Online Structure Analysis for Real-time Indoor Scene Reconstruction

Yizhong Zhang*
*State Key Lab of CAD&CG, Zhejiang University

Weiwei Xuf

fHangzhou Normal University

Yiying Tong* Kun Zhou*$

#Michigan State University

b [N -

Abstract

We propose a real-time approach for indoor scene reconstruction.
It is capable of producing a ready-to-use 3D geometric model even
while the user is still scanning the environment with a consumer
depth camera. Our approach features explicit representations of
planar regions and non-planar objects extracted from the noisy feed
of the depth camera, via an online structure analysis on the dynam-
ic, incomplete data. The structural information is incorporated into
the volumetric representation of the scene, resulting in a seamless
integration with KinectFusion’s global data structure and an effi-
cient implementation of the whole reconstruction process. More-
over, heuristics based on rectilinear shapes in typical indoor scenes
effectively eliminate camera tracking drift and further improve re-
construction accuracy. The instantaneous feedback enabled by our
on-the-fly structure analysis, including repeated object recognition,
allows the user to selectively scan the scene and produce high fi-
delity large-scale models efficiently. We demonstrate the capability
of our system with real-life examples.

*yizhongzhang @zju.edu.cn, kunzhou@acm.org
Tweiwei.xu.g@gmail.com

fytong@msu.edu

§Corresponding author

Ve

Figure 1: A lab scene (100m?) reconstructed on-the-fly. The complete scan finished within 70 minutes. Top left: the final reconstructed
model by our system, which contains planar regions (polygons) and extracted meshes for separate objects, created and refined progressively
in real-time by our online analysis procedure during the scan. Top right: the result of the plane/object labeling procedure, which provides the
segmentation of planes and objects for the online analysis. The colors distinguish planar regions and objects by their labels in the volumetric
data structure. Bottom: close-up views of the reconstructed scene.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image Gen-
eration — Digitizing and Scanning

Keywords: 3D scanning, plane detection, object detection, camera
tracking, drifting

1 Introduction

The wide availability of consumer depth cameras has stimulated
much research in real-time 3D reconstruction. In particular, the
KinectFusion system [Izadi et al. 2011; Newcombe et al. 2011] has
achieved great success in generating visually compelling geome-
tries at interactive frame rates during 3D scanning. It enables com-
mon users to digitize indoor environments surrounding them, and
use the generated models directly in various applications such as
augmented reality, autonomous navigation for robots, and interior
design.

Several algorithms [Chen et al. 2013; NieBner et al. 2013] have
been proposed recently to improve KinectFusion in terms of the
reconstruction speed, scalability and quality. The main focus is on
designing effective and efficient data structures that can make better
use of graphics hardware to record the scanned geometry. The out-
put of these algorithms is “raw” geometry data (e.g., point clouds or
implicit surfaces stored within a volumetric data structure), which
do not contain any structural information (e.g., planes and objects)
needed in typical graphics applications. An offline post-processing
step is often mandatory to convert these unstructured geometric da-
ta into a “clean” 3D scene with well-defined structures.

In this paper, we propose an approach to reconstructing a meaning-
ful 3D scene model while the user is still scanning an indoor envi-
ronment with a depth camera. Based on the observation that indoor
environments usually consist of many planar surfaces (e.g., floors
and walls) and isolated objects (e.g., chairs, cabinets and computer-

s), we perform an online structure analysis on the scanned geometry
to extract such planes and objects to form a structured scene. The
extracted planes not only fit the scanned geometry well, but also
obey the parallelism or orthogonality among planes. The intersec-
tion lines of planes are also perfectly aligned. The extracted objects
are represented as separate triangular meshes, and repeated objects
can also be identified. All computations are performed on the fly
and the user can interactively view the reconstructed scene model
and thus receive instantaneous feedback during scanning.

The benefits of our approach are four-fold. First, our output is a
meaningful scene model (planes and object meshes), which can be
directly used in a multitude of applications. This saves the offline
postprocessing step required in previous techniques. Second, per-
forming on-the-fly structure analysis and allowing the user to view
the structured model during scanning can guide him/her to scan
the scene more efficiently. For instance, when scanning a corner
of a room, if the three intersecting planar regions (the floor and t-
wo walls) and their boundaries have been extracted, the user would
know that the geometric description of the corner is sufficient and
move on to other parts of the room. Furthermore, the online analy-
sis can conservatively expand extracted planar regions to automati-
cally cover some unobserved areas. Duplicate object detection can
also help avoid repeated scanning of nearly identical objects. Third,
our online analysis can naturally interact with the user during scan-
ning, which takes advantage of on-the-fly feedback from the user
in resolving ambiguities caused by insufficient scanning and results
in more accurate analysis results. For example, if the boundaries
of an extracted planar region are not accurate enough, or an object
detected to be a duplicate of another object scanned earlier does not
contain sufficient geometric details, the user can keep scanning the
boundaries of the flat region or the object carefully until the results
become satisfactory. In contrast, offline analysis methods can only
work on the previously scanned sequence, which may not provide
enough information to produce desirable results. Finally, the glob-
al planes extracted by our online analysis can help reduce camera
tracking drift during scanning, and thus improve the reconstruction
quality when scanning large-scale environments.

We have implemented the approach in a real-time 3D reconstruction
system, and experimented on interactive reconstructions of typical
indoor environments. We demonstrate that the system can effective-
ly generate meaningful models of entire scenes with well-structured
planes and separate object meshes. We also compare our approach
with the state-of-the-art algorithms to show the improved recon-
struction quality and the reduced camera tracking drift.

1.1 Related Work

3D reconstruction has been a long-standing problem in computer
graphics and computer vision. The literature on the topic is vast, so
we focus on the most relevant work on 3D scene reconstruction and
structure analysis.

3D scene modeling with depth cameras. One major advantage of
depth cameras is the ability to capture dense depth maps in real-
time, which leads to their increasing popularity in 3D scene re-
construction. One only needs to gradually fuse the captured depth
maps into a unified 3D coordinate system to obtain the final re-
construction result. The seminal work on KinectFusion by Izadi et
al. [2011] achieved real-time performance on registering and merg-
ing the captured depth maps to a uniform volumetric grid by using
a GPU implementation. In order to overcome the size limit of the
volumetric grid, moving volume approaches are adopted in [Roth
and Vona 2012; Whelan et al. 2012] to swap out voxels not in view
of the depth camera from the graphics memory. In [Steinbrucker
et al. 2013], a multi-scale octree data structure and dense image

alignment are adopted to reconstruct large-scale indoor scenes such
as nine rooms along a corridor. Hierarchical spatial data structures
and streaming algorithms are developed in [Chen et al. 2013] to ex-
tend KinectFusion to large-scale scenes. A recent development in
reducing the overhead of the hierarchical data structure is to employ
voxel hashing [NieBner et al. 2013].

