxy construction. (b) Proxy-guided component
compositing.

3.1 Image Object Representation

Given an image taken by a camera or downloaded

from Internet, we segment the object using Lazy

Snapping[36] and label each component of the object

using LabelMe Toolbox[37]. With the labeled segments,

we can then model the structure information of the im-

age object as the connection relationship between the

semantic components of the object. It is done by stor-

ing the image pixels, silhouette and connections of each

component in a graph. For example, a typical chair has

components like seat, back, arms and legs. It can be

represented by a graph G = {V , E}, where each compo-

nent Ci is a node in V . Whenever two nodes Ci and

Cj are connected in the image, edge eij is stored in E .

Each node Ci is in fact a tuple Ci = {Xi, Si,mc, Pi},

where Xi indicates the set of pixels that belongs to the

component and Si is its silhouette in the image. mc

indicates the major color extracted from the compo-

nent pixels by k-means, where k = 2. Pi denotes its

3D cuboid proxy which will be described shortly. For

those components under occlusions, we adopt the im-

age completion algorithm in [38] to fill textures in the

occluded areas. Fig.4 shows the graph representation

of a chair. For any two contact components, a set of

sampling points is stored at the corresponding edge.

Seat

Handle 2

Handle 1

Front-Leg 1

Back-Leg 1

Back-Leg 2

Back

Front-Leg 2

Fig.4. Graph representation of image object.

3.2 3D Cuboid Proxy Construction

While compositing a new image object in a par-

ticular viewpoint, our approach frequently leverages



Xiang Chen et al.: View-Aware Image Object Compositing and Synthesis 467

components from different viewpoints of the source im-

ages to form the new object. To realize this opera-

tion, we need the assistance of certain level of 3D infor-

mation to achieve the effect of viewpoint transforma-

tion. Therefore, our approach estimates a 3D cuboid

proxy for each component as its rough 3D information,

which is a popular choice in recent geometric layout

analysis of images[26]. In this subsection, we describe

a new single-view camera calibration algorithm and a

structure-aware proxy optimization algorithm to form

the correct relationships between cuboid proxies.

Coordinate-Frame Based Camera Calibration. Our

single-view camera calibration algorithm takes one 2D

point and three 2D vectors as the projections of coor-

dinate system origin and its three coordinate axes as

the input. Compared with other camera calibration

methods for single-view image, our method reduces the

requirements of geometry information, e.g., three pairs

of vanishing lines points in [39-40], or a number of cor-

ner points of geometric primitives in [26, 41-42]. Thus,

it is more suitable for general image objects that have

limited geometric clues. Note that most of man-made

objects are up-right, which indicates a nearly vertical z

axis. Meanwhile, parallel lines for one vanishing point

can usually be found due to the symmetry in objects.

Therefore, there is usually only one axis needed to be

tuned subtly (e.g., y axis in Fig.5(a)). In case parallel

lines are not present, users can interactively specify the

2D vectors as coordinate axes by trial-and-error in a

short time.

The camera projection matrix is defined as:

M3×4 = K[R|t], where K is the camera intrinsic

matrix (we assume the principle point is at the im-

age center and focus f is the only unknown variable).

R ∈ SO(3) and t ∈ R
3 represent the camera orien-

tation and position respectively. The seven unknown

parameters in K, R, t are solved using non-linear op-

timization (see Appendix). The orientation matrix is

initialized by interactively aligning a front-view box to

the image object. Our algorithm then computes the ini-

tial orientation matrix using its corner point projection

information.

Structure-Aware 3D Proxy Fitting. With the es-

timated camera projection matrix M , we can initia-

lize axis-aligned cuboids using line grouping as in [26],

where the silhouette of each component is approxi-

mated by a hexagon and the six hexagon edges are

grouped according to vanishing point to form the axis-

aligned cuboids. However, these independently esti-

mated axis-aligned cuboids disperse in the 3D space

without any structures. We thus optimize them to re-

build the structural relationships among those compo-

nents (e.g., contact, symmetry). The energy function

is as follows:

E(P1, P2, ..., PN ) = ωfEfitting + ωuEunary + ωpEpair.

