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Abstract
We propose a transductive shape segmentation algorithm, which can transfer prior segmentation results in
database to new shapes without explicitly specification of prior category information. Our method first parti-
tions an input shape into a set of segmentations as a data preparation, and then a linear integer programming
algorithm is used to select segments from them to form the final optimal segmentation. The key idea is to maximize
the segment similarity between the segments in the input shape and the segments in database, where the segment
similarity is computed through sparse reconstruction error. The segment-level similarity enables to handle a large
amount of shapes with significant topology or shape variations with a small set of segmented example shapes. Ex-
perimental results show that our algorithm can generate high quality segmentation and semantic labeling results
in the Princeton segmentation benchmark.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Shape Analysis—Shape
SegmentationSparsity

1. Introduction

Shape or mesh segmentation aims to partition the shape
into functional or semantic segments/parts as a compact
representation to analyze shape structures. Exploiting the
structure information as guidance, the efficiency of ge-
ometry processing algorithms in diverse areas, such as
3D modeling [FKS∗04, SFCH12], skeleton extraction [K-
T03], compression [KG00], collision detection [LWTH01],
parametrization [ZSGS04] and shape retrieval [GCO06],
can be effectively improved. For example, Shapira et
al. [SSS∗10] developed a contextual part analogy method
with hierarchical segmentation, which supports highly dis-
criminative 3D shape part retrieval.

A large amount of research efforts have been devoted
to improve the accuracy of shape segmentation algorithm-
s. Various types of low-level geometry properties, such as
geodesic distance, concavity, shape diameter function, are
investigated in graph-theoretic or variational framework to
produce high-quality segmentation results. They can well
approximate the three key factors, similarity, proximity and
good continuation, in visual grouping [KT03, SSCO08, Z-
ZWC12]. However, it is still difficult for them to obtain sat-
isfactory segmentation results for all kinds of shapes with

such low-level geometry properties, since prior shape simi-
larities, important in human segmentation procedure, are not
considered.

Recent shape segmentation researches advocate the inte-
gration of prior information to further enhance the accura-
cy of segmentation results. Based on the 3D segmentation
benchmark [CGF09], Kalogerakis et al. [KHS10] learned
discriminative models, for a specific category of shapes,
to segment the shape into parts with seman-tic labels. Co-
segmentation techniques can segment a set of shapes with-
in same category in a consistent way [SvKK∗11, HKG11],
where the shape category constraint can be viewed as a weak
prior information. Despite significant research progress in
such shape segmentation algorithms, it is still not easy to
generalize them to handle fast growing 3D shape data. Giv-
en a new shape, its category should be classified or provided
by the user in co-segmentation techniques. The re-run of co-
segmentation algorithm with the new shape is also compu-
tationally expensive. More-over, there exist shapes, for in-
stance, sphinx, which are difficult to be classified into any
category. Similarly, the learning algorithm in [KHS10] also
requires category information.

In this paper, we propose a transductive shape segmenta-
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Figure 1: Segmentation results. Left Column: The segmen-
tation results by joint segmentation algorithms in [HKG11].
Middle column: Our transductive segmentation result vi-
a segment similarity maximization. Right Column: The s-
elected example segmentation results in benchmark to show
our results are consistent with the database. For each input
shape, we run both algorithms using its top 10 shape query
results from the segmentation database in [CGF09]. The seg-
ment similarity induced by L1 sparse reconstruction can re-
sult in more consistent segmentation results with the exam-
ple segmentations.

tion algorithm, which can transfer prior segmentation results
in the segmentation benchmark [CGF09] or from state-of-
the-art segmentation algorithms to new shapes without ex-
plicit specification of category information. Its key idea is
to maximize the segment similarity between the segments in
the input shape and the segments in database, where the seg-
ment similarity is computed through sparse reconstruction
error. The input shape is pre-partitioned into a set of segmen-
tations as a data preparation, and a linear integer program-
ming algorithm is developed to select the segments from
them to generate the final segmentation via similarity maxi-
mization. There are two distinctive features of our algorithm:

• Prior shape similarity is measured at segment-level. This
enables us to handle shape with significant topology
or shape variations with a small set of example seg-
mented shapes. As shown in 3D shape synthesis tech-

niques [KCKK12, XZCOC12], segment combination can
create a large amount of shapes to save modeling effort-
s. Moreover, it enables us to combine the segments from
different categories in the segmentation (see Figure 6).

