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Figure 1: (a) Clothing deformations with detailed wrinkles for various clothing models and body poses synthesized using our method. (b)
Our method generates hundreds of highly realistic clothing deformations for various poses in real time.

Abstract

We present a real-time solution for generating detailed clothing de-
formations from pre-computed clothing shape examples. Given
an input pose, it synthesizes a clothing deformation by blending
skinned clothing deformations of nearby examples controlled by
the body skeleton. Observing that cloth deformation can be well
modeled with sensitivity analysis driven by the underlying skele-
ton, we introduce a sensitivity based method to construct a pose-
dependent rigging solution from sparse examples. We also develop
a sensitivity based blending scheme to find nearby examples for the
input pose and evaluate their contributions to the result. Finally, we
propose a stochastic optimization based greedy scheme for sam-
pling the pose space and generating example clothing shapes. Our
solution is fast, compact and can generate realistic clothing anima-
tion results for various kinds of clothes in real time.
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1 Introduction

State-of-the-art clothing simulation techniques are capable of gen-
erating highly detailed clothing shapes and dynamics under various
body poses and motions. However, producing high quality clothing
deformation results in real time is still challenging. A subtle un-
derlying body pose change can lead to rich wrinkles and complex
deformation behaviors of clothing. Moreover, this non-linear influ-
ence of body to clothing is non-local. For example, clothing around
the abdomen will be deformed when an arm is raised.

Physically based simulation directly models the non-linear behavior
of clothing [Nealen et al. 2006; Choi and Ko 2005]. However, high-
resolution clothing meshes and expensive nonlinear solvers are al-
ways required for generating realistic clothing deformation results,
which makes them difficult to be used in real-time applications such
as games and virtual try-ons. Data-driven clothing simulation ap-
proaches synthesize cloth deformations from pre-computed cloth-
ing deformation samples at different body poses. To achieve real-
time performance, these methods compromise the result quality by
simplifying the relationship between the deformed clothing and un-
derlying body poses [de Aguiar et al. 2010; Wang et al. 2010; Guan
et al. 2012] by assuming linearity or locality. A recent contribution
by [Kim et al. 2013] exhaustively sampled clothing deformations
with respect to a motion graph to synthesize realistic clothing de-
formations at run time. However, its exhaustive sampling procedure
needs substantial computational resources.

In this paper, we present a pose-dependent skinning scheme to
achieve real-time detailed clothing deformation. Our method con-
sists of two stages: an offline rigging stage and a run-time synthesis
stage. Given a set of pre-computed example clothing deformations
sampled at different poses, we first rig the example clothing shapes
to their poses with the underlying body skeleton bones at each ex-
ample pose in the offline stage. To model the non-local influence of
body movements on clothing deformations, our method associates
each cloth vertex with both nearby bones and a remote bone. At
run time, our method synthesizes a clothing deformation of the in-
put pose by blending skinned clothing deformations computed from
its nearby examples.



Constructing an optimal pose-dependent skinning scheme from
sparse examples is a non-trivial task. A naive approach is to fit
all parameters of the pose dependent skinning scheme with a large
number of clothing shapes sampled in the pose space. However, the
computational cost for both sampling and fitting are prohibitively
high. We thus present a unified framework for constructing a pose-
dependent rigging solution optimally based on the sensitivity anal-
ysis of static equilibrium of clothing deformation [Umetani et al.
2011]. Sensitivity analysis has been widely used to model the lin-
ear response of equilibrium simulation with respect to parameter
perturbations based on the laws of physics. In our case, it is able
to well predict the non-local influence of body pose change to the
clothing deformation without expensive physical simulation.

The core of our method is an efficient sensitivity-optimized rigging
algorithm for selecting the remote bones and trainings the skinning
weights in the offline stage. To efficiently blend the predicted cloth-
ing deformations from our skinning scheme at run time, we also
develop a sensitivity-based distance measure to find the nearby ex-
amples for an input pose and blend the skinning deformation re-
sults generated from these example poses for synthesizing the final
result. Finally, we present a MCMC-based stochastic sampling pro-
cess for selecting the sparse sample poses that are capable of cover-
ing a wide range of clothing deformation space, leading to a more
compact and efficient example database.

Our pose-dependent skinning scheme provides a compact and effi-
cient clothing animation solution for many real-time applications.
Although our skinning scheme is trained from the static equilibrium
of clothing deformation and can not capture salient inertia effects
of clothing animation, it achieves a good balance between visual
quality, performance and memory consumption. As illustrated in
Figure 2, it well reproduces the non-local and nonlinear cloth de-
formation behaviors. Our method also inherits the compactness and
high performance of the traditional skinning clothing deformation
scheme. With a small number of examples (from 100 to 150), our
method can generate detailed deformations of a clothing mesh with
12, 000 vertices over 60FPS on an ordinary consumer hardware.
We validate our method with various kinds of garments, including
T-shirts, long sleeves, long pants, and shorts. Figure 1 illustrates
some results generated by our method.

In summary, the contributions of our method are:

• A pose-dependent skinning scheme that uses nearby bones
and a remote bone for modeling the non-linear clothing de-
formation with moderate storage cost.

• A sensitivity-based rigging algorithm for constructing the
skinning solution and efficiently blending the predictions gen-
erated from different examples.

• A stochastic optimization and incremental greedy technique
for efficient example database construction.

2 Related Work

Physics-based clothing simulation. Physics-based clothing
simulation has been a hot research topic in the field of computer
graphics for almost two decades (please see [Nealen et al. 2006;
Choi and Ko 2005] for a comprehensive review of this topic). Its
central task is to construct physical models for different types of
clothing deformation behaviors. These include the bending mod-
els of [Grinspun et al. 2003; English and Bridson 2008; Choi and
Ko 2002] for buckling effects, the membrane model of [Volino
et al. 2009] for nonlinear tensile stiffness, and the contact mod-
els of [Bridson et al. 2002; Harmon et al. 2008; Govindaraju et al.
2005; Zheng and James 2012] for self-collision avoidance. Aside

(a) (b)
Figure 2: Our pose-dependent skinning vs. traditional skinning for
clothing deformation synthesis. (a) The result generated by tradi-
tional skinning. (b) The result generated by our skinning scheme.
By blending deformation of different examples and using remote
bones for modeling non-local clothing deformations, our method
can synthesize realistic clothing deformation.

from thin-shell models, yarn-based knitted cloth simulation was ex-
plored by [Kaldor et al. 2008]. Because high-resolution cloth mesh
simulations impose a heavy computational load, researchers have
introduced adaptive meshing to make the simulations more effi-
cient [Narain et al. 2012]. Recent contributions start to simulate
complex internal friction phenomena and contact friction for cloth
to produce realistic wrinkling effects [Chen et al. 2013; Miguel
et al. 2013].

