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Direct Manipulation of Subdivision Surfaces on GPU

Abstract

We present an algorithm for interactive deformation of subdivision
surfaces, including displaced subdivision surfaces and subdivision
surfaces with geometric textures. Our system lets the user directly
manipulate the surface using freely-selected surface points as han-
dles. During deformation the control mesh vertices are automati-
cally adjusted such that the deforming surface satisfies the handle
position constraints while preserving the original surface shape and
details. To best preserve surface details, we develop a gradient do-
main technique that incorporates the handle position constraints and
detail preserving objectives into the deformation energy. For dis-
placed subdivision surfaces and surfaces with geometric textures,
the deformation energy is highly nonlinear and cannot be handled
with existing iterative solvers. To address this issue, we introduce
a shell deformation solver, which replaces each numerically unsta-
ble iteration step with two stable mesh deformation operations. Our
deformation algorithm only uses local operations and is thus suit-
able for GPU implementation. The result is a real-time deformation
system running orders of magnitude faster than the state-of-the-art
multigrid mesh deformation solver. We demonstrate our technique
with a variety of examples, including examples of creating visually
pleasing character animations in real-time by driving a subdivision
surface with motion capture data.

Keywords: subdivision surface, detail preservation, displacement
mapping, geometric texture.

1 Introduction

Subdivision surfaces have been widely used in movie production,
commercial modelers and game engines [DeRose et al. 1998; War-
ren and Weimer 2002]. Constructing surfaces through subdivision
elegantly addresses many issues that computer graphics practition-
ers are confronted with, such as arbitrary topology, scalability, uni-
formity of representation, numerical stability and code simplicity
[Zorin et al. 2000]. Traditional subdivision surfaces are mainly suit-
able for modeling piecewise smooth surfaces; the displaced subdi-
vision surface introduced in [Lee et al. 2000] enhances that expres-
sive power by integrating displacement mapping [Cook 1984] into
the subdivision framework. Recently, researchers further added ge-
ometric textures to subdivision surfaces to make them truly pow-
erful tools for modeling surfaces with complex details [Peng et al.
2004; Porumbescu et al. 2005].

In this paper we present an algorithm for interactive deformation of
subdivision surfaces. Our algorithm has the following features:

⋄ direct manipulation: Instead of using the control mesh, the user
is free to select points on the target surface as handles for direct
manipulation. To deform the surface, the user simply drags the
handles to new positions and our algorithm automatically adjusts
the control mesh to satisfy the handle position constraints.

⋄ detail preserving: Our algorithm is effective in preserving sur-
face details while generating visually pleasing deformation.

(a)

(b)

Figure 1: Subdivision surface deformation. (a) Deformation of a displaced

subdivision surface. The control mesh, base mesh and displacement map are

shown in Fig. 2. (b) Deformation of a subdivision surface with geometric

textures.

⋄ real-time performance: Our algorithm can be implemented on
the GPU, with real-time performance ( > 100 FPS) for moderate-
sized subdivision surface meshes.

Preserving details is important for subdivision surface deformation.
Without detail preserving, the deformed surface can exhibit severe
distortion as shown in Fig. 8. This motivated us to develop a gra-
dient domain deformation algorithm for subdivision surfaces. Gra-
dient domain techniques, introduced recently for mesh deformation
and editing [Alexa 2003; Yu et al. 2004; Sorkine et al. 2004], are
well-known for their ability to preserve surface details and generate
visually pleasing results.

An immediate issue with a gradient domain algorithm for subdivi-
sion surfaces is that of maintaining subdivision surface represen-
tation. Like existing gradient domain techniques, we wish to ma-
nipulate the subdivision surface mesh directly and preserve details.
Unlike existing techniques, which only generate a deformed mesh,
we need to generate a new subdivision control mesh to ensure that
the deformation result is actually a subdivision surface. We achieve
this by projecting the deformation energy from the surface mesh to
the control mesh, using the subdivision detail function that deter-
mines surface mesh vertices from control mesh vertices.

A much more challenging issue is the preservation of surface de-
tails during deformation. For a subdivision surface without dis-
placement maps or geometry textures, the subdivision detail func-
tion is simply the linear function defined by the subdivision matrix
[Warren and Weimer 2002]. The deformation energy in this case
is only moderately nonlinear and can be minimized using a Gauss-
Newton iterative method. This is similar to the situation with the
subspace deformation technique [Huang et al. 2006], which uses
the mean-value interpolation [Ju et al. 2005] to obtain a stable and
fast solution.