• Sparse reconstruction is used to compute the similarity s-
core. That is, a segment is deemed to be similar to the seg-
ments in the database if its sparse reconstruction error is
low. It can not only tolerate the possible false-positive re-
sults from 3D shape query but also ease the system imple-
mentation (see Figure 4). Since similar segments should
have similar shape descriptors, they usually form a cluster
in feature space, which can be covered by a linear sub-
space. Therefore, we use linear combination of shape de-
scriptors as the reconstruction method (Eq. 1).

We have tested our algorithm on a variety of 3D shapes and
achieved high-quality segmentation result, and the classifi-
cation ability of sparse reconstruction method is also used
to transfer segment labels in database to input shapes. More-
over, the ability to obtain segmentation results via linear pro-
gramming results in a fast algorithm. We can optimize for
the segmentation results within 1 seconds for a new shape
with around 16000 triangles. However, it takes minutes by
joint segmentation algorithm in [HKG11], since a multi-
class quadric programming problem of thousands of vari-
ables needs to be solved for a set of shapes.

2. Related work

There are numerous research efforts on shape or mesh
segmentation. Please see [Sha08, AKM∗06, CGF09] for a
comprehensive survey. Meshes can be partitioned accord-
ing to geometric properties computed from a single mesh,
such as con-cavity, skeleton or primitive shapes [MW99, K-
T03, L04, SKS06, LLL07, LGQ08, LHMR08, LW08]. Shape
deformation property can also be used in mesh segmenta-
tion. Huang et al. [HWAG09] applied modal analysis tech-
nique in Mechanics to decompose the shape into parts with
rigid motion. A common technical difficulty in this line of
research works is that no single geometry feature is suitable
to all cases of mesh segmentation. In contrast, Golovinskiy
et al. [GF08] proposed to segment the shape into a large
amount of segmentations with different geometry proper-
ties, algorithms and parameters as a base for shape analysis.
Wang et al. [WGW∗13] presented to extend knowledge in
image segmentation to 3D shapes via projective analysis to
tackle the challenge in collecting high-quality 3D models.

A recent trend in shape segmentation research is ex-
tended from a single shape to a set of shapes [HFL12,
WAvK∗12, WWS∗13]. Golovinskiy et al. [GF09] showed
that consistent segmentation constraint from a set of shapes
can result in better individual shape segmentation. This al-
gorithm is then improved in co-segmentation algorithm-
s [SvKK∗11,HKG11] to handle shapes with more variations.
A distinctive feature of co-segmentation algorithms is that
part correspondence between shapes are derived automat-
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ically. In contrast, with prior shape segmentation and part
correspondence data, Kalogerakis et al. [KHS10] learned a
Conditional Random Field models for shapes in same cate-
gory, such as vase, human, to simultaneously segment and
label a new shape from same category. Our method is de-
signed based on the fast development of shape segmentation
algorithms, and we target to transfer high quality segmenta-
tion results from these algorithms to new shapes. Combined
with State-of-the-art 3D shape query methods [FMK∗03, B-
BGO11], our method is of great potential to handle heteroge-
nous, large scale shape data set.