Many commercial game engines, such as Nvidia PhysXTM,
HavokTMand BulletTMsupport real-time clothing simulations using
a simplified mass-spring system, and the GPUs are used to accel-
erate simulation [Müller et al. 2007]. However, most games still
adopt skinning-like rigging techniques for clothing animation syn-
thesis, as the costs of a matrix solver and collision handling raise the
run-time cost, even at a low resolution. In this study, we improved
upon current practices by synthesizing highly detailed clothing an-
imations that do not require physical simulation.

Multi-resolution clothing simulation. One strategy for acceler-
ating a high-fidelity clothing simulation is to separate it into coarse
and fine meshes and compute their deformations separately: a fine
mesh can be used to describe detailed wrinkles on top of a coarse
mesh simulation. Wrinkle meshes [Müller and Chentanez 2010]
are used to perform static high-resolution clothing simulations and
can synthesize detailed wrinkles in a few iterations. The target ap-
plication for this kind of simulation is computer games.

Another approach is to learn a map between coarse simulation
results and the corresponding high-resolution clothing deforma-
tions, such as deformation transformers [Feng et al. 2010], implicit
geometric deformer [Rohmer et al. 2010], physics-inspired up-
sampling [Kavan et al. 2011], or local displacement vectors [Zurdo
et al. 2013]. Although these methods can generate detailed wrin-
kles, their generalization to new types of character motions is still
limited by the training data. Wang et al. [2010] proposed mod-
eling wrinkle deformations as a function of local joint angles re-
constructed by blending pre-computed detailed clothing simulation
data. Their local model works well for tight clothing, but it cannot
generate medium-scale wrinkles. It may produce artifacts for loose
clothing.

In contrast, our method directly trains prediction models on high-
resolution meshes. Moreover, the trained model can be imple-
mented simply as a skinning scheme at run time without coarse
simulation.
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Figure 3: Overview of our clothing synthesis workflow. Given a query pose and a skinned body mesh, we firstly choose nearby clothing
examples for each region. For each example, we deform the clothing mesh with the examples’ sensitivity-optimized rigging scheme (SOR).
We then blend the deformations to synthesize an intermediate mesh. We then resolve penetrations and add dynamic effects and damping.

Data-driven clothing deformation. Data-driven clothing defor-
mation methods are designed to approximate the statics or dynam-
ics of clothes from pre-computed clothing deformation data. Here,
we focus solely on data-driven methods without coarse-level sim-
ulations. James et al. [2003] built an easy-to-control reduced state
space model for clothing deformation, which enables real-time re-
sponses for simple user interactions, such as translation and ro-
tation. Cordier et al. [2004] proposed a data-driven approach to
figure out potential collision areas between clothing and the body.
They also developed a geometric approach to deduce the detailed
clothing deformation from real-time coarse simulation using of-
fline clothing simulation data. The driven-shape technique [Kim
and Vendrovsky 2008] computes the blending weights by match-
ing body shape to blended clothing examples. Weber et al. [2007]
also parameterized clothing deformation with the undrlying body
pose. Different from these methods, we use optimized rigging and
a fast weighting scheme via sensitivity analysis to synthesize real-
istic clothing draping effects. Recently, Kim et al. [2013] presented
a technique to reproduce secondary motion of clothing deformation
for a specific motion graph. However, this method needs substantial
computational resource for pre-computation.

A compact representation of the relationship between the con-
trol parameters and the corresponding clothing deformation can be
achieved by constructing a regression model. This has been widely
used in character skinning to improve the quality of skeleton sub-
space deformation [Lewis et al. 2000; Kry et al. 2002; Wang et al.
2007]. For instance, Kry et al. [2002] proposed to precompute the
PCA of the deformation influences of a single skeleton joint and in-
terpolate the coefficients of the basis to reconstruct the deformation
in real time. Wang et al. [2002] developed a multi-weight linear
model to predict skin deformations with regard to pose parameters.
For clothing deformation, De Aguiar et al. [2010] proposed a lin-
ear dynamic model from pre-computed clothing deformations on a
specific virtual character. This method is stable, but not suitable for
modeling highly detailed wrinkles. Recently, Peng et al. [2012] in-
troduced the DRAPE model, which can automatically put clothing
on characters with various body shapes and poses using a regression
technique derived from SCAPE [Anguelov et al. 2005]. However,
nonlinear clothing behavior arising from complicated interactions
with the body surface is difficult to capture in a single regression
model; it results in costly regularization and penetration-resolution
computations at run time.

Sensitivity Analysis. Sensitivity analysis has been applied in
the field of graphics to various optimization problems such as 2D
rod design [Derouet-Jourdan et al. 2010] and 3D masonry de-
sign [Whiting et al. 2012]. Aside from optimization problems,
Umetani et al. [2011] applied sensitivity analysis to the interactive
design of clothing patterns and enabled interactive feedback from

physical simulations during editing. They also applied this tech-
nique to suggestive design of structurally sound furniture [2012].
In this work, we apply sensitivity analysis for modeling nonlinear
clothing deformation.

3 System Overview

System input. The input to our system is a body mesh X with
NX vertices and a clothing mesh Y with NY vertices on the body.
We also define an articulated skeleton B with NB bones and NL
joints inside the body mesh to drive the deformations of the body
mesh and the clothing mesh. We represent a body pose by p =
[R1, . . . ,RNB ], where Rb ∈ SO(3) is an absolute rotation of
a bone b. The differences between two poses pi and pj can be
encoded as a vector by concatenating all joint rotations’ differences
as Θ(pi,pj) = [θi,j1 , . . . ,θi,jNL

] ∈ R3NL , where θi,jl ∈ R3 is the
Euler angles of each joint l’s rotation difference. Hereafter, we use
b and l to index the function values defined for the bones and joints.