Although these algorithms can scan visually compelling 3D data in
real-time, they still suffer from noises in depth camera output. The
accuracy of camera tracking is often imperfect for volumetric fu-
sion and loop closure. Zhou and Koltun performed offline analysis
of camera trajectories to achieve dense scene reconstruction [2013],
high fidelity texture mapping [2014a], or simultaneous localization
and calibration [2014b]. An interactive approach is adopted in [Du
et al. 2011] for scene loop closure in depth camera based indoor
scene modeling. Our work shows that online structure analysis can
significantly improve both depth data fusion and camera tracking,
leading to robust high-fidelity reconstruction.

Structure analysis. There are abundant prior structures in typi-
cal indoor scene geometry, such as the existence of planar regions
and boxes due to the large number of man-made objects in indoor
scenes, the parallelism and orthogonality among such planes, and
repetition of object shapes. These can be exploited to guide 3D
reconstruction or analysis algorithms for improved accuracy.

The Manhattan plane assumption has been used in dense map com-
putation for image-based indoor scene modeling [Furukawa et al.
2009a]. It is also used to estimate the 3D layout of an indoor
scene, such as the dimensions and locations of rooms and object
boxes [Lee et al. 2009; Lee et al. 2010; Pero et al. 2012]. In out-
door scene modeling, Tomono et al. [2012] proposed to first extract
planes from multi-view reconstruction and then propagate the de-
tected planes to the textureless image pixels via graph cut. It can
well reconstruct outdoor planar objects, such as roads, sidewalks
and building facades. However, these algorithms are designed for
image input instead of depth map input. They also rely on the avail-
ability of the entire data set of the scene, and thus are not purposed
for real-time reconstruction applications.

Due to severe occlusion in cluttered indoor scenes and noises in the
captured depth data, it is challenging to directly reconstruct high-
quality 3D indoor scene models. Thus, object-level structure analy-
sis is investigated to match the captured objects to the high-quality
3D models in databases for improved reconstruction quality [Nan
et al. 2012; Shao et al. 2012; Salas-Moreno et al. 2013], while ob-
ject repetition is explored to speed up large scale indoor scene re-
construction [Kim et al. 2012; Mattausch et al. 2014]. In contrast,
our approach does not rely on a 3D model database, but performs
online repeated object analysis to simultaneously reduce the scan-
ning burden by providing real-time guidance to the user and im-
prove the reconstruction quality through local volume fusion.

Plane detection has been widely used to reduce the camera track-
ing drift in 3D scanning [Biber and Strasser 2003; Dou et al. 2013;
Ataer-Cansizoglu et al. 2013; Taguchi et al. 2013]. All these meth-
ods are developed based on point cloud representations; whereas
our design is based on a volumetric grid enhanced with structural
information and can thus be seamlessly integrated into the Kinect-
Fusion framework to harness the advantage of volumetric depth da-
ta fusion. Moreover, in these methods, planes are detected for each
individual frame independently and used merely for the Iterative
Closest Point (ICP) procedure in the current frame; whereas in our
case, planar regions are constructed and maintained in a global data
structure and leveraged in real-time to improve accuracy as well as
to reduce the user scanning workload. A concurrent work [Silber-
man et al. 2014] formulated plane detection and contour completion
as optimization problems to provide layout of complete rooms and

partially occluded objects, but the procedure lacks inter-plane rela-
tionship analysis and can take one minute for a typical volume.

Polygonal approximation of planar regions. In the captured
depth data, the planar boundary is composed of unordered, dis-
crete points. It is necessary to convert them into a compact polygon
representation. Such polygonal approximation of discrete points is
a well-studied problem in image vectorization and planar region
extraction in 3D point cloud data processing [Kolesnikov 2003;
Reisner-Kollmann et al. 2013; Li et al. 2011].

In edge-based image vectorization, after sequential tracing of an
object boundary, a number of algorithms have been developed to
select sparse anchor points in the traced boundary pixels to generate
the final polygon, including top-down [Douglas and Peucker 2011;
Ballard 1981], bottom-up [Fahn et al. 1989; Latecki and Lakmper
1999], and global optimization methods [Glover and Laguna 1997;
Sun and Huang 2000].

Existing works on planar SLAM (simultaneous localization and
mapping) frequently use the convex hull technique for planar
boundary extraction in fast point-cloud data processing [Biswas and
Veloso 2012; Dou et al. 2013]. In contrast, Lee et al. [2012] extract-
ed the boundary polygon of the visible part of a plane by node elim-
ination using object boundary information in the segmented depth
image. In [Arikan et al. 2013], alpha-shape is used to detect bound-
ary points from point-cloud data, and local adjacency relations are
used to improve the polygon boundary.

The above algorithms assume that the planar region is fully ob-
served and its polygonal approximation is performed to faithfully
reconstruct only the visible part. Our algorithm differs in that it
deals with incomplete, dynamic scan data, thus it lends itself well
to handling online reconstruction. It is also designed to estimate
occluded parts of planar regions. For this purpose, we start with a
region delineated by the predicted bounding box and plane intersec-
tion lines, and use observed data to trim the parts that are verified to
be outside the region. This feature is crucial for proper reconstruc-
tion, as scan data of indoor scenes typically contain a large number
of occluded planar regions.

1.2 Contributions

Compared to existing techniques, the main contributions of our
work can be summarized as

e an integral real-time approach to enhancing KinectFusion
with crucial structural information, including planes and iso-
lated objects, allowing the user to view a “clean” 3D scene
with well-defined structures during the scan;

e a progressive labeling algorithm segmenting incomplete s-
canned volume data into planar and non-planar regions, and
an online analysis algorithm constructing global data struc-
tures of planes with polygonal boundaries and non-planar ob-
jects;

e and further improvement to reconstruction robustness and ac-
curacy through the recognition of typical planar structures, re-
lationships among planes, and repeated objects based on par-
tial observation.

2 System Overview

Our system extends the voxel Hashing based KinectFusion pipeline
[NieBner et al. 2013] to fuse both geometric and structural informa-
tion, in particular, plane/object labels, to achieve online structure
analysis. The volumetric data structure in our system thus stores

ID update

structured scene
Volume i
(TSDF + Label ID) [Planes] [Objects]
TSDF update ray cast | rasterize

raw depth

aw depth ~ Kinect Plane / Object Scene User
Fusion Labeling Construction Interaction

I —Kinect Fusion

—Plane/Object Labeling
———— Scene Construction

refined depth (last frame)

Figure 2: Pipeline overview.

the fused signed distance and plane/object label in each voxel. We
also design additional plane and object data structures to hold the
overall geometry information of labeled planes and objects as well
as the mutual relations among planes.