The first term Efitting penalizes the deviation from

initial cuboids, which is computed by accumulating the

2D distances between the projected corner-points of the

initial and the optimized proxies:

Efitting =

N
∑

i

∑

k

∥

∥Mvk −Mvk
∥

∥

2
,

where N is the number of components, vk and vk are

the corner points of the optimized cuboids Pi and the

initial cuboids P̄i respectively. Normalized homoge-

neous coordinates are used in the computation.

The unary term Eunary penalizes the deviation from

the structural constraints defined on a single proxy.

We mainly design two types of structural constraints

{GlobReflection,OnGround} for this term to main-

tain the correct relationship between components and

the calibrated 3D coordinate system. GlobReflection

(a) (b) (c) (d)

y
x

z

Fig.5. Based on (a) the coordinate-frame based camera calibration and (b) the initial object-on-ground fitting proxies, a structural
optimization is carried out to build (d) the semantic structures of the chair, e.g., chair seat is on top of chair legs. We also show (c)
the same 3D proxies in a rotated view.
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indicates that the cuboid should be of reflectional sym-

metry with respect to a global coordinate plane. For

instance, the chair back should be symmetric with re-

spect to the yz plane as shown in Fig.5(a). OnGround

indicates the cuboid should be on the ground plane,

which is usually the xy plane in our coordinate system

setup. We define the term as:

Eunary =
∑

i∈Ru

dist(ci, yz)
2 +

∑

i∈Gu

4
∑

k=1

dist(vki , xy)
2,

where Ru is the set of cuboids with GlobReflection

constraints and Gu is the set of cuboids with OnGround

constraints. dist is a function to compute point-to-

plane distance, ci is the center of cuboid proxy Pi and

vki is the corner point of the cuboid plane with mini-

mum z value.

The pairwise term Epair penalizes the deviation

from the structural constraints between two cuboids.

Three types of constraints {Symmetry,On, Side} are

imposed to a pair of cuboids in the optimization, where

Symmetry requires the cuboids to be of reflectional

symmetry with respect to a coordinate plane, while On

and Side represent one cuboid should be on and beside

another cuboid respectively. For example, the chair

base should rest on the chair legs. The term is com-

puted as:

Epair =
∑

(i,j)∈Rp

‖rf(ci, p)− cj‖
2 +

∑

(i,j)∈Op

dist(bci, tpj)
2 +

∑

(i,j)∈Sp

dist(sci, spj)
2, (1)

where Rp is the set of pairwise reflection Symmetry

constraints, Op the set of On constraints, and Sp the

set of Side constraints. rf is a function to reflect a point

with respect to plane p. The first term in (1) maintains

the reflection symmetry constraint by requiring the re-

flected cuboid center to coincide with the symmetric

cuboid center. The last two terms actually penalize the

distance between the plane center of one cuboid and

the top or side plane of the other cuboid to maintain

the On or Side constraints. bci indicates the bottom

plane center of Pi and tpj the top plane of Pj . Simi-

larly, sci indicates the side plane center of Pi and spj
the side plane of Pj . Note that for axis aligned cuboids,

the point to coordinate plane distance is just one coor-

dinate component, which simplifies the equations a lot.

As the cuboids remain axis-aligned in the fitting,

we only need to optimize six parameters, the scales

and center position, for each cuboid. The vertex po-

sition involved in the energy function, such as corner

points and plane center, can be easily derived through

these six parameters. We minimize the total energy us-

ing Levenberg-Marquardt method. In practice, we set

ωf = 0.03, ωu = 10 and ωp = 3.

Note that the structural constraints are only spe-

cified once for each image object category accord-

ing to the component type information. For ex-

ample, a typical pairwise constraint is defined as

(On, Seat, Frontleg) for the chair category, and the fit-

ting procedure can automatically impose this constraint

between seat and front-leg components when handling

a new chair image object.