We assume the skinning scheme of the body mesh is known. In our
implementation, we follow the dual-quaternion [Kavan et al. 2008]
method for modeling the skinning deformation of body mesh and
generate the skinning weights of body mesh vertices with Maya TM.
We cancel out the translation freedoms of the body mesh by lo-
cating the skeleton’s root bone at the origin of the world coordinate
system. As a result, the body meshX deformation can be computed
as X (p). For the skinning weights wb ∈ R defined at each vertex
for each bone b, we have

∑NB
b=1 wb = 1. The top row of Figure 4

illustrates the skinning weights of the body mesh. We drop the ver-
tex index for the skinning weights of the body mesh and clothing
mesh to simplify the notation.

To model the non-linear deformation of clothing mesh under differ-
ent poses, we also precomputes a set of examples of body meshes
X J (J = 1, . . . ,NJ ) skinned under pose pJ and their corre-
sponding clothing meshes YJ (Section 6). Hereafter, we denote
values computed for an example pose pJ with a superscript J .

Our solution. Our system consists of two stages: the offline rig-
ging stage and the run-time clothing synthesis stage. In the rig-
ging stage, we construct a skinning scheme for each example pose.
Specifically, to compute the position of a clothing vertex ȳJ for an
input pose pin, our skinning scheme transforms the position of the
same clothing vertex yJ at its nearby example pose pJ by

ȳJ =

NB∑
b=1

{
wJb

(
RJ,in
b yJ + TJ,in

b

)
+ RJ,in

b τJb TJ,in
b

}
, (1)



where RJ,in
b and TJ,in

b represent the relative rotation and transla-
tion of a bone b from pJ to pin, and wJb and τJb are bone rotation
and translation weight defined on the clothing vertex respectively.

The bone rotation weight wJb is used to deform the example cloth-
ing deformations to an input pose according to bone rotations,
which can be viewed as the standard weighting scheme in skele-
ton subspace deformation. The bone translation weight τJb is a
3 × 3 matrix that transforms the bone center translation to its in-
fluence on the clothing deformation, which is similar to the multi-
weighting scheme in [Wang and Phillips 2002]. Note that the trans-
lation weight defined for each clothing vertex actually plays a cor-
rective linear model to improve the prediction from the rotation
weight. We thus do not need partition of unity property of transla-
tional weighting scheme. The combination of rotation and transla-
tion weights is to approximate the non-local and nonlinear clothing
deformation behaviors in prediction when example poses approach
the input pose from different directions. For each example pose,
our Sensitivity-Optimized Rigging scheme (SOR) selects the bones
and computes their rotation and translation weights for each cloth
vertex (Section 4).

In the runtime stage, our method computes the deformed clothing
shape for each input pose pin (Section 5). As shown in Figure 3,
the system first searches the examples to find the nearby poses
pJ and their clothing shapes YJ using a sensitivity-based distance
measure. For each nearby pose, its sensitivity-optimized skinning
model is applied to predict the clothing deformation for the input
pose pin according to Equation 1. After that, we get the position of
each clothing vertex yin at the input pose by blending the clothing
shapes deformed from all nearby example poses by

yin =
∑NJ
J=1w

J(pin)ȳJ , (2)

where wJ(pin) is the blending weight for the input pose defined
at each vertex that is computed using our sensitivity-based distance
measure technique. Finally, we refine the clothing shape by resolv-
ing penetrations between clothing mesh and the underlying body
mesh.

Sensitivity analysis. Our method uses sensitivity analysis for
constructing the skinning scheme of each example pose and mea-
suring the distance of clothing shapes under different poses. Sen-
sitivity analysis describes how the simulation results change with
small changes in input parameters with first-order accuracy [Gal-
lagher 1973]. In our case, we compute clothing deformations at a
static equilibrium, where internal stress is in balance with external
force. This can be described by an implicit function F(X ,Y) = 0,
where F ∈ R3NY is the residual force of the system, i.e. the gradi-
ent of the total system energy [Umetani et al. 2011].

Let an example pose pJ be perturbed with a small joint rotation
change ∆Θm, where ∆Θm is the m-th parameter of the joint rota-
tion angle vector Θ(pJ ,p). The sensitivity analysis gives a sensi-
tivity of ∆Ym, a first-order approximation of the change in cloth-
ing deformation, which can be written into the following formula
according to the implicit function theorem:

∆Ym ≈ − (∂F/∂Y)−1 {F(X + ∆Xm,Y)− F(X ,Y)} , (3)

where ∆Xm is the change in body mesh with respect to a small vari-
ation of a joint l = dm

3
e. Assuming that skinning is smooth with re-

spect to joint rotation, we can simply compute the sensitivity using
finite differencing as ∆Xm = X (∆Θm)−X J . This sensitivity in-
formation can be computed numerically: ∆Ym = Y(∆Θm)−YJ .
It is a reasonable choice when clothing is simulated by off-the-shelf
commercial software packages that do not provide sensitivity infor-
mation.

With Equation 3, we compute sensitivity for each clothing vertex–
joint pair, namely Sm = ∂Y/∂Θm ∈ R3NY , at each example J .
We can approximate the clothing sensitivity due to the change of
joint angle at example J as

Y(pin)− YJ '
3NL∑
m=1

SJm∆Θm, (4)

where pin is an arbitrary input for a parameterized pose, and ∆Θm

here is the m-th joint rotation angle of Θ(pJ ,pin) at that pose.

Although the linear prediction with sensitivity analysis in Equa-
tion 4 provides a good approximation of clothing deformation
around an example pose, we can not directly apply it to clothing
deformation. This is because the storage cost of the sensitivity ma-
trix (in 3NY × 3NL) is huge and the linear behavior of sensitivity
matrix cannot well predict the non-linear behavior of cloth defor-
mation caused by the rotation between the input pose and the ex-
ample pose. In our solution, we model the cloth deformation with
pose-dependent skinning scheme and apply sensitivity analysis for
constructing our solution.
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Figure 4: Distributed weights for bones over the body surface (top)
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Figure 5: Distribution of α for chest bone, showing global influ-
ence of this bone in the example pose (a). While there are unnatural
wrinkles in the clothing deformation computed from local skinning
weight only (b) with respect to upper body twist, our SOR method
generates natural draping shape (c), which agree with ground truth
equilibrium shape (d). The color bar here indicates the magnitude
of ρ in Equation 7 that is difference from sensitivity analysis.