Our work is also inspired by the application of sparsi-
ty constraints in image segmentation and annotation algo-
rithms. Sparse model selection technique has been used in
image segmentation to effectively single out relevant prior
models [CYH13]. Zhang et al. [ZZD∗11] proposed a sparse
shape representation to pick up priors from database for de-
formable object segmentation, and patch-level sparse repre-
sentation are explored in [TWC∗13] for brain MRI image
segmentation. For segmentation algorithms based on graph
theory, sparsity are also used to improve the edge affinity
function for accurate image segmentation results [CLW∗11].
In image annotation, sparse reconstruction is used to transfer
region tags or labels [LCY∗09], and the annotation accura-
cy can be enhanced through the context constraint modeled
by structural sparsity [YWSZ13]. However, with our best
knowledge, there does not exist research works on general-
izing such sparsity-based 2D segmentation algorithms to 3D
shape segmentation. Moreover, we optimize the segmenta-
tion by treating the sparse reconstruction error as a segmen-
tation evaluation score.

Due to its robustness to outliers and ability to discern
noise and feature, L1 norm has also been used in geome-
try processing for point cloud data denoising, skeleton ex-
traction and polycube generation [ASGCO10, HWCO∗13,
WYL∗14,HJS∗14]. A L0 norm minimization algorithm was
developed by He et al. [HS13] for triangular mesh denoising.
Our work focuses on 3D shape segmentation, which can be
viewed as a new application of sparsity in geometry process-
ing.

3. Overview

The three stages of our algorithm, initial segmentation,
shape query and final segmentation generation, are illustrat-
ed in Figure 2. The initial segmentation and shape query can
be viewed as segmentation data preparation, and their gener-
ated segments are the input to a linear integer programming
algorithm for final segmentation generation. Sparse recon-
struction plays a key role to guide the algorithm to choose
the initial segments similar to example segments in database.

Initial segmentation: Our initial segmentation generation
stage is similar to [HWAG09]. We first perform normal-
ized cut to partition the input shape into around 50 patch-
es using concavity as affinity measure [SM00], and then

group them into large number of segments with random cut-
s method [GF08]. The initial number of segments k in a
segmentation is estimated from the shape query result. For
each different segment numbers kq in the query result, we
compute a range {0.5kq,1.5kq}. Afterwards, for each ini-
tial target segment number in this range, we perform 80 ran-
domized segmentations. We perform segment pruning to re-
duce the number of segments in the final optimization (see
Sec. 4.1).

Shape query: Given an input shape, shape query is to re-
trieve its similar shapes in database. In current implemen-
tation, we adopt pose-oblivious signature in [GSCO07] as
a global descriptor in measuring the shape similarity. The
shapes ranked in top 10 are used as database shapes, and
their segmentation information is used to derive the input
shape segmentation. State-of-the-art shape query algorithm-
s can be easily integrated into our algorithm to enhance the
query accuracy, which should also improve the final segmen-
tation quality.

Final segmentation generation: The final segmentation
is generated by choosing segments from the initial segments
to form a complete segmentation. We pose it as a linear bi-
nary integer programming problem, where an integer vari-
able x ∈ {0;1} is assigned to each initial segment and its
value 1 indicates a selection of the associated segment into
the final segmentation. The objective function of the linear
programming algorithm is designed to minimize the sparse
reconstruction errors for the selected initial segments.

4. Segmentation Algorithm

In this section, we describe how to evaluate the segment sim-
ilarity through sparse reconstruction and the linear binary
integer program- ming algorithm for the final segmentation
generation.

Notation: The set of patches generated in normalized cut
is denoted by P = {Pi|i = 1..m}, and a segmentation of a
shapeM denoted by S = {si|i = 1..n}, where si represents
a segment in the segmentation. Each segment, in our setting,
consists of adjacent patches from the patch setP . A segmen-
tation S is deemed to be valid if each patch Pi belongs to one
and only one segment.

4.1. Segment Evaluation

The goal of segment evaluation is to compute the segment
similarity between an initial segment and the example seg-
ments in the database. The evaluation score is then used to
guide the optimization algorithm to choose the similar ini-
tial segments to form a valid segmentation. Thus, the seg-
mentation information of the example shapes in database
can be transferred via the efforts to maximize the similarity.
This design is to simulate human segmentation procedures
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Figure 2: The pipeline of our transduction shape segmentation algorithm.

where the prior model plays an important role. Accord-
ing to perceptual grouping research in Psychology, the hu-
man segmentation procedure actually involves object analo-
gy [LeG03]. If a given shape or part of the shape is similar to
the recorded shapes in mind, human tends to perform visual
grouping according to the prior similarity.