As shown in Fig. 2, the input of our system is the captured depth
maps, as in the KinectFusion pipeline. In intermediate processing,
we perform depth map fusion and plane/object labeling, and update
associated plane and object data structures to record geometry and
detected structural relationships. The system outputs refined plane
and object geometries as the final reconstruction result.

2.1 System Pipeline

The data processing in our system consists of three major compo-
nents (see the colored arrows in Fig. 2): (1) a KinectFusion algo-
rithm taking the raw depth image and the refined depth map of the
last frame from the global implicit surface representation (i.e., the
distance field recorded in the volume) and structured scene as input,
and producing the current camera pose through an ICP algorithm;
(2) a plane/object labeling algorithm (Sec. 3) that reliably labels the
pixels of the raycasting depth map with identifiers (IDs) of planar
regions or separate non-planar objects to generate a plane/object ID
map by using heuristics for indoor scenes; and (3) a scene construc-
tion algorithm (Sec. 4) to construct/update the scene model with the
modified plane and object information. User interaction (Sec. 5) is
incorporated into the process of object mesh extraction and repeat-
ed object detection. The updated labels are fused into the volume
to prepare for the processing of the next captured depth map.

KinectFusion is the first stage of our pipeline when processing each
frame. When a new frame arrives, we estimate the camera pose by
the point-plane ICP between the input depth map and the refined
depth map of the last frame. With the estimated camera pose, the
raw depth map and color image are fused into the volumetric data
structure. Then we perform raycasting also with the camera pose
to extract the updated depth map of the current frame using the
updated volumetric data.

Plane/object labeling is performed next to update the plane and ob-
ject labels of volume cells according to the new frame. From the
viewpoint of the new frame, a plane/object ID map is also gener-
ated by raycasting the volume with the current IDs, in addition to
the depth map in the previous stage. The labeling process first at-
tempts to expand the existing planar regions or objects, and then
proceeds to cluster pixels into new planes/objects. Separate planes
and objects may be merged during the process. The labeling result
is finally mapped back into the volume data structure.

Scene construction refines all plane and object data structures ac-
cording to the labeling result, performs plane-based structure anal-
ysis to explore configuration relationships among planes and detect
duplicate objects in the scene. Surface meshes for objects are ex-

tracted and added to the scene with very simple user interaction.
With the updated volumetric data and structured scene, a refined
depth map of the scene at the current camera pose is then generated
as the predicted input of the next frame, which will be used for the
next ICP-based camera tracking.

Design rationale. A major design goal of our system is to enhance
the volumetric grid structure of KinectFusion with structural infor-
mation and perform plane/object analysis on this volumetric data
structure. Such a design has two advantages. First, it allows us to
exploit the real-time depth map processing power of voxel hashing
in depth fusion. Second, it enables us to fuse the compact dynam-
ic structural information incrementally. As the capture progresses,
the plane and object information evolves, and our system updates
the label information in the volume to reflect such changes. There-
fore, the online structure analysis is essentially a volumetric label-
ing procedure, since it clusters voxels into planar regions or isolated
objects.

We reconstruct planes and objects as the final output because in-
door scenes usually consist of planar surfaces and isolated objects.
Moreover, planes are essential building blocks of indoor scenes and
they are typically orthogonal to or parallel with some other planes.
These planes and their mutual relations may be distorted in Kinect-
Fusion reconstruction results, especially with large scenes. Our ba-
sic assumption is that most of these distortions result from noises
in the depth camera and accumulation errors in camera tracking.
Thus, we propose to construct a global data structure of planes to
rectify these distortions so as to enhance the accuracy of the overal-
1 reconstruction and camera tracking. For interactive performance
and scalability, we emphasize simplicity in every aspect of the sys-
tem and compatibility with the GPU architecture.

2.2 Data Structure

Our system maintains three major data structures during scanning,
namely volume, plane and object, as shown in Fig. 3.

struct Voxel { struct Plane { struct Object {
half float sdf; ushort id_in_vol; ushort id_in_vol;
ushort id; list points; box AABB;
uchar RGB[3]; list trim_points; Mesh* surface;

ushort copy-id;
mat4x4 trans;

IS

Figure 3: Data structures maintained in our system.

uchar weight; polygon boundary;

b }

Volume. We use the volumetric representation in an extended
KinectFusion algorithm [Niefiner et al. 2013] to represent the en-
tire (unbounded) domain through the zero-crossings of a signed
distance function. Additional details on efficient implementation
of the truncated signed distance function (TSDF) are in Sec. 6. In
each voxel, we store the signed distance to the closest surface point,
the color, and the weight for a weighted running average in real-
time fusion into the existing structure. In addition, we supplement
each voxel with an ID of the plane or object that the corresponding
surface point belongs to.

When extracting the surface from the TSDF, a surface point is cre-
ated at the zero crossing point along a casting ray. Once the zero
crossing point is calculated, the associated ID and color is deter-
mined by the voxel in which the point resides.

Plane. A planar region is described by a list of interior points in our
representation. For simplicity, we also call a planar region simply
as a plane. We consider the underlying plane as the least-squares

@ |Interior point

@ Exterior point

@ Trimming point
== OBB edge
== Trimming edge
== |ntersection edge

Figure 4: Data structure of a planar region. As it is possibly oc-
cluded by other objects, we predict the shape of the boundary poly-
gon from the partially observed points on the plane.

fit to the points in the list. The list is augmented at each frame with
the points labeled as part of this planar region during the labeling
stage. The data structure also maintains a list of trimming points,
which delineates some edges of the boundary polygon. The bound-
ary polygon is composed of three possible types of boundary edges,
namely, OBB edge, trimming edge and plane intersection edge. The
OBB edge is formed by the oriented bounding box (OBB) of the
entire point list. The trimming edge is the part of the boundary, out-
side of which objects behind the plane have been observed. Such
edges are fit from the trimming points. The plane intersection edge
is formed by the intersection with another planar surface, so it is
along the intersection line of the two planes.

Object. A (non-planar) object is encoded implicitly by the voxel-
s sharing its ID in the volumetric data structure. An axis-aligned
bounding box (AABB) of the object is maintained to facilitate op-
erations on the object. The bounding box may be expanded with
each new frame if additional points outside the AABB are detected
to be in this object. The surface mesh of the object can also be ex-
tracted explicitly through Poisson surface reconstruction [Kazhdan
et al. 2006]. When the object is detected to be a duplicate of a pre-
viously detected object, we record the reference ID to the previous
object and the relative transformation matrix.

3 Plane/Object Labeling

Our plane/object labeling process achieves segmentation of planes
and objects in the volume by labeling on the local raycasting depth
map in each frame and mapping the resulting labels back into the
global volume. The depth pixels of each new frame are labeled with
plane/object IDs, under the guidance of existing label information
in the volume. We call the result an /D map, which is then merged
into the volume data. We adopt the raycasting depth map as input
for labeling, since it is smoother and more reliable than the raw
depth map. For clarity, we refer to a pixel as a plane pixel (object
pixel, resp.) if it is labeled with a plane (object, resp.) ID.