4 Sensitivity-Optimized Rigging

Given a set of pre-computed examples of body meshes X J skinned
under pose pJ and their corresponding clothing meshes YJ , our
sensitivity-optimized rigging scheme (SOR) determines the associ-
ated bones and their weights for each clothing mesh vertex at each
example pose J in Equation 1. In particular, we first select the



nearby bones for each clothing vertex. We then determine the re-
mote bone and compute the rotation weights of all bones wJb using
the sensitivity analysis result at pose J . Finally, we compute the
translation weights for all of the bones.

Nearby bone selection. To determine the nearby bones of a
cloth vertex, we first find its closest vertex on the body mesh YJ
at the rest pose J = 1 (as shown in the middle row of Figure 4)
and record it as the corresponding body mesh vertex of this cloth
vertex. We then assign the associated bones of this corresponding
body mesh vertex to the cloth vertex as its nearby bones. As a re-
sult, most cloth vertices are associated with only one nearby bone,
while the cloth vertices that are close to skeleton joints are associ-
ated with two or more nearby bones.

Remote bone selection and rotation weights training. For
each cloth vertex, we define the rotation weight of each bone as

wJb = (1− αJ)wb + αJδ(b, bJ), (5)

where wb ∈ R is the skinning weight of the corresponding body
mesh vertex for the same bone b (as shown in Figure 4). The remote
bone bJ is used to approximate the motion of cloth vertex affected
by remote body surface motion. The Kronecker’s delta δ(b, bJ) is
1 if b is equal to bJ ; otherwise 0. Therefore, the first local influence
term describes how the clothing vertex moves with nearby under-
lying body surface, while the second term defines how the clothing
vertex moves with a remote bone bJ . The αJ is the blending ratio
of two terms.

Given the rotation weight definition, we compute the blending ratio
αJ and determine the remote bone bJ by minimizing the difference
between the response of physical deformation ∆y obtained from
sensitivity analysis and ∆ȳJ obtained from the SOR scheme Equa-
tion 1 under small joint rotation ∆Θm. The change of each joint
angle is set to be 0.5 degree in our system to form ∆Θm.

The clothing deformation difference can be converted to the dif-
ference in sensitivity, given the joint angle change ∆Θm. To this
end, we first compute a sensitivity sJm that describes the change of
clothing vertex y with respect to ∆Θm (in Equation 3). Then, we
compute the sensitivity ∆ȳJ of SOR using Equation 1:

∆ȳJ = ȳJ(∆Θm)− yJ = s̄Jm(α, b)∆Θm, (6)

where s̄Jm(α, b) is the sensitivity matrix of SOR for a specific
choice of bone b and ratio α. Similarly, s̄Jm(α, b) can be easily
computed using a numerical derivative.

The optimal bone bJ and ratio αJ are chosen to minimize the dif-
ference between sm and s̄Jm(α, b) in a least squares manner:

ρ(α, b) =

3NL∑
m=1

∥∥∥sJm − s̄Jm(α, b)
∥∥∥2 , (7){

bJ , αJ
}

= arg min
α∈[0,1],1≤b≤NB

ρ(α, b), (8)

where ‖s‖ is a L2 norm of the vector s. The derivative of s̄Jm(α, b)
with respect to α is computed as ∂s̄Jm(α, b)/∂α = s̄Jm(1, b) −
s̄Jm(0, b). Equation 7 is optimized for each possible choice of b,
and the optimal

{
bJ , αJ

}
are chosen so that Equation 7 is mini-

mized. Figure 5(b) and (c) show how SOR reduces the sensitivity
approximation error compared to naı̈ve rigging weights using the
nearest body surface’s weight wb as the clothing rigging weight.
Please notice the natural draping shape of the clothing around the
abdomen produced by SOR.

Translation weights training. After the rotation weights and the
remote bone are determined, we compute the translation weights
for nearby bones only. The translation weights for the remote bone
are set to zero.

According to Equation 1, the prediction errors of clothing defor-
mations with bone rotation weights can be computed by ey =

ȳJ −
∑NB
b=1 w

J
b

(
RJ,in
b yJ + TJ,in

b

)
. For translation weight com-

putation of a clothing vertex, we first represent ey in the local coor-
dinate systems of bones, distribute ey using the skinning weight of
its closest body surface vertex, and then train the weights using reg-
ularized least-squares fitting. We modify the joint angles ∆Θm to
obtain enough samples for rotation weight training and translation
weights training. With our two-step rigging scheme, our skinning
scheme can efficiently reduce the prediction errors for new input
poses.

5 Run-time Clothing Deformation

Given an input pose, our method first finds its nearby example poses
through a sensitivity-based distance measure and then compute
clothing deformation results with the constructed skinning schemes
from each nearby example pose as shown in Equation. 1. After that,
we blend the clothing deformation results with blending weights
computed from the distance measure. To improve the result quality,
we decay the blending weights change between frames and apply
a simple scheme to resolve the penetrations between cloth and the
body surface.

Sensitivity-based distance measure for blending. The sensi-
tivity distance measure is a metric for searching the nearest neigh-
bor examples and blending their skinned clothing deformations.
While the distances using joint angles or body surfaces are natu-
ral candidates for the distance measure, they are only indirect mea-
sures of the differences in clothing deformations between exam-
ples and the input pose. Due to the curse of dimensionality, mea-
suring distance based on differences in body surface is computa-
tionally expensive and may require a substantial amount of mem-
ory [de Aguiar et al. 2010].

Therefore, we resort to a distance measure that directly approxi-
mates differences between clothing meshes using sensitivity infor-
mation. Specifically, the difference between two clothing meshes
is: ||Y(pin) − ȲJ ||2, where Y(pin) are actual clothing meshes
in the query pose and ȲJ is the prediction computed using SOR.
But how can we get Y(pin), which is not included in the query?
The key idea again is sensitivity analysis to estimate Y(pin) from
examples clothing shapes. Thus, we call the distance measure the
sensitivity-based distance measure. Moreover, the sensitivity anal-
ysis technique for clothing deformation used in Equation 4 can ren-
der the distance computation back to joint angles. It is computa-
tionally efficient since the number of joint angles is much less than
clothing mesh vertices.