For displaced subdivision surfaces and subdivision surfaces with
geometry textures, the subdivision detail function is nonlinear. This
leads to a highly nonlinear deformation energy and the Gauss-
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Newton iteration used in [Huang et al. 2006] no longer converges.
To handle this highly nonlinear energy, we introduce a shell de-
formation solver. A displaced subdivision surface or a subdivision
surface with geometric texture is created by using the subdivision
surface mesh as a base mesh over which displacement maps or geo-
metric textures are mapped to generate a detail mesh. The base and
detail meshes form the inner and outer boundaries of a shell. Our
shell deformation solver operates within this shell, replacing each
numerically unstable Gauss-Newton iteration with two stable defor-
mation operations: one for optimizing the base mesh and the other
for the detail mesh. By alternately optimizing the base and detail
meshes, our technique essentially uses the deformation of the base
mesh to compute a good initial estimation of the highly nonlinear
components of the deformation energy and thus makes it trackable.

Our algorithm can be implemented on the GPU for real-time per-
formance. A key observation about our algorithm is that it is com-
pletely designed using local operations and thus suitable for GPU
implementation. This is an important feature that distinguishes
our algorithm from other nonlinear deformation algorithms such
as [Huang et al. 2006], which relies on a global scheme, the mean-
value interpolation. To balance the workload between the CPU and
GPU and take advantage of parallel execution streams in the GPU,
we organize the control mesh of subdivision in texture memory fol-
lowing [Shiue et al. 2005]. We also precompute the matrix inver-
sion needed and load the results into the GPU as texture images.
This way the whole iterative solver rests on the GPU, resulting in
high performance. Our GPU implementation runs orders of mag-
nitude faster than the state-of-the-art fast deformation solver using
multigrid [Shi et al. 2006].

With the proposed algorithm, good-quality deformation results can
be achieved with high performance on the GPU. Fig. 1 provides
deformation examples of our algorithm. We will demonstrate our
technique with more examples. We will also show that with our
GPU deformation algorithm, an animator can create visually pleas-
ing, real-time animations from a static subdivision surface and mo-
tion capture data.

2 Related Work

[Welch and Witkin 1992] presents a variational algorithm for di-
rect manipulation of B-spline surfaces based on energy minimiza-
tion. Using the variational approach, [Boier-Martin et al. 2004]
introduces a deformation technique for subdivision surfaces. To
preserve surface details, they optimize the energy of a deformation
vector field instead of the deformation energy of vertex positions.
With their technique the deformation result is always a fine mesh
with a deformation vector associated with each vertex. This can be
quite inconvenient when working with subdivision surfaces without
displacements. Furthermore, since displacements at vertices are not
texture-mapped from a displacement map, this approach does not
scales up well as the subdivision level increases. Most importantly,
the above technique cannot handle geometry textures that are not
displacement maps.

Freeform deformation (FFD) [Sederberg and Parry 1986] embeds
an object inside a volume lattice. The user deforms the object by
manipulating the lattice points. Several extensions have been pro-
posed to provide a more intuitive user interface by directly manip-
ulating points [Hsu et al. 1992] or curves [Singh and Fiume 1998]
on the object surface. Recent approach [Botsch and Kobbelt 2005]
uses volume-based radial basis function to deform the object. Real-
time performance on large meshes has been achieved for deforma-
tion with predefined handles.

Multiresolution editing techniques [Zorin et al. 1997; Kobbelt et al.
1998; Guskov et al. 2000] can preserve surface details by decom-

(b)

(c)

(a)

Figure 2: (a) Control mesh shown in blue. (b) Base mesh. (c) Displacement

map. See Fig. 1 for the detail mesh of the subdivision surface.

posing a mesh into several frequency bands. A deformed mesh is
obtained by first manipulating the low-frequency mesh and later
adding back the high frequency details as displacement vectors. Re-
cently, [Marinov et al. 2006] mapped a two-band multiresolution
deformation framework to the GPU. These methods do not support
direct manipulation of the original surface. Also, the displacement
vectors are inserted back independently at each vertex. As a result,
artifacts can appear in highly deformed regions because details are
not coupled and preserved uniformly over the surface.