The initialization of the ID map is concurrent with the raycasting
step of the depth map in KinectFusion — we retrieve the ID stored
in the voxel hit by the ray from each pixel. However, this ID map
is incomplete in most cases, because some newly fused voxels are
not covered by existing planes/objects (e.g., the black pixels in the
second image at the top left corner of Fig. 5).

Given the raycasting depth map from the fused voxel data, our algo-
rithm assigns plane IDs to pixels before handling object IDs, since
objects are often separated by planar regions. Moreover, for either
planes or objects, the labeling procedure first examines whether the
pixels should be labeled with existing IDs so as to allow the ex-
pansion of partially completed scans. Therefore, the labelling order

Ray casting depth and ID maps

Existing planes

Extended planes and rasterized ID map

New planes

Updated volume

Updated planes

Existing objects

New objects

Figure 5: Plane/object labeling performed on ID map. Starting from raycasting depth and ID maps enhanced by the rasterized 1D map of
extended planes, we detect existing planes, new planes, existing objects and new objects sequentially. The labeling result is subsequently used
to update the volume data and the geometric description of the planes. By rasterizing extended planes, the region growing method can merge
two disconnected regions, such as the wall (green segment) separated by the umbrella (pink segment).

is: existing planes, new planes, existing objects and new objects, as
shown in Fig. 5.

3.1 Plane Labeling

Existing planes. In this step, we determine for each pixel on the ID
map whether it belongs to an existing plane. The algorithm starts
with checking whether the initialized ID map is consistent with the
currently captured depth map. Precisely, we unlabel a plane pixel
when its distance to the plane indicated by its ID exceeds a preset
threshold (10mm in our implementation).

Next, for all non-planar pixels (including unlabeled pixels and ob-
ject pixels), we test whether they lie on an existing plane and obtain
their associated IDs in that case. For efficient implementation, we
rasterize the extended polygon of all planar regions visible in the
current frame into a temporary depth and plane ID map to serve as
references for the labeling process. Details on planar region exten-
sion can be found in Sec. 6. The non-planar pixels are scanned in
two passes to obtain their plane IDs. In the first pass, we compare
the raycasting depth and the rasterized depth of the same pixel. If
their depth difference is below a threshold (10mm in our system),
we further check the distance of the raycasting point to the corre-
sponding plane and the angle between the normal of the raycasting
point and the plane normal. When both are below the respective
thresholds (10mm and 3° in our system), we set the label of this
pixel with the plane’s ID on the rasterized ID map. In the second
pass, we expand the labeled area using a breadth-first search. The
per-pixel condition is identical to the first pass except that the angle
threshold (20°) is greater.

The two passes serve different purposes in labeling. The first pass
is to rapidly cover large unlabeled regions. Since the rasterized
planar regions are supersets of the currently observed data, we label
the pixel with the ID of the plane even if it is not connected to
labeled pixels on the raycasting ID map. The second pass is used
to grow the labeled area, relying more on spatial adjacency than on
the similarity of the normals, since the raycasting normal estimate
is usually noisy.

New planes. After pixels of existing planes are labeled on the ID
map, we form new planes from the remaining unlabeled pixels and
object pixels, using a method similar to the one in [Lee et al. 2012].
The pseudocode of this process is given in Algorithm 1. We choose
a region growing method, which is fast and easy to implement, to
label new planes for the purpose of online structure analysis, be-
cause random sample consensus (RANSAC) and Hough transform
based methods [Schnabel et al. 2007; Hulik et al. 2014] have a
relatively heavy computational load.

In Line 1 of Algorithm 1, highly non-planar pixels are eliminated
from the region growing. The planarity of a pixel p(; ;) is estimated
from its four neighboring triangles, formed by the pixel and four
neighboring pixels, as described in [Lee et al. 2012]. We denote
the unit normal of the triangle formed by the center pixel p(;, ;) and
two neighboring pixels p(; 1,5y and p(; j_1) as no, and n1, n2, and
ng for the other three neighboring triangles. Then the violation of
planarity can be estimated using x = 3°°_ |n;| — }Ef:o ni.

Algorithm 1 Label New Planes

1: Label highly non-planar pixels as “processed”

2: while pixels without a plane ID and “processed” mark exist do
3: select seed pixel p(;)

4 region growing to pixel set P

5: if (Area(P) > threshold) then

6: Create new plane with P
-
8

if Overlap(P, Objecty, pixels) then
: Set Object), unlabeled
9: end if

10: else
11: mark P as “processed”
122 endif

13: end while

This measurement « is similar to an estimate of the absolute cur-
vature (sum of the absolute values of the principal curvatures), and
is only O when this neighborhood is flat. If x is above a thresh-
old (0.025 in our system), or if none of the four neighboring pixels
has an observed depth value (no iso-surface point along the ray cast
from the pixel), we mark the center pixel as “processed”.

Next, we iteratively process all pixels without a plane ID or a “pro-
cessed” mark. In each iteration, we randomly select a seed pixel
from those pixels, and create a temporary plane region for it. Then
we use a four-way connected flood fill algorithm to grow the con-
nected region from the seed pixel using breadth-first search. If the
neighboring pixel being examined is not labeled with a plane ID yet
and the angle difference between its normal and the plane’s normal
is below a threshold (3° in our system), it is added to the planar re-
gion. We set the initial plane normal as the estimated normal of this
pixel in the raycasting map, and it is updated to the average normal
of all pixels merged into this plane. The flood fill terminates when
the plane cannot expand further.

If the area of the labeled planar region exceeds a preset threshold
(0.05m? in our system), a new plane ID is allocated and all of its
pixels are labeled with this ID. Otherwise, these pixels are assumed
to be part of a non-planar region, and marked as “processed” to
prevent repeated testing. This process terminates when no more
seed pixels exist.

f@ﬁ\

E -0\ d == =

(a) Two objects labeled (b) Two objects merged (c) Plane detected,
two objects relabeled

Figure 6: Example plane/object conflict resolution. The scene is
scanned from top to bottom. (a) the first frame. (b) as the desktop
plane is partially observable, it is fragmented (labeled with 1, 2, 3),
with each piece treated as parts of potentially non-planar objects,
based on the area threshold. This results in a single connected
object. (c) as the capturing process continues, the desktop plane
is big enough and detected, existing objects on this plane will be
labeled from scratch and become individual objects.

Plane/object conflict resolution. Note that a newly detected plane
may contain pixels that are already labeled as non-planar objects.
This situation arises if the observed area of a plane did not meet
the size requirement and was thus identified as multiple non-planar
pieces, as shown in Fig. 6. In this case, we delete these existing
non-planar objects using the following procedure. The parts of the
objects covered by the new plane will now be merged and identified
as a single planar region. The non-planar objects are removed from
the global structure, and their pixels outside the planar region will
become unlabeled and thus candidates for relabeling in the non-
planar object labeling step.