3.3 Proxy-Guided Component Compositing

After we estimate the camera parameters and fit the

3D cuboid proxies, we can conjoin the selected compo-

nents together into a single object. We will first trans-

late and scale each 3D proxy in 3D space. Then we will

perform 2D image warping based on the transformed

proxies.

Component Conjoining. We use the concept “slot”

([12, 43]) to conjoin the image components (Fig.6(a)).

After the structure-aware 3D proxies construction, slot-

pairs between 3D proxies of connected components are

established. Each slot belongs to a host component.

The slot defines: 1) to which component (label) the host

component can connect; 2) the contact points where

two components attach; 3) the size of the component

connecting to the host.

(a) (b) (c) (d)

Fig.6. Key tokens for the compositing process. (a) 3D proxies
(yellow cuboid) and slots (red cuboid). Each slot contains one
3D contact point. (b) 2D segmentation for the image compo-
nents. (c) 2D reference points along the segmentation boundary
for image warping. (d) 2D contact points for conjoining the
image components.



Xiang Chen et al.: View-Aware Image Object Compositing and Synthesis 469

To conjoin the proxies, we need 3D contact points.

Each slot will have one 3D contact point (Fig.6(a)). We

adopt the following strategies for 3D contact point com-

putation: if two proxies have intersection, the contact

point is the center of the intersection part; otherwise,

we find the face on a smaller proxy that is closest to the

bigger one, and use the center of this face as the con-

tact point. Each contact point is separately stored into

corresponding slots of the two connected 3D proxies.

The last step is to conjoin the image components by

2D warping. The warping function for each component

is represented by a 2D affine transformation that is esti-

mated from a pair of 2D point sets. The reference points

are obtained from the segmentation of the 2D compo-

nents, as shown in Figs.6(b) and 6(c). Finally we apply

the warping function to the 2D contact points for each

slot. Notice that each slot can have multiple 2D contact

points in contrast to a single 3D contact point. Fig.6(d)

shows the contact points in their respective slots.

The detailed processes are as follows.

1) Conjoining 3D Proxies. We conjoin 3D proxies

by optimizing the position and size of each suggested

proxy Pi constrained by its contacting proxies. Let ci,

li and pki be the center, the size and the contact point

of slot k of Pi respectively. We want to transform Pi

and hence its contact point pki by a 3D rigid transfor-

mation, i.e., Ti × pki = Λi × (pki − ci) + ci + ti, where

Λi = diag(si), si and ti are the scale and the transla-

tion components respectively. In addition, the trans-

formation applied on Pi is constrained by the size and

position of its connecting proxies. Let llki be the size

of the proxy connecting to slot k of Pi in the original

image. The contact energy term can hence be defined

as:

Ec =
∑

(i,j)∈M

(

‖Ti × pmi

i − Tj × p
mj

j ‖2 +

‖Λi × li − Λj × ll
mj

j ‖2 +

‖Λi × llmi

i − Λj × lj‖
2
)

,

where M is the set of proxy-pairs with matched slots,

and mi and mj are the indices of the matched slots

in their host proxies respectively. This term brings

together pairs of contact points and makes connected

proxies have compatible sizes. We also add two shape

preserving terms, the scaling energy term Es and the

translation energy term Et, to avoid large proxy defor-

mation as in [43]:

Es =
∑

i

‖si − [1, 1, 1]T‖2, Et =
∑

i

‖ti‖
2.

Our goal is to find the optimal transformation T
∗
i for

each proxy Pi by minimizing the follow function:

T
∗
i = argmin

Ti

ωcEc + ωsEs + ωtEt. (2)

In practice, we set ωc = 1, ωs = 0.5 and ωt = 0.1. Fig.3

shows the results of the 3D proxy conjoining optimiza-

tion. Note that symmetries are automatically ensured

by our slot definition.

2) Warping and Conjoining 2D Image Components.