Gradient domain mesh deformation techniques [Alexa 2003; Yu
et al. 2004; Sorkine et al. 2004; Sheffer and Kraevoy 2004; Zhou
et al. 2005; Lipman et al. 2005; Nealen et al. 2005; Zayer et al.
2005; Au et al. 2006; Huang et al. 2006; Lipman et al. 2006] cast
deformation as an energy minimization problem. The energy func-
tion incorporates position constraints as well as terms for detail
preservation. Minimization of this energy distributes errors glob-
ally over the entire mesh and thus leads to high quality deformation
results. The user can directly manipulates the mesh surface and use
the region of interest to control the scale of manipulation.

Our algorithm combines the strengths of gradient domain tech-
niques and subdivision surfaces to achieve visually pleasing defor-
mation and high performance. Recently, [Shi et al. 2006] presents
a fast multigrid solver for gradient domain mesh deformation. Un-
fortunately, their GPU implementation does not run much faster
than on the CPU version due to the unstructured nature of a general
mesh. Thanks to the regular connectivity and locality-preserving
data access of subdivision surfaces, our deformation algorithm can
be efficiently implemented on the GPU, resulting in a real-time sys-
tem which runs orders of magnitude faster than the multigrid solver
of [Shi et al. 2006]. We deem our algorithm a nice complement
to existing GPU-based subdivision techniques [Bolz and Schröder
2004; Shiue et al. 2005].

Deformation is an active research area and the above review only
summarizes techniques most relevant to our work. Other deforma-
tion approaches include example-based mesh deformation [Sumner
et al. 2005; Der et al. 2006], vector field based shape deformation
[von Funck et al. 2006], and volumetric prism based deformation
[Botsch et al. 2006].

3 Subdivision Surface Deformation

In this paper, a triangle mesh M is represented by a tuple (K,V ),
where K is an abstract simplicial complex containing mesh connec-
tivity information and V = (v1, ...,vm)T is a 3m-dimensional vector

with each vi ∈ R3 representing a vertex position.

3.1 Laplacian Deformation

We first derive a formulation for direct manipulation of subdivi-
sion surfaces following the Laplacian surface editing approach for
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meshes [Sorkine et al. 2004; Yu et al. 2004]. Let the control mesh
of the subdivision surface be Mc with vertices Vc as shown in Fig. 2.
From the control mesh, a base mesh Mb is obtained by subdividing
Vc to a desired level. A detail mesh Md with vertices Vd is then gen-
erated on top of the base mesh by applying either a displacement
map [Lee et al. 2000] or geometric texture [Peng et al. 2004].

The detail mesh Md is the subdivision surface that we wish to de-
form through direct manipulation. We can carry out Laplacian de-
formation of Md by minimizing the following energy function:

min
Vd

(

‖LVd − δ̂ (Vd)‖2 +‖CVd −U‖2
)

, (1)

where L is the Laplacian operator matrix of Md , δ̂ (Vd) is the Lapla-
cian coordinates of Vd , and C is the positional constraint matrix and
U is the target positions of the constrained vertices (i.e., vertices un-

der direct manipulation). δ̂ (Vd) is a nonlinear function of the vertex
positions because it includes local rotations.

We must ensure that the deformation result is still a subdivision
surface. For this purpose we rewrite Eq. (1) in terms of the control
mesh vertices Vc. Through subdivision, displacement mapping, and
geometric texture mapping, the vertices of the detail mesh Md may
be computed from Vc as follows:

Vd = f (Vc),

where the function f is determined by the subdivision rules, dis-
placement mapping and texture mapping procedures. We call f the
subdivision detail function. For a subdivision surface without dis-
placement maps or geometry textures, f is simply the linear func-
tion defined by the subdivision matrix, as we shall see. In general
f is a complex nonlinear function.

By replacing Vd with f (Vc) we turn Eq. (1) into

min
Vc

(

‖L f (Vc)− δ̂ ( f (Vc))‖
2 +‖C f (Vc)−U‖2

)

. (2)

This is the basic formulation for the Laplacian deformation of sub-
division surfaces. The deformation proceeds by first solving Eq. (2)
for the control mesh Vc and then applying subdivision rules, dis-
placement maps, and geometric textures to arrive at the deformed
detail mesh Md . Fig. 3 provides an example of subdivision surface
deformation by direct manipulation.

In the following we present our technique for solving Eq. (2), start-
ing with the simple case in which displacement mapping and geo-
metric textures are absent and Md is simply the base mesh Mb.