3.2 Object Labeling

Existing objects. After plane labeling, the depth map is segmented
into disconnected subregions. We are now able to label non-planar
objects according to the subregions. Similar to the plane labeling
procedure, we use breadth-first search on pixels that are already la-
beled as objects. Since objects can be of any shape, the stopping cri-
terion of flood fill is simply that the difference in depth between the
pixel being examined and the neighboring pixel is above a threshold
(3¢cm in our system), or that the latter is already labeled. An exam-
ple of the existing object labeling result is shown in the existing
objects image in Fig. 5.

New objects. We form new objects on the ID map when existing
planes, new planes, and existing objects are already labeled. We
choose an unlabeled pixel as a seed pixel and perform flood fill,
with the same stopping criterion as in existing object labeling. If
the number of pixels labeled in the flood fill is big enough to pre-
clude noise-like regions on the map, a new object is detected (for
example, see the new objects image in Fig. 5). Otherwise, these pix-
els are not considered as forming an object and will be “omitted”.
This process continues until all pixels are labeled or “omitted”.

Volume Update. Once the planes and objects are labelled, we can
update the volumetric data structure. To do this, we simply write the
newly calculated ID of each pixel back into its corresponding voxel,
as this voxel index for the pixel was stored during raycasting depth
map generation. See, e.g., Fig. 1 (top right) and Fig. 13 (right).

4 Scene Construction

In the scene construction stage, we use the calculated ID map from
the labeling stage to amend the structural information. We refine the
plane equation of each planar object with new pixels of the same

(a) thin plate (b) extrusion (c) box

Figure 7: Rectilinear structure heuristics.

ID, its planar boundary with new trimming points, and each non-
planar object with newly observed pixels of the same ID. We then
use some heuristics that are applicable to common indoor scenes to
enforce configurational relations among planes, such as parallelism
or orthogonality. Duplicate objects are also detected in this stage.

4.1 Plane Construction

If a plane ID is labeled on any new points in the raycasting map, we
append these newly detected points to the existing point list of that
plane. To control the memory footprint, we subdivide the planar
region into a set of cells using a uniform 2D grid and store only one
point (the one that is closest to the cell centroid) inside each cell.
Note that the trimming points are treated separately with the same
procedure to avoid accuracy degradation of the boundary edges. We
then fit the equation of the plane with the updated point list using
principal component analysis (PCA).

If some adjacent planar regions have nearly identical equations of
the plane, we merge them into a single region. Specifically, we
merge their point lists and trimming point lists, and recalculate a
combined boundary. When updating the voxels using these planes,
they will be reassigned a common ID.

Rectilinear structure heuristics. For each pair or group of planes
with no known relationship, we check the conditions of the follow-
ing rules and trigger them accordingly. In all the following heuris-
tics, we use an error tolerance of 3° for normals being parallel or
orthogonal.

e Thin plate: when two planes have opposite normals, over-
lapping 2D boundary polygons, and small distance (<10cm),
they form a board structure.

e Extrusion: when two planes have similar normals, overlap-
ping 2D boundary polygons, and small distance (<10cm),
they form a thin extrusion.

e Box: when all plane boundaries are rectangles, their pairwise
intersections form convex 90° dihedral angles, and length d-
ifferences among parallel intersection edges are smaller than
10cm, they form a rectangular box.

e Orthogonality: when two planes intersect at a near 90° dihe-
dral angle, they are assumed to be orthogonal to one another.

The effects of these rules are illustrated in Fig. 7. We now elaborate
on the processing when each rule is triggered. For thin plate, we
project the point list and trimming point list of one plane onto the
other and recalculate the boundary. The thickness of the thin plate
is set to be the distance between these two planes. These planes will
then be displayed as a thin plate in our system. For extrusion, the
thickness of the extrusion is the distance between the two planes.
The plane at the front will be displayed as a board attached to the
back panel. For box, we cluster rectangle pairs satistying the box
condition to form maximal groups. The local coordinate frame of
this box is calculated by rotating the coordinate axes to fit normals
of these planes, weighted by the area of each plane in the group.
Then the box is calculated simply as the oriented bounding box of

©o0 00000000
eo 000000 °°
o o
000002/./:":
ClOClOO.0
®© 0o 0 0 0¢o
) _ intersection

©0 o o o%0 @ Interior point point

° o

®© o o 0de @ Exterior point

e o 0o o ©

() (b) (©

Figure 8: Calculation of the boundary of a planar region. (a) Cal-
culate the normal of trimming points, then detect trimming edges.
(b) Link trimming edges to form curves (polylines), fit OBB bound-
ary to trimming edges, and then calculate intersection point of the
curve and OBB boundary. (c) Extract polygon and triangulate it.

these planes. For orthogonality, we consider the planes orthogonal
to each other and enforce the dihedral angle to be 90°, similar to
the optimization used in detecting boxes, i.e., we use the group of
planes to create a local coordinate system and force the planes to
be axis-aligned in the local frame; in addition, when the normal of
one plane is almost axis-aligned, we force the plane normal to be
axis-aligned. Note that the coordinate system is adjusted so that a
large number of planes are axis-aligned, as discussed in Sec. 6.

4.2 Plane Boundary Calculation

The goal of this step is to approximate the plane boundary by a
polygon. Following the rectilinear structure assumption, we ini-
tialize each partially observed planar region to its OBB, which is
important in estimating the boundary in the occluded regions (see
Fig. 4). Then, we detect trimming edges to get a tight polygonal ap-
proximation of the planar region according to the visible part of the
region. Finally, we snap together edges of adjacent planar regions
to remove gaps. Fig. 8 illustrates the general process of polygonal
approximation.

Exterior and trimming points. Trimming edges consist of trim-
ming points, which are calculated based on exterior points. As with
interior points, only one exterior or one trimming point is recorded
within each cell of the plane, so they are much sparser than the pix-
els. An exterior point is selected from depth pixels predicted to be
on the planar region by plane extension, but observed to be off the
plane due to depth inconsistency (shown as black points in Fig. 4).
More precisely, when the raycasting depth of a pixel is Scm greater
than the rasterized depth (1c¢m if on another plane), it is confirmed
to be an exterior point; when the depth is smaller, it is potentially
still part of the planar region occluded by other objects. Then, we
select trimming points from the boundary pixels, i.e., those labeled
with the ID of this planar region and adjacent to those with other

potential trimming point pixel

pixel on backside of the plane

m]

pixel in front of the plane

=]

pixel on the plane

Figure 9: Trimming point labeling: two potential trimming point
pixels shown on the boundary pixels of the highlighted white plane.
The blue pixel is tagged as a trimming point because one of its four
neighbors is on the backside; whereas the magenta pixel only has
off-plane neighbors in front of the plane, so it cannot be confirmed
based on the rule.