We pose the problem of computing segment similarity as
a sparse reconstruction problem. Specifically, given an initial
segment, we perform sparse reconstruction with L1 norm to
choose sparse segments in database that can well reconstruct
the initial segment, which is measured based on shape de-
scriptor distance. For an input segment si , its reconstruction
score is optimized according to the formula:

Ei = ‖Yi−Xβ‖2 +λ‖β‖1 (1)

where Yi is a column vector which is the shape descriptor
computed for the segment si, and the columns of X represent
the shape descriptors computed for the segments of shapes
in the database. Moreover, the non-zero coefficients can en-
code the segment correspondences which is also exploited in
image annotation applications.

Shape descriptor: The shape descriptor computed for
each segment is the combination of shape distribution (S-
D) [OFCD02], shape diameter function (SDF) [SSCO08],
and context statistics, which forms a 79-dimension feature
vector. The SD and SDF are normalized histograms of the
distance and shape diameter values computed at sampled
points on the segment surface to achieve reliable feature vec-
tor. Each histogram is of dimension 36. The context statistics
is used to measure the relative size of the oriented bound-
ing box of a segment to the whole shape. In our current im-
plementation, they are 7 values: (a) global ratio: the length,
width, height and diagonal length of the segment oriented
bounding box normalized by the longest geodesic distance
of the mesh. (b) the ratio of length to width, height to width
and length to height for the segment bounding box.

Segments pruning: Since we generate a large number of
initial segments using random cuts for input shapes, it will

induce heavy computational demand if we compute L1 re-
construction for each segment. Thus, we first filter out seg-
ments with L2 reconstruction error, which is much faster
since the factorization of the matrix XT X in linear least
squares is only needed to be performed once. We retain top
20% segments to generate the final segmentation according
to L2 reconstruction error. Similar to [HKG11], we also in-
clude segmentations with highest minimum cut cost for each
target segment number k to ensure the selected segments can
form a complete segmentation.

4.2. Segmentation by Linear Binary Integer
Programming

In this section, we describe a linear binary integer program-
ming algorithm to select segments to form a segmentation
with prior segmentation information in the database. The
formulation is inspired by the joint segmentation algorith-
m in [HKG11]: We also assign an 0−1 indicator variable xi
for each initial segment si , and set up constraints to form the
segmentation. However, since we are targeting to segmen-
t one input shape with the prior segmentations, the overall
problem can be formulated into a linear binary integer pro-
gramming problem, which can be efficiently solved.

Energy Function: We minimize the following energy
function to select segments from the set of initial segments:

min∑
i

xiEi−α∑
i

xi (2)

The first term is the sum of reconstruction cost Esi where the
indicator variables xsi is 1 . The second term indicates the
number of non-zero indicator variables, which simulates the
reconstruction error normalization. Otherwise, the algorith-
m may prefer the segmentation result with few segments due
to the fact that the difference between reconstruction errors
sometimes may not be enough to push the algorithm to cor-
rect segment numbers. α is a weight whose value is default
1.5 in our implementation.

Segmentation Constraint: We require the selected subset
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Figure 3: Labeling result for a human model. The label
names and top 2 reconstruction weights obtained in segmen-
tation are displayed on or near the corresponding segments.
Their final labeling results are shown on the right legend.

of segments forms a valid segmentation of the input shape.
As formulated in [Huang et al. 2011], the constraint can be
written into the follow-ing linear equation:

∑
i∈cover(Pj)

xi = 1; ∀Pj ∈ P (3)

where cover(Pj) indicates the set of segments covering the
patch Pj . Assembling this equation at each patch yields:

Ax = 1 (4)

The dimension of matrix A in the above equation is m× n,
where m is the number of patches, and n is the number of
initial segments. x is the stacked vector of indicator variables
xi

Number constraint: This constraint is for user to control
the number of segments in the final segmentation. It is useful
in specific geometry processing algorithms. For example, the
user might wan-t to control the number of segments so as to
control the number of bones in skeleton extraction. It can be
formulated into a linear constraint as well:

∑
i

xi = k (5)

where k is the target number of segments. If this constrain-
t is selected, the second term in Eq.2 is constant and thus
ignored in the optimization.