3.2 Base Surface Deformation

What makes this case simple is the fact that the subdivision detail

function f (Vc) is a linear function. Let Mb = Ml be the lth-level
subdivision mesh of the control mesh Mc = M0 and

Vb = SlSl−1...S1Vc = SbVc.

The subdivision matrix for Mc → Mb is Sb = SlSl−1...S1, where Si

is the subdivision matrix for Mi−1 → Mi (i = 1, ..., l). The subdivi-
sion detail function f (Vc) = SbVc is the linear function defined by
subdivision matrix.

With a linear f (Vc) Eq. (2) becomes

min
Vc

‖AVc −b(Vc)‖
2, where (3)

A =

(

LbSb

CSb

)

, b(Vc) =

(

δ̂ (SbVc)
U

)

,

Figure 3: Subdivision surface deformation via direct manipulation. Top

row: The user deforms the detail mesh using freely selected surface points

as handles (shown as orange dots). Bottom row: Our algorithm automati-

cally adjusts the control mesh accordingly.

where Lb is the Laplacian operator matrix of the base mesh Mb

since we are examining the case when Md = Mb. Here we use Lb

instead of L to emphasize its relationship to Mb. Note that b(Vc) is

a nonlinear function of Vc because of the nonlinear δ̂ .

As in [Huang et al. 2006], Eq. (3) can be solved using an inexact
Gauss-Newton method [Steihaug 1995],

min
V k+1

c

‖AV k+1
c −b(V k

c )‖2. (4)

In each iteration, b(V k
c ) is known and Eq. (4) is solved as a least

squares problem

V k+1
c = (AT A)−1AT b(V k

c ). (5)

3.3 Shell Deformation Solver

The inexact Gauss-Newton method for base surface deformation
essentially uses the following linearization:

AV k+1
c −b(V k+1

c ) ≈ AV k
c −b(V k

c )+(A− Jb(V
k
c ))(V k+1

c −V k
c )

≈ AV k
c −b(V k

c )+A(V k+1
c −V k

c )
= AV k+1

c −b(V k
c ),

(6)
where Jb is the Jacobian of b. This approximation is accurate when

either ‖Jb(V
k
c )‖ ≪ ‖A‖ or the step size ‖V k+1

c −V k
c ‖ is very small.

In practice, the step size is not always small because large step sizes
at the beginning of the iterative process are usually necessary for

fast convergence. Fortunately, we do have ‖Jb(V
k
c )‖≪‖A‖ because

the subdivision detail function f (Vc) is linear and the nonlinearity

of b(Vc) is solely caused by the nonlinear Laplacian coordinates δ̂ .
In this case, b(Vc) is only moderately nonlinear and the above one-
step linearization method suffices. Our experiments indicate that
‖JT

b Jb)‖/‖AT A‖ is in the range of < 1.0e−3.

In general, the detail mesh Md and the base mesh Mb differ and the
subdivision detail function f (Vc) is nonlinear. This nonlinear f (Vc)
leads to highly nonlinear deformation energy functions that cannot
be minimized using the above one-step linearization method. To
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(a) [Huang et al. 2006]

(b) our shell deformation solver

Figure 4: The convergence of the subspace deformation solver [Huang et al.

2006] and our shell deformation solver. The horizontal axis is for time. The

red curves indicate the deformation energy while the blue curves indicate

the iteration step sizes. See the companion video for animated deformation

sequences.

handle such deformation energy functions, we developed the shell
deformation solver. For simplicity, we first describe the shell defor-
mation solver for displaced subdivision surfaces.

Suppose the detail mesh Md is created by applying a displacement
map to the base mesh Mb. Each vertex vi on Mb is displaced by a
distance hi along the normal ni ∈ R3. The vertex positions Vd of the
detail mesh may be computed as follows:

Vd = Vb +HNb,

where Nb = (n1, ...,nm)T is a nonlinear function of the vertex posi-
tions Vb. Since Vb = SbVc, Nb is also a nonlinear function of Vc. H
is a m×m diagonal matrix with H(i, i) = hi. Using Vb = SbVc, we
can compute Vd from Vc as follows:

Vd = f (Vc) = SbVc +HNb.