After we conjoin the 3D proxies, we can warp and con-

join the underneath image components to obtain the

complete image object. When we construct the 3D

proxies from the images, we compute a set of ni 2D

reference points {âi,r |r = 1, 2, . . . , ni} by uniformly

sampling along the segmented image boundary of each

proxy Pi. We also project {âi,r} to visible faces of the

proxies to get the 3D reference points and discard any

points outside the 2D projection boundary of the proxy.

We set ni = 200 for all our experiments.

In order to obtain an image warping that faithfully

resembles the visual effect from the 3D proxies trans-

formation, we need a set of 2D target points {b̂i,r} that

comprise the information from (2). It is simply done by

transforming the 3D reference points using the transfor-

mation from (2) to obtain the 3D target points and then

re-projecting them back to the 2D space with the cam-

era setting of the image containing the base component,

where the base component is usually the component of

the largest size of an image object category (e.g., the

seat component of chair image objects).

Given a limited view change of the 3D proxies, we

adopt a 2D affine transformation (Ai) for the image

warping. The optimal affine transformation matrix

A∗
i is solved by minimizing the distance between the

warped reference points and the target points:

A
∗
i = argmin

Ai

∑

r

‖Ai × âi,r − b̂i,r‖
2.

A∗
i is essentially the 2D counterpart of T ∗

i . The warped

image components are ready for final conjoining. Fig.3

shows the image warping results.

To conjoin the warped 2D image components, for

each slot k in each component i, we define a set of nk
i 2D

contact points {p̂ki,r |r = 1, 2, . . . , nk
i } and warp them

by A∗
i . Then we adopt breadth-first search (BFS) pro-

cedure to translate the image components. The largest

component is pushed into a queue as base component.

Each time when a component is popped from the queue,

the un-accessed components connected to it are trans-

lated by the 2D contact points in slots, and are pushed
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into the queue accordingly. The procedure ends when

all components are already accessed. In each transla-

tion step, say, component i is translated towards com-

ponent j via their matched slots mi and mj, the center

of {p̂mi

i,r } and the center of {p̂
mj

j,r } are matched first, and

then points {p̂mi

i,r } that lay outside component j’s seg-

mentation boundary are iteratively translated to their

closest points on the boundary. Although there may

be cycles in component connection graph, we find that

the above greedy strategy works well in practice. Fig.3

shows results of 2D conjoining.

Color Optimization. The image components for

compositing are chosen without the consideration of

color. Though it is subjective to some extent, very

likely the composited objects consist of “unmatchable”

or “uncomfortable” colors. We do color optimization

by leveraging both the color compatibility model[44] (as

prior) and the data-driven palettes (as examples). In

a preprocessing stage, we first extract a 5-color theme

using k -means from each image in a dataset, and then

we do k -means again on colors from all these 5-color

themes to generate a 40-color palette. In the compo-

sited image, the major color of the largest component

is selected, and its hue is assigned to the data-driven

palette with variation σ to generate a new palette (see

Fig.7). We adopt a similar color optimization proce-

dure as in [45] to choose a set of colors with maximum

compatibility score from the new palette. Each image

component is then assigned with its optimal color by

color transfer method.

Change Hue

40-Color Palette 

from Training Data

Color Optimization

Fig.7. We generate a new color palette by assigning the major
hue from the seat to the data-driven palette. We then optimize
the color using the similar optimization procedure as in [45] to
obtain our final result.

4 Image Object Synthesis

Our view-aware image object compositing technique

creates new research possibilities. One particular ap-

plication we propose here is image object synthesis (see

Fig.8). Structure-ware 3D shape synthesis recently at-

tracts much research attention in the computer graph-

ics community. Similarly, we would like to generate

new image objects by combining components from an

input images dataset. Compared with 3D shape synthe-

sis, image object synthesis has a unique research value

for several reasons. First, unlike 3D shapes which often

require expensive scanning devices to acquire or sophis-

ticated techniques to model, image dataset is much eas-

ier to acquire with digital cameras nowadays. There are

also huge resources of images from Internet, which can

be quickly accessed via search engines. This implies

Dataset

Image Components

3D Cuboid Proxy Construction

3D Proxies

Bayesian Graphical 

Model Training

R

S

V

N

C D
L

Probabilistic Graphical Model

Proxy-Guided Component Compositing

Suggested

Components

Proxy Size,

Camera

Parameter,

...