Putting all them together, we get the following optimiza-
tion problem:

min
xi

∑
i

xiEi−α∑
i

xi

st : Ax = 1

∑
i

xi = k

(6)

Note that the number constraint is enabled only according to
user requirement. We adopt CVX package solve this linear
binary integer programming problem [GB08].

4.3. Labeling

Given the segmentation result obtained by Eq.2, the label-
ing procedure aims to estimate its segment labels through
the sparse reconstruction weight β computed via Eq.1. A s-
traightforward solution might be to select the segment label
with the database segment corresponding to its largest re-
construction weight for each segment si. However, this so-
lution might be confused by segments of similar shape but
with different label. For example, in a human body shape,
the upperarm might be confused to be upperleg, since these
two segments are geometrically similar (see Fig. 3). Thus,
we solve the labeling problem with integer programming to
select from 2 labels of the largest 2 reconstruction weights
for each segment.

Let S = {si|i = 1..n} denote the segmentation result and
L= {li|i = 1..m} denote the set of labels collected from the
top 10 query results. For each segment si, we associate it
with a set of indicator variables {x j

i , j = 1..m}. x j
i is 1 if

the segment si is assigned with label l j, otherwise 0. We can
obtain the labeling result using a quadric integer program:

min EL = ∑
i

∑
j

x j
i W

j
i + ∑

ad j(si,s j)

m

∑
p=1

m

∑
q=1

xp
i xq

jW
pq

i j

s.t. ∑
j

x j
i = 1, i = 1..n,

x j
i ∈ {0,1}

(7)

The set of coefficients W j
i represents the labeling cost-

s if the segment si is assigned label j. Suppose the largest
2 reconstruction weights are β j1 and β j2 and they are from
two database segments with label l j1 and l j2 . We thus set

W lj1
i = β j1/(β j1 +β j2) and W l j1

i = β j2/(β j1 +β j2). The rest
coefficients W j

i are set to be a large value 1e3 in our im-
plementation, which means that we prefer the label of the
segment si to be selected through segments corresponding
its top 2 reconstruction weights. W pq

i j is used to penalize the
unreasonable label pair of two adjacent segment pairs. For
example, it is not expected if a torso is connected to a lower
leg in a human body shape. Thus, W pq

i j is set to be a penal-
ty value 1e4 if label p and label q should not be adjacent to
each other, otherwise W pq

i j is 0.

We linearize the objective function so that it can be effi-
ciently solved by CVX package [GB08]. We thus associate
each pair, xp

i xq
j , a latent indicator variable zpq

ji , and change
the objective function into:

min EL = ∑
i

∑
j

x j
i W

j
i + ∑

ad j(si,s j)

m

∑
p=1

m

∑
q=1

zpq
i j W pq

i j

s.t. ∑
j

x j
i = 1, i = 1..n,

zpq
i j ≤ xp

i ,z
pq
i j ≤ xq

j ,
m

∑
p=1

m

∑
q=1

zpq
i j = 1,∀ ad j(si,s j),

x j
i ∈ {0,1}, zpq

i j ∈ {0,1}.

(8)
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The constraints on zpq
i j ensure its compatibility with xp

i xq
j .

This linear integer programming problem can be efficiently
solved within 0.2 seconds by CVX package.

5. Experiments

We have implemented our algorithm on a desktop PC with
Intel I5 CPU in single thread. The running performance of
our algorithm varies with the mesh size, such as the num-
ber of triangles and vertices, and the number of segments
required in the segmentation. Overall, for a mesh with about
16000 triangles, the time is about 30 seconds for the ini-
tial segmentation generation, 0.5 seconds for the sparse re-
construction of each segment, and 0.1 seconds for the linear
integer programming. The computation time can be signifi-
cantly improved by parallel implementation.