Following [Wang et al. 2010], we further loosely decompose the
clothing mesh into several regions g so that the nearby examples
can be determined for each region, since this can efficiently reduce
the required examples in database. The regions are carefully deter-
mined to make the clothing deformation at each region relatively
independent. As illustrated in the top-left of Figure 7, we manu-
ally separate the bones into NG regions (NG = 7 in our examples)
based on their influences. We then compute a region weight ŵg,y
for each clothing vertex y. Specifically, the region weight for each
clothing vertex is computed as the sum of the skinning weights of
its closest body mesh vertex at J = 1 for the bones that belong to
the region. In this way, for a clothing vertex y whose associated



bones belong to the same region g, its weight ŵg,y for the region
will be 1; and 0 for the rest regions. For those clothing vertices
associated to bones that are not in the same region, the sum of their
region weights is guaranteed to be 1. Note that this region weight is
smooth over the clothing mesh so that we can maintain smoothness
around the joints.

For each region, we compute the distance DJ
g (pin) between the

clothing shapes of an example and an input pose by approximating
weighted sum of differences in clothing meshes as a weighted sum
of the difference in joint angles:

DJ
g (pin) '

∑
y∈Y

ŵg,y

∥∥∥yin − ȳJ
∥∥∥2

'
∑
y∈Y

ŵg,y

3NL∑
m=1

∥∥∥(sJm − s̄Jm)∆Θm

∥∥∥2
'

3NL∑
m=1

UJg,m ‖∆Θm‖2 , (9)

where the weight UJg,m =
∑
y∈Y ŵg,y

∥∥sJm − s̄Jm
∥∥2 represents

how much the joint angle differences result in clothing deformation
differences, predicted by the sensitivity analysis using Equation 4.
We compute the weight in the offline training stage at each data
point, where sJm and s̄Jm are available.

Because this weighting scheme has a dimension of NG × (3NL)
and is very compact, we can compute the distance very quickly with
small storage cost. Our weighting scheme is pose-dependent. The
distribution

∥∥sJm − s̄Jm
∥∥2 over the clothing mesh varies from pose

to pose as illustrated in Figure 6, wherem is selected to be the right
shoulder joint.
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Figure 6: Distribution of differences in the sensitivity matrix over
a clothing mesh. We compute the sensitivity matrix with respect to
the rotation of the right shoulder joint. The numbers on the regions
represent values of UJg,m.

Given the sensitivity based distance DJ
g (pin), we compute the

distance weight for clothing shapes deformed from each example
pose with the k-th power of the inverse distances W J

g (pin) =

1/(DJ
g (pin)+ε)k. Here ε is a small number (default of 10−15) that

prevents division by zero. We can control the influence of closer
examples by increasing k, sacrificing the smoothness of animation.
Our experiments revealed that blending a large number of example
deformations with similar weights smoothed the fine details of the
clothing. While using the result deformed from the nearest example
pose results in discontinuity of the animation due to changes of a
nearest example. In our current implementation, we set k = 6.

Finally, the blending weight for each clothing vertex wJ(pin) in
Equation 2 is computed by its region weight and distance weight as

wJ(pin) =

NG∑
r=1

(
ŵgW

J
g (pin)/

∑NJ
J=1W

J
g (pin)

)
. (10)

Figure 7: Various deformation examples used to synthesize the de-
formation result for different parts of the human body.

For simplicity, we also drop the vertex index for all variables related
to clothing mesh vertices in this equation.

Decaying effects. Given an input pose, the corresponding cloth-
ing shape is generated by blending the example clothing shapes us-
ing SOR and sensitivity-based distance measure. In most cases,
the sensitivity-based weighting scheme described above produces
time-coherent output since the distance between input and exam-
ples changes smoothly over time. However, for sudden input pose
changes, the weighting scheme may still experience sudden change
and consequently produce sudden changes in the clothing synthesis
result. We prevent such a problem by introducing distance damp-
ing, where damping is achieved by blending the distance at the
current time step DJ

g with that of the previous time-step D′Jg as
DJ
g := ξD′

J
g + (1− ξ)DJ

g . Here the ratio ξ = exp(−dt/tmix) is
determined by step size dt and constant time tmix. We chose tmix
as 0.05s. This means that the clothing will continuously change
around 0.05s. This damping scheme is an ad-hoc method, which
mimic the delayed deformation response of clothing with respect to
rapid body motion.

Resolving penetrations. The final step in run-time clothing syn-
thesis is to resolve penetrations, which is actually a re-projection
scheme as illustrated in Figure 8. After obtaining the intermedi-
ate blending result for an input pose, we can return to each of its
nearest deformation examples and resolve penetrations by project-
ing clothing vertices along the normal direction of their associated
body vertices, which can be formulated into the following formulas:

ŷJ = yin + nd̄J (11)

d̄J = −min
{
hJ − d0J , 0

}
, (12)

where ŷJ is the warped vertex position. The symbol d̄J is the
penetration depth in the current configuration, and d0

J is the
minimum allowed penetration clearance chosen. We set d0J =
min{h0

J , εp}, where h0
J is the height of a clothing vertex over its

associated vertex vJ in the example configuration. In all of our test,
we set εp as 5mm, the same margin as the penetration depth margin
in the clothing physics simulation. This ensures that the depth of a
clothing vertex point is not deeper than the initial depth h0

J or the
clearance height εp. After we project the vertex using the nearest
body vertex, we can blend the projected position again to update
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Figure 8: Our overall penetration resolution scheme. First, a cloth-
ing vertex is predicted for the input pose from its nearby example
deformations (red points), and then they are blended into an in-
termediate vertex position yin (blue point). This is projected onto
the body surface for each example ŷJ (green points). Finally, it
is blended again to produce the final output position ȳin (orange
point).

the final output vertex position using the weight in Equation 10 as:

ȳin =
∑NJ
J=1w

J(pin)ŷJ . (13)

Our penetration-resolving scheme works well for surfaces that can
be locally approximated using spheres or cylinders, because in this
case the projected vertex is guaranteed to be outside the body sur-
face. Given the fact that skinned human body surfaces usually meet
this requirement, especially in games, this scheme works well in
most situations.

6 Example Database Construction

So far, we have described how to reconstruct deformed clothing
shape for an input pose based on its nearby example poses. In this
section, we will focus on how to sample example poses to build a
compact database with high prediction capacity. Previous example-
based clothing studies have used either empirically selected poses
or sampled pose spaces with joint angles at certain intervals [Wang
et al. 2010]. However, it is difficult to evaluate the performance
of a database created by those methods: biased clothing deforma-
tions from the samples or wasted valuable storage space might oc-
cur when the sampled clothing deformation is not important to the
final result.