Now the subdivision detail function f is nonlinear because of the
nonlinear function Nb. With this new f , Eq. (2) can be turned into

min
Vc

‖DVc −d(Vc)‖
2, (7)

D =

(

LdSb

CSb

)

, d(Vc) =

(

δ̂ ( f (Vc))−LdHNb

U −CHNb

)

,

where Ld the Laplacian operator matrix of the detail mesh Md –
we use Ld instead of L to emphasize its relationship with Md . The

function d(Vc) is highly nonlinear due to the nonlinearity of both δ̂
and Nb. Under this circumstance, the one-step linearization method
in [Huang et al. 2006] no longer suffices and the corresponding
Gauss-Newton solver usually runs into convergence problems as
shown in Fig. 4.

The shell deformation solver is an iterative solver for Eq. (7). The
base mesh Mb and the detail mesh Md form a thin shell with inner
boundary Mb and outer boundary Md . In each iteration, the shell

deformation solver optimizes Mb and Md . An iteration starts with
deforming the inner boundary Mb using the position constraints im-
posed on the outer boundary Md . This is done by solving Eq. (4)
according to the inferred position constraints on Mb. The inferred
constraints are derived from U , the given constraints on Md . After
deforming the base mesh Mb, Mb is used to evaluate the nonlinear

Laplacian coordinates δ̂ and displacement normals Nb in d(Vc) in
Eq. (7). Finally, the deformation of the detail mesh Md is computed
for the current iteration using d(Vc) so evaluated.

Specifically, at each iteration k, we first compute an initial guess of

the control mesh vertices V
k+ 1

2
c using Eq. (5) and obtain

V
k+ 1

2
c = (AT A)−1AT b′(V k

c ) (8)

where b′(V k
c ) =

(

δ̂ (SbVc)
U ′

)

with U ′ representing the inferred

position constraints on the base mesh Mb. U ′ is inferred from the
original position constraints U as follows. Suppose a vertex vi on
the detail mesh Md is constrained to move by ∆vi according to U .
Then vi’s corresponding vertex on the base mesh Mb should be con-
strained to move by the same amount ∆vi according to U ′.

To calculate the deformation of Md for the current iteration, we

compute V k+1
c using the deformed base mesh control vertices V

k+ 1
2

c

by solving

min
V k+1

c

‖DV k+1
c −d(V

k+ 1
2

c )‖2.

The result is

V k+1
c = (DT D)−1DT d(V

k+ 1
2

c ). (9)

Fig. 3 shows the deformation results of a displaced subdivision sur-
face. The user directly manipulates the points on the detail mesh.
The control mesh is automatically adjusted and the surface details
are nicely preserved.

Fig. 6 demonstrates the importance of preserving geometric details.
The dinosaur model is a displaced subdivision surface created from
the original scanned model using the algorithm described by [Lee
et al. 2000]. Fig. 6 (c) is the result of deformation without pre-
serving the details of the displacement map. This is generated by
first deforming the base mesh using the algorithm described in Sec-
tion 3.2 and then applying the displacement map to the deformed
base mesh. Fig. 6 (d) is the result of the shell deformation solver,
which preserves the geometric details of the detail mesh. As we
can see from the zoomed versions in Fig. 6 (e) and (f), the geomet-
ric details in Fig. 6 (c) are heavily compressed compared to that of
Fig. 6 (d). Fig. 8 provides another example that demonstrates the
importance of preserving details.

While a complete analysis of the stability of the shell deformation
solver is beyond the scope of this paper, the intuition behind the
solver is not difficult to understand. The shell deformation solver
essentially uses the deformation of the base mesh to compute a
good initial estimation of d(Vc) and thus makes the highly non-
linear d(Vc) trackable. As noted in [Steihaug 1995], the numerical
stability of the Gauss-Newton method heavily depends the nonlin-
earity of d(Vc). d(Vc) includes on two nonlinear components, Nb

and δ̂ , and δ̂ further depends on Nb. This complex nonlinearity
makes the one-step linearization method numerically unstable even
with small step sizes. The shell deformation solver replaces each
Gauss-Newton iteration with two numerically stable deformation
operations. The deformation of the base mesh Mb is stable because

it only involves the nonlinearity of δ̂ and thus can be handle with
the one-step linearization method. The deformation of the detail
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(a)

(b)

(c) (d)

Figure 5: Deformation of a subdivision surface with a complex geometric

texture. (a) Base mesh. (b) Geometric texture. (c) The detail mesh. (d) A

deformation result.

mesh Md is stable because the deformed Mb provides good initial
estimations of Vc and Nb.