IDs, by restricting to those between interior and exterior points to
avoid false positives. In our experiments, it suffices to check just
the four pixels located at Scm distance (estimated from the depth
and the FOV) along axial directions, as illustrated in Fig. 9.

Trimming edges. We fit trimming edges to trimming points, rough-
ly following [Arikan et al. 2013]. We first calculate the in-plane
normal of each trimming point (through 3x3 Sobel operator applied
to the characteristic function of the region on the interior/exterior
grid), then cluster these points into trimming edges, and finally con-
nect these edges to form trimming curves.

As each trimming point can be regarded as a short line seg-
ment centered at the point with the estimated in-plane normal,
whether it can be concatenated to a line segment is measured
by the relation of their end points and their normals. We
use a Sobolev-type norm similar to [Cohen-Steiner et al. 2004],
dist = k1dy + koda + k30, a weight-
ed average of di, the distance to the
line, d2, the distance of its projection
to the line segment, and 6, the angle
between the normals. In our current :
implementation, we use k1 = 1, ko = 0.5 and k3 = 3cm with 6 in
radians.

We start clustering the points to trimming edges from an unpro-
cessed seed point, and repeatedly add the closest point and update
the edge until no more points are close enough (<4cm). Short trim-
ming edges (<20cm) are discarded in this step. We then use a
K-means-like algorithm to improve the fitting, i.e., we alternate-
ly associate each point to the closest edge (if distance <4cm) and
update each edge according to the associated points, until conver-
gence. The resulting trimming edges are connected to form trim-
ming curves (polylines) by snapping pairs of end points (within
10cm distance). Note that the curve may contain only one trim-
ming edge or form a loop. Temporal continuity of trimming edges
are attained by revising existing trimming edges with updated trim-
ming points.

Polygon creation. After calculating OBB in the local coordinate
frame aligned to the longest trimming edge, we insert each trim-
ming curve into the current polygon in the following order: (1) a
closed trimming curve; (2) a trimming curve with edges that replace
OBB edges; (3) a trimming curve with end points within a preset
distance from existing polygon boundary curves (20cm in our sys-
tem). In the third case, we extrapolate the trimming curve to reach
the current polygon, and insert the curve into the polygon edge list
to form the closed polygon. The final trimmed polygon is triangu-
lated for rendering. This method is able to create curved boundaries
(the desk in Fig. 11), concave boundaries (the cross shaped desk in
Fig. 1) or even regions with holes (bookcase in Fig. 1).

4.3 Object Construction

Each object is implicitly encoded in the volumetric data structure
through its ID. The only update to each individual object is the re-
calculation of its bounding box. For objects detected to be merging,
we replace their IDs with a single ID. The condition is similar to the
merging of planar shapes, i.e., when some of their pixels are adja-
cent in the ID map with similar depths (difference < 2cm), they
form a single object, as shown in Fig. 6. We recalculate the AABB
of the merged object. If one of the original objects already has a
surface mesh in the data structure, we recalculate the surface mesh.

Duplicate object identification. If an object matches an existing
object with an extracted surface mesh with a low (partial) matching
error, the mesh of the existing object is displaced as a virtual object

Figure 10: User interface of our system. (a) Raycasting map; (b)
Structure analysis of the current frame; (c) Reconstructed global
scene; and (d) Duplicate object hint.

in our graphical interface, allowing the user to decide whether to
keep scanning based on how well the perceived match of the com-
plete shape is. If the user is content with the matching result, we
record the ID of the matching object and the transformation matrix
between them in the data structure of the recent object. The object
will be rendered as the transformed matching object from then on.
The matching is calculated by performing ICP between the depth
pixels of an object labeled in the current frame and the surface mesh
of the existing object. Owing to the availability of the floor infor-
mation, we found it effective to initialize the ICP by aligning the
centers of the objects and rotating one of them by eight different
angles around the vertical axis and then pick the best match result-
ing from these initializations.

Refined depth creation. With all the planes, objects and voxels
updated, we are ready to prepare the structurally enriched depth
map used for ICP in the next KinectFusion stage. For each pixel on
the raycasting depth map, labeled as part of a plane, we calculate the
intersection point of the ray from this pixel and that plane. Thus, the
more accurate depth value based on this intersection point, instead
of the original raycasting depth, is stored into the prediction depth
map for the next frame.

5 User Interaction

As an online system, we need user assistance to confirm the struc-
ture analysis result in difficult situations, for instance, the correct-
ness of the duplicate object identification result. However, it will be
tedious for the user to confirm the result using the mouse/keyboard
UI since she/he needs to operate both the depth camera and mouse
in such a design. We address this issue by using the Kinect cam-
era itself as an interactive device to interact with the system, and
it is implemented based on the detection of persistent camera pose.
We also provide instantaneous visual feedback by displaying the
KinectFusion output, the analysis result of the current frame, and
the online reconstructed overall indoor scene simultaneously.

Visualization. We maintain three views on our graphical interface
as shown in Fig. 10: window (a) shows the raycasting result from
KinectFusion; window (b) renders the reconstruction in the camera
view; and window (c) is the bird’s-eye view of the whole recon-
structed scene. If a duplicated object is detected, window (d) pops

up to indicate the potential duplicate.

In the reconstruction window (b), detected planes and objects are
rendered in different colors, and the current object of interest is
highlighted. The object of interest is defined as the detected object
that has the largest number of labeled pixels in the current frame. If
a duplicate object is detected, this duplicate will be displayed at the
target position in the reconstruction window and the image of this
object will be shown explicitly in window (d) as a hint to the user.

The camera orientation of the bird’s-eye view is the average sensor
orientation tilted to 45° downward, and the camera position is 4m
behind the average sensor location. It is updated very 500 frames if
the average orientation is changed by at least 45° or the position is
shifted by at least 1m.

Object selection. When a duplicate is found for the current object
of interest and visualized on the screen during the scan process,
the user can hold the camera still for one second to enter the menu
mode. In the menu mode, a 30° left tilt of the camera around the
optical axis indicates confirmation of this duplication, while a 30°
right tilt indicates rejection. Any other movements take the system
out of the menu mode. Once rejected, this duplication candidate
will not be tested again.

If no duplication is detected, the user can also enter the menu mode
and tilt the Kinect camera to extract the mesh of the current object
of interest. Objects with generated meshes will serve as candidates
for duplication detection. In a common indoor scene, similar but not
exactly the same shapes abound, such as chairs of different heights
or different types of keyboards. If the user wants to preserve the
subtle differences, he/she could reject the duplicate suggestions and
extract a new mesh to make it a new type of object in the system.

6 Implementation Details

In this section, we describe some important implementation details
of our system.