Our sampling scheme is guided by a prediction error for example
poses pJ ∈ P , where the error can be viewed as a measure of the
physical plausibility of the predicted clothing deformation around
such poses. The database is constructed by incrementally adding
example poses over the pose space P to minimize the global pre-
diction error by Monte Carlo Markov Chain (MCMC) sampling, as
illustrated in Figure 9.

Prediction error. We use the norm of the residual force, ‖F‖,
in a static simulation as the prediction error to measure the physical
plausibility of the simulation. The residual force consists of the fab-
ric’s strain force and contact force for all clothing vertices. Once a
clothing deformation deviates from the equilibrium status in a static
simulation, the norm of the residual force describes the magnitude
of the deviation. Therefore, this metric can capture both unnatu-
ral deformation and penetration. We compute ‖F‖ for the clothing
deformation predicted by the SOR representation as a measure to
locate the data points whose deviation from equilibrium status in
the prediction is severe.

Sampling algorithm. Our database is parameterized by poses,
i.e. the joint angles. The goal of sampling is to determine the lo-
cations of example poses and thereby minimize global error max-
ima over the entire pose space. Following a construction method
based on sampling for nonlinear functions in [Bickel et al. 2010;
Carr et al. 2001], we can incrementally construct a database using

the greedy method. Specifically, once we sample a pose p uni-
formly from candidate motion sequences, the algorithm proceeds
to find the sampling pose pmax around p that maximizes the er-
ror ‖F(p,X ,Y)‖ of the synthesized deformation for pmax with
the current database. A new data point is then created by storing
its joint angles, SOR weights and UJg,m weight for the sensitivity-
based distance measure. The pseudocode of our sampling algorithm
is shown in Algorithm 1.

Since the residual is a nonlinear function of joint angles with many
local maxima and its derivative is difficult to compute, we use the
Metropolis-Hastings algorithm [Press et al. 2007] to identify the
next sample pose with the maximum error. Following previous re-
search [Merrell et al. 2011], we define an objective function as

f(p) = exp

{
ξ ‖F(p,X ,Y)‖
‖Θ(p1,p)‖+ C

}
, (14)

where ξ is a constant that determines to what degree the system
accepts a candidate with a smaller objective function. The system
accepts a new proposal p∗ from a current parameter p at a prob-
ability of min{1, f(p∗)/f(p)}. Here, a smaller ξ leads to wider
exploration and a larger ξ leads to local exploration. We gradually
increase ξ over the sampling procedure.

The square norm
∥∥Θ(p1,p)

∥∥ is computed using joint rotation an-
gles from the rest pose p1 to p to penalize extreme poses, and the
constant C is chosen at about one tenth of the maximum value of∥∥Θ(p1,p)

∥∥. This term is introduced according to the observation
that unnatural extreme poses usually maximize the prediction er-
ror. However, sampling such poses is not efficient since they rarely
appear in motion sequences. Hence, we prevent sampling such ex-
treme poses by penalizing total joint rotation angles from a pre-
defined rest pose p1, where the character is stand-still with arms
down in our implementation.

We represent the pose space P so that each element of a parameter
has a certain range Θm ∈ [Θmin

m ,Θmax
m ], where Θm is the m-th

parameter of the joint rotation angle vector Θ(p1,p). The system
randomly samples poses over this pose space to find the global error
maximum. One sampling pose p is changed to another one p∗ ∈ P
with a proposal density functionQ(p|p∗):

Q(p|p∗) =

3NL∏
m=1

exp

{
−µ|Θm −Θ∗m|2

|Θmax
m −Θmin

m |2

}
(15)

where µ is a parameter to control the distribution of system sugges-
tions (we set µ = 0.1). Note that this proposal density function is a
symmetric scaled normal distribution.

During Metropolis-Hastings sampling, a fixed number of parame-
ters #sample is sampled (we set #sample = 2000) and then the

Norm of
 residual 

Data point

MCMC
 sampling 

Maximum
 of residual norm

• Put new data point

• Compute clothing drape
 & SOR & weight here 

Pose space

(a) (b) (c)

Figure 9: Greedy procedure for constructing a database. (a) The
database includes data points and parameters. (b) Sampling where
the prediction error is maximized. (c) A new data point is created
and the database is updated.



Algorithm 1 Database Construction

for J = 1 to Jmax do
/*MH sampling*/
for ismpl = 1 to #sample do

Propose parameter p∗ from p /* Equation 15 */
Compute X ∗(p∗) using skinning
Compute clothing deformation Y∗(p∗) /* Equation 2 */
Compute norm of residual ‖F(p∗,X ∗,Y∗)‖
Accept p← p∗ with probability min{1, f(p∗)/f(p)}

end for
pmax = p
Find an example pose pnear closest to pmax.
/*Physics Simulation*/
Initialize YJ = YJnear

for t = 0 to tconv do
t← t+ dt
Interpolate body parameter pt = (1− t)pnear + tpmax

Compute body surface mesh Xt(pt)
Step time simulation Y for body mesh Xt

end for
/*Store data to database*/
Compute sensitivity ∂Y/∂Θ /* Section 3 */
Compute bJi , αJi , M̄J

i and weight UJg,m /* Section 4 */
Compute nearest body vertex vJi for each clothing vertex
Add tuple < pJ , UJg,m, v

J , bJ , αJ , M̄J ,YJ > to the
database

end for

pose with maximum error is kept as the next example pose. We
also check for self-penetrations of the body mesh and prevent sam-
pling poses with such penetrations. Once the example pose has
been determined, we compute its clothing shape from an existing
example shape considering its nearest pose pnear . The distance
measure in the example pose and current pose is determined by
summing the distance measures in Equation 9 over all of the re-
gions DJ(pin) =

∑NG
g=1D

J
g (pin).

Clothing simulation. We run the physics-based clothing simu-
lation and sensitivity analysis in the database-construction stage.
Any clothing model can be used as long as it is based on the vari-
ational method; this is the only necessary requirement to perform
a sensitivity analysis. We choose to use the same model that was
used in previous research [Umetani et al. 2011], which combined
the StVK membrane model [Volino et al. 2009] and the isometric
bending model [Bergou et al. 2007]. Self-collision is handled using
the technique described in [Harmon et al. 2008]. We can compute
the static draping of clothing for a body shape with pose pmax us-
ing dynamic simulation based on the nearest body shape with pose
pnear . We gradually change the pose during the time period tconv
to obtain the convergent cloth, simulated using tconv = 1s.