We have verified the numerical stability through a wide variety of
experiments. Fig. 4 compares the stability of our shell deformation
solver with the Gauss-Newton solver used in [Huang et al. 2006].
As we can see, our solver converges fast while the Gauss-Newton
solver diverges with oscillations.

Our algorithm can be extended to support displacements along ar-
bitrary directions, although only displacements along the normal
direction are implemented currently. For general displacements,
the displacement direction of each vertex of the base mesh is rep-
resented as a vector in the local frame defined by the vertex normal
and the tangent vectors. These local vectors may be stored as an
additional texture. At run time, we simply compute the global dis-
placement directions using the local displacement directions and
the local frames and feed the results to the shell deformation solver.

3.4 Handling Geometric Textures

The shell deformation solver can also handle subdivision surfaces
with geometric textures. Fig. 5 shows a dragon model mapped with
a squama geometric texture.

We use the shell map [Porumbescu et al. 2005] to map a geometric
texture to the shell space over the base mesh Mb. First we construct
a shell space over the base mesh Mb. An offset mesh Mt , which
has the same number of vertices and the same mesh connectivity as
Mb, is created using the envelope generation algorithm introduced
in [Cohen et al. 1996]. As with displacement mapping, each vertex
vi of Mb is moved by a distance hi along the normal direction at vi.
Thus the vertex positions of the offset mesh Mt can be expressed as

Vt = Vb +HNb,

where Nb = (n1, ...,nm)T , with each ni ∈ R3 being a unit normal
vector. H is a diagonal matrix with H(i, i) = hi.

We define a shell map by decomposing both the shell space (the
space between Mb and Mt ) and the texture space into two sets of
corresponding tetrahedra. The shell map is defined by the barycen-
tric coordinates of the corresponding tetrahedra. Given a point in
the texture space, we can easily locate the tetrahedron it belongs to
and compute its barycentric coordinates. Its corresponding point in

the shell space is located in the corresponding tetrahedron with the
same barycentric coordinates.

With the shell map, the vertex positions of the detailed mesh Md

can be represented as a linear combination of Vb and Vt :

Vd = (Wb Wt)

(

Vb

Vt

)

= WbVb +WtVt = (Wb +Wt)Vb +WtHNb,

where (Wb Wt) is the matrix of barycentric coordinates. Replacing
Vb with SbVc, we get

Vd = f (Vc) = (Wb +Wt)SbVc +WtHNb.

This subdivision detail function f has essentially the same form as
that of the displaced subdivision surface.

The detail mesh Md can be deformed by solving Eq. (7) with a new
matrix D and nonlinear function d(Vc)

D =

(

Ld(Wb +Wt)Sb

C(Wb +Wt)Sb

)

, d(Vc) =

(

δ̂ ( f (Vc))−LdWtHNb

U −CWtHNb

)

.

Again, the nonlinear structures of d(Vc) is the same for displace-
ment maps and geometric textures. As a result, the shell deforma-
tion solver can be applied here.

Note that we can also use other algorithms such as [Peng et al. 2004]
for constructing the offset surface Mt . With [Peng et al. 2004], the
displacements from the base mesh vertices to the offset mesh ver-
tices can be arbitrary. We can represent such displacements us-
ing the local frames defined by the vertex normals and the tangent
vectors, storing the result as a texture. This is the same as a dis-
placement map with arbitrary displacement directions, which we
discussed earlier.

3.5 Implementation Details

The Laplacian operator matrix L can be constructed using the cotan-
gent form as introduced in [Desbrun et al. 1999]. For the Lapla-

cian coordinates δ̂ , we employ the rotation-invariant representa-
tion introduced in [Huang et al. 2006]. Given an inner vertex vi

on the undeformed mesh, its one-ring vertices {vi,1, ...,vi,mi
} and

incident triangles {ti, j = △(vi,vi, j−1,vi, j)}
mi

j=1, its Laplacian co-

ordinate before deformation, δi, is first computed using L. Since
the Laplacian is a discrete approximation of the curvature nor-
mal, it lies in the linear space spanned by the normals of the in-
cident triangles. A set of coefficients µi j is then computed such

that δi = ∑
mi

j=1 µi j

(

(vi, j−1 − vi)× (vi, j − vi)
)

. Note that both L and

{µi j} are precomputed for the undeformed mesh.