Dataset: We employ the dataset used in [KHS10], as it
provides both segmentation and labeling information. This
dataset is adapted from the Princeton benchmark [CGF09],
which has 380 meshes of 19 categories. We pre-compute
shape descriptors for each segment in the database to be used
in the segmentation algorithm.

Segmentation results: Similar to [KHS10], we also test
our segmentation results with respect to the human segmen-
tation results in [CGF09]. When segmenting a 3D model in
the database, we remove that model from the top 10 query re-
sults if it is present, like leave-one-out validation, to fully test
our algorithm (Fig.1). Figure 7 illustrates the statistics of all
measures developed in Chen et al. [CGF09] for 380 models
in the benchmark. The four scores of our segmentation algo-
rithms are better than geometry property based segmentation
algorithms, such as Random cuts and Shape diameter func-
tion. It is not surprising since our algorithm can be viewed as
to choose the segments from such segmentation algorithm-
s to maximize the similarity score. In terms of rand index
and consistency error, our results are better then SB3, which
is the segmentation algorithm in [KHS10] with 3 training
models for each category, and slightly worse than learning
with 19 training models each category, i.e. SB19 (We use
the scores of rand index and consistency error for SB3 and
SB19 provided in [KHS10]). However, such a downgrade of
segmentation scores does not influence the visual quality as
demonstrated in the experiments. Considering the saving of
computational load in training time, our algorithm can be a
reasonable choice for the task of shape segmentation.

Robustness: We first test the robustness of L1 reconstruc-
tion against L2, as illustrated in Fig. 4a. For most model-
s, L1 reconstruction plus linear programming produce seg-
mentation results more consistent with the examples, for in-
stance, the leg of the eye-glasses and the tail of the airplane.
In Fig. 4b, we compare the similarity computed by L1 recon-
struction and Euclidean distance of shape features, where the
closest Euclidean distance between an input segment and ex-
ample segments is used as the similarity measure. Similarly,

L2

L1

Distance

L1

(a)

(b)

Figure 4: (a) The segmentation results with L1 and L2 re-
construction using the linear programming algorithm. Top
row: Results using L2 reconstruction . Bottom row: Results
using L1 Reconstruction. (b) The segmentation results with
L1 reconstruction and the closest shape feature Euclidean
distance induced segment similarity. Top row: Results using
Euclidean distance. Bottom row: Results using L1 Recon-
struction. L1 norm is able to pick up segments more similar
to those in database.

the distance based similarity results in inconsistent segmen-
tation results for human, bull and chair models. It demon-
strates that the similarity induced by L1 regularization can
encourage the algorithm to pick up segments more similar to
those in database, which is critical to the success of transduc-
tive segmentation. Fig. 5 illustrates that sparse reconstruc-
tion is robust to outliers in the database. We intentionally
select six models as the database and test our algorithm with
five meshes. The results show that our algorithm can correct-
ly select the segments for a test mesh to form a segmentation
similar to the segmentation of its most similar shapes in the
database. This property is particularly useful when we start
with a small database, since, under this situation, it is of high
probability that the top query results contain shapes that are
not similar to the input shape.

Categories combination: As our algorithm forms seg-
mentation at segment level, it possesses the ability to com-
bine segments from shapes of different categories to obtain
the segmentation result. This enables the algorithm to seg-
ment cross-category shapes. Fig. 6 illustrates the segmenta-
tion result of the sphinx and a man with handcraft model,
which can be viewed as a combination of human, animal or
vehicle category. For the sphinx model, the number of seg-
ments is set to be 9 using the number constraint. Since the
pose-oblivious signature is global, which is challenging for
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A set of selected shapes as database Our segmentation results

Figure 5: Robustness to outliers. Left: The designed
database. Right: Transductive segmentation results with this
database. Even though there are only two shapes in database
similar to the shapes to be segmented, our L1 sparse re-
construction based segmentation algorithm can still generate
similar segmentation results.