...

Fig.8. Overview of our image object synthesis approach. L: component category.
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that we can get a wider variety of real-world objects

with images. Second, objects synthesized from images

contain abundant color or appearance information in-

herited from the source images, which is deficient in

existing 3D shape synthesis. Such information could

be very important to creative object design and may

greatly affect the perception of designers. Finally, the

synthesized image objects can inspire shape design or

be regarded as the guidance of 3D modeling, and with

the recent photo-based 3D modeling technique[46], one

can generate 3D shapes conforming to the synthesized

image objects.

4.1 Bayesian Graphical Model Training

Given a small image dataset of a specific type of ob-

ject, the goal of Bayesian graphical model training is to

build its probabilistic generative model so that we can

sample this model to create new image objects. Simi-

lar to [12], hidden variables are used to represent the

overall object structure and component styles, while ob-

served variables are used to represent the geometric de-

scriptors for each component and their adjacency. The

key difference is that we introduce an observed variable

to account for the viewpoint information from different

images. The overall structure of the graphical model is

shown in Fig.8. We start by introducing notations for

the set of random variables used in the graphical model

and briefly describe the training algorithm.

Notation. The random variables used in the graphi-

cal model are listed in Table 1. The observed variable

V represents the viewpoint parameters. To ease the

learning algorithm, the viewpoint parameters, i.e., the

estimated seven parameters in single view camera cali-

bration computed in 3D proxy construction, are first

clustered using mean shift algorithm by setting the ra-

dius to be 0.2. V takes integer value to indicate the

cluster index. The geometry feature vector Cl of a

component category l includes the size of its 3D proxy

and one feature vector to represent the point distribu-

tion model (PDM) of its 2D silhouettes[47], where 4∼6

key points are consistently labeled on the component

silhouettes. Mathematically, in PDM, a new 2D poly-

gon shape Y is defined as Y = Ȳ +Ab, where Ȳ is the

mean shape and b is the vector of weights for each prin-

cipal component in basis A PCA obtained. To account

for viewpoint change, we compute the principal com-

ponents for each viewpoint cluster and arrange them

in an order consistent to the cluster index. b is orga-

nized accordingly to create a feature vector with same

dimension.

Table 1. Notation of Random Variables

Used in the Bayesian Graphical Model

Notation Domain Interpretation
R R ∈ Z+ Structure/shape style, latent

variable
V V ∈ Z+ View point, observed variable
S = {Sl} Sl ∈ N0 Component style, 0 means no

component in the category l,
latent variable

N = {Nl} Nl ∈ N0 Number of components from
category l, observed variable

C = {Cl} Cl ∈ {Rdiml} Continuous geometry feature
vector of the component, ob-
served variable

D = {Dl} Dl ∈ {ZL} Discrete vectors, encode the
number of components from
each category connected to
components from category l,
observed variable

The latent variables R and S are learned from the

training data, while the others are observed directly.

The joint probability distribution is factorized as con-

ditional probability distributions (CPDs) product:

P (X) = P (R)P (V )
∏

l∈L

(

P (Nl|R)P (Sl|R, V )

P (Cl|Sl)P (Dl|Sl)
)

.

Note that the lateral edges used in the model of Kal-

ogerakis et al.[12] are not involved here. We do this sim-

plification since it makes the factorization more com-

pact and increases the variations of synthesis results.