Voxel hashing. In order to exploit spatial sparsity of the volumetric
representation, we use the KinectFusion algorithm based on voxel
hashing as described in [Nieiner et al. 2013]. The implicit repre-
sentation of the entire scene uses a TSDF, where 8 x 8 x 8 voxel
blocks are allocated in a narrow band around the surface and ac-
cessed via a hash table. We extended this method by incorporating
an object identifier into each voxel, without incurring additional
memory — we change the TSDF variable type to half float, which
is considered accurate enough for TSDF according to [Newcombe
et al. 2011], keeping the overall voxel size intact (8 bytes). The
voxel side length is 8mm in our system.

Coordinate system. In a common indoor scene, abundant rectilin-
ear structures exist, in particular, the orthogonality and parallelism
among the ground, most walls, and furniture. We maintain a co-
ordinate system maximizing the number of planes aligned to axes.
Initially, given the first raw depth frame, the coordinate system is
chosen to be centered at the Kinect sensor, with its Y-axis being
vertically up (opposite of the Kinect gravity sensor measurement)
and its X-axis being the cross product of Y and the optical axis of
the camera. We also request the user to hold the camera horizontal-
ly facing a vertical plane to obtain a decent initial guess. As planes
are detected and updated with each frame, we set the ground to be
the lowest horizontal plane (with a vertically up normal direction).
Next, we interpret the largest planar region facing the initial optical
axis of the camera as a wall. When the sizes of both the ground
and wall reach a threshold, we update the coordinate system based
on the normals of these two planes. The projection of the current

Figure 11: Office room. From left to right: KinectFusion result; scanned data with our online structure analysis, but without the orthogonality
heuristic; scanned data with the orthogonality heuristic; and our reconstructed scene.

origin on the ground serves as the new origin.

Planar region extension. When labeling existing planes, we ras-
terize the ID map of each extended plane by offsetting OBB and
intersection edges along their (in-plane) normals. We do not extend
the region across trimming edges, because they are based on actual
data. In contrast, the OBB edges are only calculated from currently
observed interior points. We also extend over infersection edges so
that the planes may extend over thin features, such as the partition
plates of a bookcase. Note that this extension is only used for the
rasterized ID maps but not for the reconstructed planar region ge-
ometry. For large flat regions, such as the floor and walls, we extend
40cm over each edge, and 4cm in other cases.

Surface mesh creation. The surface mesh for an object is con-
structed by using the Poisson surface reconstruction algorithm
[Kazhdan et al. 2006], with the point cloud extracted from the volu-
metric data as input through raycasting. We use the Poisson surface
reconstruction to produce smooth closed surfaces, which represent
isolated objects in our online recognition as well as in downstream
applications. From each voxel on the faces of the bounding box of
the object, we shoot a ray from the center along the negative gradi-
ent of the distance field, which is approximately the surface normal.
If the ray hits the zero-isosurface and the ID of the voxel belongs to
the object, we insert the intersection point to the point cloud. The
procedure is implemented on the GPU with one thread per ray, and
the points are collected in an array following the same fashion as
the voxel block selection in [NieBner et al. 2013].

ID management. In our implementation, we allow different IDs
stored in the volumetric data structure to represent the same planar
or non-planar object so as to handle merges efficiently. This type of
treatment is typical in efficient connected component computation
through the union-find algorithm. We simply maintain a table link-
ing the non-unique IDs in voxels with the unique IDs (UIDs) of the
planar regions and non-planar objects. With the lookup table, we
can simply translate the ID map in raycasting to a UID map. When
an object is removed, we set the IDs used for this object to link to
a special UID. When several objects are merged into a single ob-
ject, the IDs of these objects are all linked to the new object UID.
When the UID map is stored back into the volume data structure,
it is translated back to one of the IDs linked to it. Each time a new
planar or non-planar object is created, we allocate a UID to encode
it in the volume grid. With this ID management, we avoid frequent
updates for IDs. Only the lookup table needs to be maintained.

Weighted ICP. We use point-plane ICP between the raw depth map
and the refined raycasting depth map for camera pose estimation.
Planar objects are considered to be more accurate than non-planar
objects, since planes contain the rectilinear structural information.
The larger the planar region is, the more accurate and robust the
associated plane equation is. Thus, we assign higher weights for
pixels with depth determined by plane equations during the ICP
process. The weight is proportional to the area of the planar region.

GPU and CPU. The voxel data is stored on graphics memory, and

Figure 12: An apartment scanned in 15 minutes, including a sleep-
ing area, a living area, and a bathroom. From top to bottom: recon-
structed scene, KinectFusion with online structure analysis, volume
labeling result.

the KinectFusion stage is run on the GPU. We rasterize the pre-
diction planes using a shader which encodes position, normal and
plane ID at each pixel. Then we transfer the raycasting depth and
ID map and the rasterized image to the main memory. Planar region
and non-planar object data structures are stored in the main mem-
ory. We perform planar region and non-planar object labeling and
scene update on the CPU. Then we transfer the new ID map and the
generated depth map to graphics memory to be stored into voxels
and used for ICP in the next frame. It is also possible to port some
other operations to the GPU for further performance improvement.

7 Experimental Results

We implemented our system on a desktop PC with an Intel 15-4430
CPU and an Nvidia GeForce GTX 780 Ti graphics card. It was test-
ed on five indoor scenes: an office, a meeting room, an apartment,
a corridor and a lab. See our accompanying video for the online
structure analysis procedure.

Performance. The overall performance of our system is about
20 fps, with 35ms for the KinectFusion part and 14ms for our on-
line analysis per frame, including ray cast ID map (2ms), rasterize
ID map (2ms), plane/object labeling (2ms), scene update (2ms),

Figure 13: Meeting room. From left to right: reconstructed scene, KinectFusion with online structure analysis, volume labeling result (one
unique color per plane/object).

volume update (1ms) and rendering (Sms). The volume structure
is stored on the GPU and streamed between CPU and GPU when
scanning large-scale scenes. The plane/object data are stored in the
CPU memory, thus it does not interfere with the GPU processing of
KinectFusion.

Plane structure. Fig. 11 demonstrates the improvement to the re-
construction quality with our plane expansion operation. Due to oc-
clusion, there are holes on the ground and walls of the office scene
in the raw data, since those regions might be hard to cover com-
pletely while scanning. In contrast, with our plane data, large planar
regions, such as walls and the ground, are extended automatically to
these missing areas as an extrapolation of the most common shape.
This simple procedure is particularly effective for indoor scene re-
construction applications. Another example is the reconstruction
of the council table in the middle of the meeting room (Fig. 13).
While original ICP based fusion algorithms often suffer from se-
vere drifting for such plane sections with weak textures, our algo-
rithm effortlessly reconstructed it through plane structure analysis.
For non-workplace environments, such as the apartment in Fig. 12,
which includes a sleeping area, a living area, and a bathroom, the
benefits of employing plane structures are also obvious.