In each Gauss-Newton iteration, we need to compute δ̂ . Here we

use δ̂ (SbV k
c )) as an example to show how this is done. We first com-

pute the vertex positions V k
b = SbV k

c , then calculate the Laplacian at
iteration k using {µi j}:

εi(V
k
b ) =

mi

∑
j=1

µi j

(

(vk
i, j−1 − vk

i )× (vk
i, j − vk

i )
)

. (10)

Then we scale the magnitude of εi(V
k
b ) to keep the length of the

original Laplacian before deformation:

δ̂i(V
k
b ) = γi

εi(V
k
b )

‖εi(V
k
b
)‖

, (11)

where γi = ‖δi‖ is the length of the original Laplacian.

Our current system uses the Loop subdivision scheme [Loop 1987].
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(e) (f)

(a) (b) (c) (d)

Figure 6: Preserving details in a displaced subdivision surface. (a) Base

mesh. (b) Detail mesh. (c) Deformation result without detail preservation.

(d) Deformation result with detail preservation. (e) Zoomed version of (c).

(f) Zoomed version of (d). As we can see from the zoomed versions, the

geometric details in (c) are heavily compressed compared to that of (d).

4 Real-Time Deformation on GPU

The main components of our deformation algorithm consist of local
operations such as subdivision and Laplacian coordinates calcula-
tion, and matrix-vector multiplications. These operations can be ef-
ficiently implemented on a programable graphics hardware. In the
following we use the base mesh deformation pipeline (Section 3.2)
as an example to explain how this can be done.

According to Eq. (5), in each iteration we need to evaluate V k+1
c =

(AT A)−1AT b(V k+1
c ). We precompute AT and (AT A)−1 on the CPU

and load the results into the GPU as two textures. Alternatively, we
could precompute (AT A)−1AT and load it as a single texture. How-
ever, we choose not to do so for the following reasons. First, as A is

a sparse matrix, computing AT b(V k
c ) only involves a sparse matrix-

vector multiplication which is inexpensive. Second, we wish to
keep the precomputation time short to facilitate user interaction,
but calculating (AT A)−1AT would involve significantly more pre-
computation time due to the additional multiplication between a
dense matrix (AT A)−1 and a sparse matrix AT . Less precompu-
tation time means quicker response to the user, because each time
the user selects a new set of manipulation handles, we need to re-
peat the precomputation stage. To see this, note that A consists of
two parts, LbSb and CSb. The first part is usually fixed because it
only depends on the undeformed control mesh and the subdivision
level. The second part, however, depends on the user selection of
the manipulation handles which often change during a deformation
session. Precomputing (AT A)−1 thus leads to quicker response to
the user.

The calculation of b(V k
c ) consists of two parts: δ̂ (SbV k

c ) and U .
Obtaining U is easy because it comes directly from the user in-

put. To compute δ̂ (SbV k
c ), we need to get the base mesh vertices

V k
b = SbV k

c through subdivision, which can be efficiently performed
using the subdivision kernel introduced in [Shiue et al. 2005]. The
control mesh is first preprocessed into a set of fragment meshes.
The fragment meshes that share the same lookup table are placed
into a group and stored as a 2D texture using the spiral enumera-
tion. Each fragment mesh in the group is mapped to a row in the 2D
texture. Then in the fragment shader, the look-up table is used to fill
the necessary subdivision stencil for each row. The subdivision re-
sults (vertex positions and normals) are either stored as 2D textures

Model # Vc Subd. Level # Vd FPS

Dinosaur (Fig. 3) 721 4 184,066 125

Teapot (Fig. 1(b)) 296 2 61,052 113

Dragon (Fig. 5) 1,157 2 22,706 122

Tower (Fig. 8) 68 2 29,995 122

Armadillo (Fig. 9) 1,202 4 307,202 103

Table 1: Statistics for the examples used in the paper, including the numbers

of vertices for the control and detail meshes, the subdivision levels, and the

frame rates of the GPU implementation.
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Figure 7: The user can create real-time animations by driving a subdivision

surface with motion capture data. Here is an example of setting up corre-

spondences between the skeleton joints in the motion capture data and the

handles on the subdivision surface.

for subsequent processing or sent to pixel buffer objects (PBOs) for

rendering. Once we get V k
b , δ̂ (V k

b ) can be computed according to
Eq. (10) and Eq. (11).