7 Experimental Results

Motion and body surface skinning. All motion sequences, ex-
cept for the Kinect try-on demo, are obtained from the CMU Mo-
tion Capture library [CMU 2003]. We use a skeleton that has 22
bones (as shown in Figure 3) and each bone has a range of rotation
angles that is already studied with the MoCap library. Our scheme
doesn’t have much restriction on the body surface parametrization
algorithm as long as the body surface continuously changes with
input parameter p. We apply the dual quaternion blending [Kavan
et al. 2008] skinning method for all the examples in this paper. Each
body mesh consists of 12K triangles and 6K vertices. We used Pin-
nochio [Baran and Popović 2007] to define the skinning weight of

Clothing T LS Sh LP
NY 11k 12k 10k 12k

number of triangles 22k 22k 19k 22k
runtime frame rate (FPS) 61 60 70 60

NL 150 120 100 170
database size (MB) 52 44 32 45

construction time (hrs) 32 26 21 42
simulation 1 step (msec) 1140 1220 920 1280

Table 1: Statistics for five different clothing databases.
“T”,“LS”,“Sh”, and “LP” stand for T-shirt, Long Sleeve shirt,
Shorts and Long Pants respectively. This performance number was
computed on an Intel I5 CPU. We used 32-bit integer value and
floating point values in database size computation.

a given character’s mesh with respect to its skeleton.

Database. We create databases for four clothing models: T-shirt,
long sleeve shirt, shorts and long pants for male and female body
shapes (see Figure 1 and 10). Table 1 shows the details of databases
constructed for the male body shape. As in [Kim et al. 2013], we
adopt PCA to reduce the memory footprint. Moreover, to reduce
reconstruction time, we first group the weights in the database into
six-eight clusters and then perform local PCA for each cluster. This
setting will reduce the number of bases required in the reconstruc-
tion (see Table 1 for the database sizes).

Each clothing in our paper is simulated with 2D cloth panels
stitched together in the physics simulation. The panel patterns used
are taken from a sewing textbook [Digest 2010]. The same mate-
rial parameters are applied for all types of clothing: bending stiff-
ness is 10−5 Nm, stretching stiffness is 30 N/m, area density is
0.1 kg/m2, and dynamics and static coefficient of friction is 0.3.
All the timings are obtained with a 64-bit desktop machine with
a 3.1 GHz Intel CoreTMI5-750 processor, 8GB memory, and an
Nvidia GeForce GTXTM580 video card. Due to the simple formu-
lation of our runtime clothing synthesis, we can easily implement
our algorithm on the GPU. Using both the CPU and GPU, we can
synthesize 200 characters’ bodies at different poses and clothing
on them with more than 20 frames per second (see accompaning
video). All the codes are implemented with C++ except for GPU
implementation with CUDATM.

Nonlinear deformation behavior. Our prediction and blending
scheme can represent nonlinear and global relationships between
body and clothing deformations. Figure 11 shows our clothing de-
formation results when a character rotates his shoulder and raises
his left arm. One can see that the clothing around the abdomen
is lifted up and forms new wrinkles, showing the global influence
of the body geometry over the cloth both at coarse and fine lev-
els. As the character raises the arm higher, new wrinkles forms
due to nonlinear deformation behavior, which is well captured by
our algorithm. Figure 1 and 10 illustrate the high-fidelity clothing
animation result synthesized by our algorithm. Please also see the
accompanying video for animation results.

Our method tries to seek a balance between physical plausibility
and speed, and it achieves high quality detailed clothing deforma-
tions. However, artifacts in clothing animations, such as un-natural
wrinkles and penetration artifacts, are still sometimes observable,
for instance, the penetration artifacts between the T-shirt and the
thigh of the virtual character around 45 seconds in the video.

Bone translation weight. The effect of bone translation weights
is measured through the sum of accelerations at each frame. Fig-
ure 14 shows that bone translation weights can reduce about 15%
of accelerations. It indicates that the velocity change of the ani-



Figure 10: Synthesis results (at least five examples are blended for the synthesis). Clothing patterns for these clothing are shown in blue.
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Figure 11: Nonlinear and global deformations of clothing with re-
spect to shoulder joint.

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

number of examples

norm of 
 residual
||F||

|J |

Figure 12: Convergence of residual norm during database con-
struction. The blue line shows average of residual sampled over
400 random poses and the error bars show their standard devi-
ations. The synthesized clothing and their residual distributions
at the same pose are illustrated from the database with examples
|J | = 2, 10, 50.

mation from bone translation weights is smaller, which will lead to
smoother animations. Please also see the accompanying video for
a comparison of the animation synthesized with and without bone
translation weights.

Convergence. We examined the convergence of our database
construction algorithm described in Section 6 through the norm of
residual force in the constructed database with respect to increasing
numbers of examples for the long sleeve shirt model (Figure 12).
The residual force norm is computed over 400 randomly sampled
poses from ten different motion capture sequences as the input for
each database. First, the residual steadily decreases by sampling
poses with a large residual. As illustrated in Figure 12, at around 40
examples, the residual norm converges and our algorithm produce
only small residual for each input pose. We continue to add ex-
amples after convergence so that the clothing deformation provides
various wrinkle patterns with respect to pose change. Figure 12 also
shows that the distribution of the residual over the clothing become
smaller and more distributed after adding examples.

(a)                                                                                      (b)    (c)
Figure 13: Comparisons with other synthesis methods. The synthe-
sis results from straightforward distance measures show unnatural
clothing deformations: (a) using all joints’ rotation difference with
equal weights. (b) using region-based joint angle differences. (c)
our distance measure. Please see the accompaning video for ani-
mation comparison.
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Figure 14: The effect to reduce the velocity change using bone
translation weights. It is measured on the arm rotating animation
(please see video clips at 3:43).

Distance measure. We investigated the performance of our sen-
sitivity based distance measure by a comparison with two straight-
forward methods. One of them uses the sum of squared differences
of all the joint angles as the distance. Precisely, the distance is com-
puted by ||Θ(pa,pb)|| for two poses pa and pb. The other straight-
forward method is constructing the distance measure using the sum
of joint angle differences at each region. We use the same set-up of
regions as described in Section 5. Compared to the two straightfor-
ward methods, our distance measure properly considers the global
influence of each joint and produces natural and smooth clothing
animations. Figure 13-(a),-(b) and -(c) compare clothing deforma-
tions at the same pose synthesized by these two straightforward dis-
tance measures against our approach using the same database. For
animation results, please see our accompanying video.