Human 81.1% Cup 96.0% Glasses 92.7%
Airplane 86.9% Ant 87.8% Chair 92.2%
Octopus 97.4% Table 91.3% Teddy 92.3%

Hand 82.2% Plier 82.7% Fish 87.4%
Bird 82.1% Armadillo 69.8% Bust 62.3%
Mech 92.9% Bearing 96.2% Vase 81.5%

Fourleg 71.9% Average 85.6%

Table 1: Labeling: Recognition rate

it to query by parts, we thus manually select a set of model-
s from the dataset to be the database for the sphinx model.
Afterwards, our algorithm can successfully segment out the
face and limbs, while the hierarchical fuzzy cut algorithm
in [KT03] fails to extract semantic parts. In contrast, for the
man with handcraft model, the database examples are from
the shape retrieval results. Even though the results are not
similar to the input model, our algorithm still correctly cap-
tures the basic structure of the man, which mimics the seg-
ment structure of the animals in the examples.

Labeling accuracy: The recognition rate of our algorith-
m is listed in Table 1. The semantic labeling results for the
dataset are obtained by the labeling algorithm in Sec. 4.3
after segmentation, and we count recognition rate with the
classification error equation in [KHS10]:

E =

(
∑

i
aiI(ci,c

∗
i )

)
/

(
∑

i
ai

)
(9)

where ai is the area of triangle i in the dataset, ci its ground
truth label, and c∗i our labeling result. I is a boolean function
to count the correctly labeled triangles. Without training, the
recognition rate of our algorithm is close to the result of the
well-trained model SB6, which is 89.4%, in [KHS10]. Our
recognition results should be able to be improved by em-
ploying sophisticated contextual features [SSS∗10].

Limitation: Our segmentation results are influence by the
randomcuts algorithm in initial segmentation. For an ani-
mal model, if there is no neck segment in the initial seg-
ments generated by randomcuts using concavity as the affin-
ity measure, the neck segment can not be transferred from
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Figure 7: Segmentation evaluations using the measures in
[CGF09]. Our approach represents the evaluation scores of
our algorithm. Other segmentation algorithms: SB3, SB19
- Learning to segment algorithm in [KHS10], 3 and 19
training models per category. Randcuts-Random cuts. SD-
F - Shape diameter function. FitPrim - Fitting primitives
[AKM∗06]. CoreExtra - Core extraction [KLT05]. Norm-
Cuts - [GF08].

Initial segmentation

Result
Database

Figure 8: Failure case. Without neck segments in the initial
segmentations, our algorithm can not segment out the neck
region from an input animal model.

the database to the new input shape, as illustrated in Fig.8.
In addition, the number of segments is still difficult to be
automatically determined by the energy function in Eq. 2
for complicated models. For example, the number of seg-
ments is set to be 9 to obtain the final result in Fig. 6 for
the Sphinx model. We speculate that it is because that the
shape descriptors are not distinctive enough to eliminate all
non-meaningful segments.

6. Conclusion

We have developed a transductive segmentation algorithm
which aims to transfer the segmentation in database to an
input new shape. Sparse reconstruction error is used as an
efficient way to measure the segment similarity and guide
the linear binary integer programming algorithm to select
the similar segments to form the final valid segmentation.
Combined with state-of-the-art 3D shape query method, our
algorithm has potential to handle large scale shape dataset
due to its simplicity and ability to handle heterogenous 3D
shape data.
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Selected examples

Model

Fuzzy cut Our approach

Database query resultsFuzzy cut Our approach

Model

Figure 6: The segmentation result for two models: sphinx and man with handcart . Our algorithm can segment out parts, such
as face, body and legs, similar to the segments in the manually selected database.

In future, we plan to investigate how group sparsity con-
straint can help to improve the segmentation and labeling
accuracy. We are also interested in the application of spar-
sity constraints in various geometry processing algorithms,
such as 3D modeling and geometry compression.
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