For the final evaluation of V k+1
c = (AT A)−1AT b(V k

b ), we perform

a sparse matrix-vector multiplication between AT and b(V k
b ) using

the method described in [Bolz et al. 2003], followed by a dense

matrix-vector multiplication between (AT A)−1 and AT b(V k
b ) which

is carried out as in [Kruger and Westermann 2003].

5 Experimental Results

We have implemented the described algorithm on a 3.7Ghz PC with
2GB of memory and an NVidia 8800GTX graphics card. See the
companion video for animated versions of the figures and other de-
formation examples. All video clips are captured live from our de-
formation system.

Fig. 3 and Fig. 6 show deformation results for displaced subdivi-
sion surfaces. Color textures are easily supported in our deforma-
tion system, as shown in Fig. 10. Fig. 1 (a) and Fig. 8 show the
deformation results with geometric textures. The user directly ma-
nipulates the points on the geometric textures. The control mesh
is automatically adjusted and the geometric details are nicely pre-
served. The tower in Fig. 8 is generated by mapping a geometric
texture over a simple cylindric base mesh. This example demon-
strates the importance of preserving surface details for high quality
deformation results.

With our GPU deformation algorithm, an animator can create visu-
ally pleasing, real-time animations from a static subdivision surface
and motion capture data (Fig. 9 and Fig. 10). The user simply se-
lects vertices on the subdivision surface as handles and specifies a
corresponding joint on the skeleton of motion capture data for each
handle (see Fig. 7). Then the handle will move following the joint.
Sometimes it is helpful to use a group of surface points as a handle.
In that case, the centroid of the handle moves following the corre-
sponding joint. Note that [Shi et al. 2006] also uses motion capture
data to create mesh animations and they need to build a volumet-
ric graph inside the mesh to get the rotation constraints from the

6
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Figure 8: Detail preservation for subdivision surface deformation. From left to right: the original model, deformation with detail preservation, and deformation

result without detail preservation. The result of deformation without detail preservation is generated by first deforming the base mesh using the algorithm

described in Section 3.2 and then mapping the geometric texture onto the deformed base mesh.

bone transformation of motion capture data. We do not need such
a volumetric graph because our algorithm can automatically infer
rotations from handle translations. More importantly, [Shi et al.
2006] need several seconds to generate a frame frame while our
GPU algorithm runs at real time.

Table 1 provides some statistics for the examples shown in the pa-
per. For all examples, our deformation system can achieve real-time
performance. As mentioned, when the user adds new handles or re-
moves old handles, the positional constraint matrix C will change.
Therefore, we need to re-compute the matrix inverse for (AT A)−1

and (DT D)−1. Fortunately, the dimensions of these matrices are
decided by the vertex number of the control mesh, which is much
smaller than the detail mesh. For all examples shown in this paper,
this computation takes around 0.1 ∼ 3 seconds. The coefficients
{µi j}, the Laplacian and subdivision matrices are fixed during de-
formation and not affected by the handle selections. The precompu-
tation time for these items are less than 7 seconds for all examples.

6 Conclusion

We have described an algorithm for interactive deformation of sub-
division surfaces. This algorithm works for all commonly used sub-
division surfaces, including displaced subdivision surfaces and sub-
division surfaces with complex geometric textures. With our algo-
rithm, the user can directly manipulate subdivision surfaces using
freely-selected surface points as handles. The most important fea-
ture of our algorithm is that it combines the strengths of gradient do-
main techniques and subdivision surfaces to achieve both visually
pleasing deformation and high performance. Specifically, our sys-
tem automatically preserves surface details, generating high-quality
deformation results by minimizing a deformation energy that incor-
porates both the Laplacian and handle position constraints. While
significant computation is needed for minimizing a highly nonlinear
deformation energy, our algorithm, designed with local operations
and equipped with a novel shell deformation solver, achieves real-
time performance on the GPU and is orders of magnitude faster than
the state-of-the-art fast mesh deformation solver based on multi-
grid.

As a topic of future research, we plan to explore the use of adaptive
subdivision in our system. Our current system only supports uni-
form subdivision. We are also interested in developing techniques
for collision-free deformation with geometric textures. When de-

forming geometric textures, we do not update the offset surface and
thus cannot guarantee collision-free deformation. If collision oc-
curs locally, it is possible to prevent it by updating the offset surface
interactively as described in [Peng et al. 2004]. However, a general
solution to this problem merits further investigation.
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