Training. After the preprocessing stage, a set of

feature vectors O = {O1,O2, . . . ,OK}, where OK =

{VK , NK , CK , DK}, is extracted from K segmented im-

ages as the training data. To learn the graph structure

(domain sizes of latent variables) and all the CPDs pa-

rameters of the model, we maximize the following maxi-

mum likelihood function:

J = lnP (O|G) ≃ lnP (O|G, θ̃G)−
1

2
mθ lnK,

where the Bayesian Information Criterion score[48] is

used to select the graph structure G (domain sizes) that

best describes the training data. Here, θ̃G is the maxi-

mum a posteriori (MAP) estimation of parameters for a

given G, mθ is the number of independent parameters

in the network, and K is the data size. For a parti-

cular structure of G, we use expectation-maximization

(EM) algorithm to estimate θ̃G with the following MAP

function:

θ̃G = argmax
θ

P (O|G, θ)P (θ|G),

where P (θ|G) is the prior distribution of parameter θ

of graphical model.
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We perform greedy search to find the structure G

with maximum J value by increasing the domain sizes,

i.e., the number of discrete values for latent variables R

and S. For more details on the EM algorithm, please

refer to Appendix.

4.2 Synthesis

Our image object synthesis is divided into three

steps. First, we will determine the set of components

to be used for synthesis. Second, we will conjoin the

suggested components into a single object. Third, we

will optimize the color of the synthesized objects. The

latter two steps are achieved by using our image object

compositing method proposed in Section 3.

Component Set Synthesizing. Mathematically, dif-

ferent sets of components can be seen as distinct sam-

ples of the probabilistic model. As the lateral edges

are not involved, we simply adopt a depth-first search

(DFS) procedure to explore the shape space of image

objects. Starting from root variable R, each random

variable in the searching path is partially assigned with

its possible values accordingly. Similar to the deter-

ministic method of Kalogerakis et al.[12], we prune the

searching branches with assignments probability lower

than a threshold (10−10 in our implementation). To en-

sure the searching feasibility, the continuous variables

Cl are only assigned with values corresponding to ex-

isting components from training data. In valid samples

found by the searching procedure, the assignments to

variables Cl determine the set of components used for

synthesis.

5 Experimental Results

We tested the described compositing technique and

synthesis application on five different types of image

objects: chair, cup, lamp, robot and toy plane. We

collected around 150 images from Internet, and each

of them was segmented and analyzed as described in

Subsection 3.1 for compositing and synthesizing new

image objects. The details of the datasets are given

in Table 2. In total, we synthesized more than 1 000

new image objects and the majority results are shown

in Figs.9∼12 (see Appendix for more results in high-

resolution). Fig.13 shows two histograms regarding

some statistics of the results. The first one is the num-

ber of components used per synthesized image object

and the second one is the number of source images

which contribute components per synthesized image ob-

ject. From the histograms, we can see that most of the

synthesized shapes contain 3∼6 components and most

of the shapes are synthesized from 2∼4 source images.

Table 2. Datasets Used in Image Object Synthesis Experiments

Chair Cup Lamp Robot Toy Plane

Number of training data 042 22 30 023 15

Number of categories 006 03 04 005 04

Number of components 243 44 90 130 63

In Fig.2, we compared the compositing results gene-

rated without and with consideration of viewpoint for

chair models. The composited chair consists of six com-

ponents coming from four source images (Fig.2(a)). Di-

rectly stitching these components together without our

(a) (b)

Fig.9. Chair. (a) 42 input chair images. (b) 259 synthesized chairs.
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(a) (b)

Fig.10. Cup. (a) 21 input cup images. (b) 171 synthesized cups.

(a) (b)

Fig.11. Lamp. (a) 30 input lamp images. (b) 147 synthesized lamps.

(a) (b)

Fig.12. Toy Plane. (a) 15 input toy plane images. (b) 190 synthesized toy planes.

proxy guided warping produces an unsatisfactory result

(Fig.2(b)) which appears to be distorted and does not

look like a real chair. Our view-ware compositing al-

gorithm generates a more realistic result. Fig.14 shows

another comparison for toy planes.

User Study. To evaluate whether our synthesized

image objects are both plausible and novel, we recruited

68 subjects who are mostly students majored in com-

puter science and digital media. These subjects were

divided into two groups and assigned one of the follow-

ing two tasks respectively.