8 Discussion and Limitations

An important feature of our algorithm is the incorporation of sen-
sitivity information to predict the clothing deformation near exam-
ple poses for the subsequent blending. Since the prediction is de-
rived from the static equilibrium equation, we can achieve a phys-



ically plausible result by blending without coarse-level simulation.
The algorithm thus runs very fast on GPUs, supporting interactive
highly-detailed clothing animations on hundreds of virtual charac-
ters simultaneously (please see the accompaning video). We be-
lieve the principle of predict-then-blend can be applied to improve
the performance of data-driven methods in other areas of computer
graphics.

Limitations. Although our algorithm does not require tight cloth-
ing, it still assumes that the clothing deformation can be parameter-
ized by the body pose. It hinders the application of our algorithm to
those clothing deformations with significant inertia effects, such as
the deformation of a skirt worn on a dancer. As the clothing shape
is affected globally and nonlinearly with respect to body geometry,
the dynamic property of clothing should also be affected similarly.
How to develop a compact model to predict the inertia effect of
clothing deformation is an interesting research topic.

Our sensitivity-based rigging scheme is only a linear model to pre-
dict static clothing deformations locally. Therefore, the history-
dependant nonlinear clothing deformation behaviors caused by fric-
tions, such as cloth internal frictions and the frictions between
clothing and body surface, can not be fully captured. In addition,
since our scheme is trained based on static equilibrium, the wrin-
kles generated in the animation sometimes appear and disappear
suddenly. Clothing hysteresis effect is thus not modeled well in our
method. One possible solution is to extend our sensitivity-based
prediction framework into locally second or high order models to
capture such behaviors.

Our method cannot guarantee that all the penetrations are resolved,
especially when the clothing slides on the body surface a lot. In
such cases, the blending result may lead to deep penetrations that
exceed the ability of our penetration resolving scheme. In our ex-
periments, under most situations, the penetrations can be resolved
well. We believe that only minor additions, such as the depth offset
technique of [de Aguiar et al. 2010] and the optimization technique
in [Guan et al. 2012], are enough to completely remove the visual
artifacts for rare deep penetrations.

Finally, our model requires a decaying factor to produce smooth
clothing deformation results under rapid pose changes. It might
make the motion of clothing lag behind the body motion. This ar-
tifact is difficult to be completely eliminated through our blending
method. We are considering to use our results as initial solutions
of a fast simulation package to produce final deformation results to
avoid the artifact.

9 Conclusion and Future Work

In this paper, we introduce real-time example based clothing syn-
thesis using sensitivity-optimized rigging. At run time, our al-
gorithm blends the predicted deformations to achieve physically-
plausible clothing deformation. Coarse-level simulation is not
needed in our case. Therefore, our run-time implementation is as
simple as character skinning, which is ready to be integrated into
games or interactive virtual reality applications.

In the future, we hope to integrate more control parameters, such
as body physique, clothing pattern, and clothing material param-
eters, into our framework. Sensitivity analysis techniques should
be applicable in this scenario to reduce the number of data points
required in the database. We are also interested in extending our
method to more general deformations, such as skin deformations
considering underlying physical skeletal muscle movements. Em-
ploying our framework, we can compute complex deformations of
skin quickly by optimizing the skin rigging weights and example

deformations so that they agree with a detailed physics simulation
of the skeletal system.
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BICKEL, B., BÄCHER, M., OTADUY, M. A., LEE, H. R., PFIS-
TER, H., GROSS, M., AND MATUSIK, W. 2010. Design and
fabrication of materials with desired deformation behavior. ACM
Trans. Graph. 29, 4, 63:1–63:10.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Trans. Graph. 21, 3, 594–603.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL,
T. J., FRIGHT, W. R., MCCALLUM, B. C., AND EVANS, T. R.
2001. Reconstruction and representation of 3D objects with ra-
dial basis functions. In Proc. of the 28th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’01,
67–76.

CHEN, Z., FENG, R., AND WANG, H. 2013. Modeling friction and
air effects between cloth and deformable bodies. ACM Trans.
Graph. 32, 4, 88:1–88:8.

CHOI, K.-J., AND KO, H.-S. 2002. Stable but responsive cloth.
ACM Trans. Graph. 21, 3, 604–611.

CHOI, K.-J., AND KO, H.-S. 2005. Research problems in clothing
simulation. Computer-Aided Design 37, 6, 585 – 592.

CMU, 2003. CMU graphics lab motion capture database.
http://mocap.cs.cmu.edu.

CORDIER, F., AND MAGNENAT-THALMANN, N. 2004. A data-
driven approach for real-time clothes simulation. In Computer
Graphics and Applications, 2004. PG 2004. Proceedings. 12th
Pacific Conference on, 257–266.

DE AGUIAR, E., SIGAL, L., TREUILLE, A., AND HODGINS, J. K.
2010. Stable spaces for real-time clothing. ACM Trans. Graph.
29, 106:1–106:9.

DEROUET-JOURDAN, A., BERTAILS-DESCOUBES, F., AND
THOLLOT, J. 2010. Stable inverse dynamic curves. ACM Trans.
Graph. 29, 6, 137:1–137:10.

DIGEST, R. 2010. The New Complete Guide to Sewing: Step-
by-Step Techniques for Making Clothes and Home Accessories



Updated Edition with All-New Projects and Simplicity Patterns
(Reader’s Digest). Readers Digest.

ENGLISH, E., AND BRIDSON, R. 2008. Animating developable
surfaces using nonconforming elements. ACM Trans. Graph. 27,
3, 66:1–66:5.

FENG, W.-W., YU, Y., AND KIM, B.-U. 2010. A deformation
transformer for real-time cloth animation. ACM Trans. Graph.
29, 4, 108:1–108:9.

GALLAGHER, R. H. 1973. Optimum Structural Design: Theory
and Applications. John Wiley & Sons Inc.

GOVINDARAJU, N. K., KNOTT, D., JAIN, N., KABUL, I., TAM-
STORF, R., GAYLE, R., LIN, M. C., AND MANOCHA, D. 2005.
Interactive collision detection between deformable models using
chromatic decomposition. ACM Trans. Graph. 24, 3, 991–999.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND SCHRÖDER,
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