T 1: Design Preference Test. The subjects are shown

with one training image and one synthesized image side

by side in random order, and the source information,

i.e., training or synthesized, of these two images is blind

to them to avoid possible bias. The subjects are re-

quired to answer which image in each pair is more

preferable as a design reference. The test set consists of

50 randomly sampled pairs of such images, 10 for each

object category.
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Fig.13. (a) Number of components used per synthesized (synth.)
image object. (b) Number of source images per synthesized ob-
ject.

(a)

(b)                                    (c)

Fig.14. Compositings of toy plane images with/without consid-
eration of viewpoints. (a) Source images. (b) Direct composit-
ing. (c) View-aware compositing.

T 2: Creativity Test. Compared with the reference

set of image objects shown on the left window of the

user study UI, the subjects are required to determine

whether the displayed object on the right window of

the user study UI is new from the set. There will be

210 objects in total.

The statistics of design preference test T1 tell us the

subjects choose 48%(694) synthesized objects against

52%(756) training images (no significant difference),

which reveals that our synthesis results are preferred

at a comparable probability to the real-world images.

The test set used in creativity test T2 includes 50

chairs, 30 cups, 43 lamps, 47 robots and 40 toy planes

uniformly chosen from the synthesis results. All the im-

ages from the training dataset are used as the reference

set of images, and the subjects need to judge whether

a synthesized object is a new object, not present in the

training set. The statistics of true and false choices for

each object category are shown in Fig.15. The highest

and the lowest positive rates are robot and cup with

about 90% and 79% choices respectively. Thus, a sig-

nificant amount of the synthesized image objects are

novel to participants, and should be valuable to inspire

creative design.
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Fig.15. Statistics of true (new object) and false choices for each
category in the creativity test.

Running Time. We implemented our method on a

PC with Intelr CoreTM2 Quad CPU Q9400 and Win7

operating system. The average computation time for

component stitching and color optimization is about

four seconds and one second respectively. For the image

object synthesis, the Bayesian graphical model training

took about 20 minutes for chair, five minutes for cup,

12 minutes for lamp, 15 minutes for robot and 3 min-

utes for toy plane, and enumerating the component set

for synthesizing took from 20 seconds to one minute.

User Interaction. Our approach needs some user

interactions to assist the construction of source image

objects. In general, the user interaction required in the

construction of image object representation is around
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six minutes on average. Specifically, image object com-

ponent segmentation and annotation are done in about

four minutes for most of the images used in our exper-

iments, and it usually takes the user 1∼2 minutes to

tune the axis projection on an image in camera cali-

bration. The axis tuning time may slightly increase for

non-upright object since its upright z axis needs to be

carefully tuned to match its image.

Limitations. There are still difficult situations

which are not well handled in our current approach,

and we summarize them as follows: 1) the affine trans-

formation we adopt for image component warping can

only handle limited viewpoint changes; 2) we cannot use

image objects with severe occlusions as source, since it

may simply lead to unpleasant proxy fitting or image

completion results; 3) we do not handle strong illumi-

nation effects or complex shading in our current imple-

mentation.

6 Conclusions and Future Work

We introduced a view-aware approach to composit-

ing novel image objects from multiple-source images

that have different viewpoints. Compared with pre-

vious image compositing techniques that work at the

image object level, our approach operates on the lower

level of object components. It warps selected compo-

nents using the fitted 3D proxies according to the es-

timated camera parameters, and stitches the warped

components to generate a new image object. We believe

this component-level view-aware compositing operation

nicely complements existing image compositing tools.

Based on this compositing approach, we further de-

veloped an analysis-and-synthesis technique to auto-

matically create image objects from a set of exemplars.

It works by seamlessly combining components of in-

put image objects with respect to the structural con-

straints described by a probabilistic graphical model

trained from the input dataset. We regard our work as

the first image object synthesis method that operates

on the component level.

Component-based image object compositing and

synthesis not only help enrich existing image contents

but also provide innovative means for creative object

design and even 3D modeling. However, our work is

only an initial attempt to solve this problem and there

exist many interesting directions for future work. The

current approach relies on user interaction for seman-

tic analysis of image objects. To reduce the analysis

workload, we plan to explore transductive learning al-

gorithms to automatically segment the image objects

into components using our labeled dataset. A possi-

ble solution is to adopt diffusion algorithms to transfer

the labeling results. Furthermore, we are interested in

exploring the compatibility of components from diffe-

rent objects to increase the variation of the synthesized

objects, which is important to creative design.
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Appendix

A.1 Derivations for Coordinate-Frame Based

Camera Calibration

The camera projection matrix M is usually defined

as the product of three matrices: M3×4 = K[R|t]. We

start by introducing how we parameterize each matrix:

K =







f u

f v

1






.

We set {u, v} to be image center, and thus, only focus

parameter f left. R is an orthogonal matrix, which is

parameterized Euler angles with ZYX rotation order.

t is the translation freedom of the camera in the world

coordinate system, where t = {tx, ty , tz}. Therefore,

there are totally 7 DOFs in our camera matrix setup.

The projection of the coordinate system, such as

origin and coordinate axes, is represented by homoge-

neous coordinates. Let us denote the projection of the

3D coordinate system origin by Po, and the image po-

sition of the 3D position (0, 0, 1) by Pup, where their

entries are:

Po =







o1

o2

1






, Pup =







z1

z2

1






.

Further, let us denote the projection of 3D coordinate

axes {x, y, z} by {lx, ly, lz} respectively. Their entries

are defined as follows:

lx =







lx1
lx2
1






, ly =







ly1
ly2
1






, lz =







lz1
lz2
1






.
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According to projective geometry, we can set up the

following equations:

M















1

0

0

0















· lx = 0, M















0

1

0

0















· ly = 0,

M















0

0

1

0















· lz = 0, M















0

0

0

1















≃ Po,

M















0

0

1

1















≃ Pup,

where ≃ means equality up to a scale. They are devel-

oped into the following seven equations:

(fc1c2 − us2)lx1 + (fc2s1 − vs2)lx2 − s2 = 0,

(fc1s2s3 − fc3s1 + uc2s3)ly1 +

(fc1c3 + fs1s2s3 + vc2s3)ly2 + c2s3 = 0,

(fs1s3 + fc1c3s2 + uc2c3)lz1 +

(fc3s1s2 − fc1s3 + vc2c3)lz2 + c2c3 = 0,

f t1 + ut3 − o1t3 = 0,

f t2 + vt3 − o2t3 = 0,

fs1s3 + fc1c3s2 + uc2c3 + ft1 + ut3 −

z1c2c3 − z1t3 = 0,

fc3s1s2 − fc1s3 + vc2c3 + ft2 + vt3 −

z2c2c3 − z2t3 = 0.

A.2 Derivations for EM algorithm

Parameter θ̃G is optimized by the EM algorithm.

In the M-step, the CPT parameters of discrete random

variables, i.e., R, V, Sl,Dl, and the conditional linear

Gaussian parameters of continuous random variables,

i.e., Cl, are estimated by the same formulas as derived

in [12].

In the E-step, we need to compute the conditional

probability of latent variablesR and Sl to observed data

Ok using the following formulas:

P (Ok) =
∑

R,Sl

P (R,Sl,Ok),

P (R,Sl|Ok) =
P (R,Sl,Ok)

P (Ok)
,

where l is category label. Therefore, the key is to com-

pute the joint probability P (R,Sl, Ok):

P (R,Sl, Ok)

=
∑

S\{Sl}

P (R)P (V )
∏

l′∈L

P (Sl′ |R, V )P (Nl′,k|R)

P (Cl′,k|Sl′)P (Dl′,k|Sl′)

= P (R)P (Sl|R, V )P (Nl,k|R)P (Cl,k|Sl)P (Dl,k|Sl)
∏

l∗∈L,l∗ 6=l

∑

Sl∗

P (Sl∗ |R, V )P (Nl∗,k|R)

P (Cl∗,k|Sl∗)P (Dl∗,k|Sl∗).