Repeated objects. We evaluated how the repeated objects analysis
can help to reduce the scanning time. For the meeting room scene,
there are 56 chairs of the same shape (see Fig. 13). It would have
taken extremely long if we scanned each chair individually. Instead,
we only completely scanned one chair as a template, and populated
the scene with instances of the template automatically in place of
the detected duplicates. With such duplication detection, we were
able to scan this room within 40 minutes.

Drifting relief. The existence of planar structures can be leveraged
to greatly reduce drifting in the fusion process. As illustrated in
Figure 11, the walls of the reconstructed office scenes are faithfully
modeled and closed into a seamless loop automatically with our
system. The parallelism and orthogonality relations between planes
are also well preserved. For comparison, the reconstruction result
from direct depth data fusion is shown on the left of Fig. 11.

In Fig. 15, we captured a long corridor by using KinectFusion with
voxel hashing [NieBner et al. 2013] at 30 fps. The length of the
captured part of the corridor is about 25 meters. Drifting in Kinect-
Fusion camera tracking is easily perceptible at this scale. Since
our algorithm detects planes explicitly, which helps tremendously
in rectifying the camera position, we can greatly reduce drifting
without compromising efficiency. The constraints provided by axis
aligned planar regions, especially the large ones, can keep the entire
scene nearly distortion-free, as shown in the second row of Fig. 15.

Large scale scenes. The scalability of our system is demonstrat-
ed on two large scale scenes: a meeting room (140m?) and a lab

(100m?). There are numerous types of objects in these scenes, e-
specially the lab scene. Our online structure analysis can identify
large planar regions, segment isolated objects, and recognize du-
plicates successfully to improve the reconstruction quality and effi-
ciency.

Parameters. Aside from data structure related design choices to
fit the GPU architecture, all the parameters in our system describe
physical quantities. For example, in the plane labeling process, the
threshold values to label a point on a plane, describes the maxi-
mum distance to the plane and a maximum deviation angle of the
normal; in rectilinear structure heuristics, angle threshold is used
to identify parallel planes. The values are mainly influenced by the
accuracy of the depth sensor, and are thus almost independent of
the scene. In fact, we have reported the values of all the parameters
used in our system based on Microsoft Kinect depth sensors. All
parameters are fixed in our tests, except in one case. The distance
threshold is increased from 10mm to 30mm for labeling existing
planes (Sec. 3.1) when scanning the conference room (Fig. 13). The
change is induced by the scanning distance. In most cases, the dis-
tance of the depth sensor to most planes/objects reaches as low as
around 1 meter during the scan, at which distance the noise level of
depth map is relatively small. However, to efficiently scan the meet-
ing room, the Kinect sensor remained over 2 meters away from the
wall. Note that this change is proportional to the standard deviation
error at 1 and 2 meters, as reported in [Khoshelham and Elberink
2012].

Limitations. Our system excels in reconstructing indoor scenes
where planes are major shape primitives. In scenes without (many)
planes, such as a garden, our system simply reduces to a typical
KinectFusion system. Our system will also fail to detect any plane
severely occluded by objects so that the detected area is below the
threshold, as shown in Fig. 14 (a). Conversely, planarity may be
enforced on non-planar shapes, leading to missing near flat fea-
tures, such as supports of computer displays. Similarly, bound-
ary trimming may remove geometric details, such as chamfers or
tiny boundary features. Another issue in labeling is that objects in

Figure 14: Failure cases: (a) the top plane of the cluttered desk is
undetected, (b) objects in contact are not isolated.

Figure 15: Comparison of drift. Top: KinectFusion; Bottom: ours. Note that the ground bends without the plane information.

contact will be treated as a single one, since the depth continuity
criterion alone cannot isolate them at the resolution of the volume
data, as shown in Fig. 14 (b). We believe these issues may be alle-
viated through incorporating matching of detailed templates from a
database. Currently, we tested the effectiveness by matching a dis-
play template to recover the display supports; extensions are left as
future work.

While our system does not introduce explicit loop closure handling,
planarity and orthogonality constraints will greatly reduce camer-
a tracking drift and bending of flat regions, resulting in seamless
loop closure for scenes with medium-sized loops (e.g., the office
in Fig. 11, and even the meeting room in Fig. 13 with a 50m long
loop) or with large loops that can be decomposed into small loops
(e.g., the lab in Fig. 1). For a scene captured with a single extreme-
ly large loop, we expect loop closure to remain a problem due to
accumulated errors.

8 Conclusion

We have presented an indoor-scene reconstruction system produc-
ing structured models in real-time, through an online structure anal-
ysis. In contrast to the state-of-the-art systems, we generate, at in-
teractive rates, processed models instead of raw point cloud data,
thus enabling operations difficult to perform in the post-processing
stage. The global structure gradually refined during the scan effec-
tively reduces camera drift, enhancing both the robustness and ac-
curacy of the reconstruction. Moreover, the prompt feedback with
structural information allows the user to skip repeated objects and
focus the scan on ambiguous regions.

Our framework for online structure analysis allows other primitive
shapes and heuristics to be incorporated, opening up a multitude
of opportunities for further research. For future work, we believe
loop closure assisted by structure analysis is a worthwhile topic,
since such techniques are desirable in high-quality large scene re-
construction. More accurate object segmentation methods could be
used to separate objects in contact within cluttered regions. Tem-
plate matching techniques can also be employed to improve both
object segmentation and geometric detail preservation. Texture
mapping may also help visually recover the geometric details miss-
ing from the captured scene.

Acknowledgements

This research was supported in part by NSF of China (No.
61272305, 61322204), the National Program for Special Support
of Eminent Professionals of China, and NSF IIS 0953096.

References

ARIKAN, M., SCHWARZLER, M., FLORY, S., WIMMER, M.,
AND MAIERHOFER, S. 2013. O-snap: Optimization-based s-
napping for modeling architecture. ACM Trans. Graph. 32, 1
(Feb.), 6:1-6:15.

ATAER-CANSIZOGLU, E., TAGUCHI, Y., RAMALINGAM, S.,
AND GARAAS, T. 2013. Tracking an rgb-d camera using points
and planes. In Proc. CDC4CV, IEEE Workshop.

BALLARD, D. H. 1981. Strip trees: A hierarchical representation
for curves. Commun. ACM 24, 5, 310-321.

BIBER, P., AND STRASSER, W. 2003. The normal distribution-
s transform: a new approach to laser scan matching. In Proc.
IEEE/RSJ IROS, IEEE, 2743-2748.

Biswas, J., AND VELOSO, M. 2012. Planar polygon extraction
and merging from depth images. In Proc. IEEE/RSJ IROS, 3859—
3864.

CHEN, J., BAUTEMBACH, D., AND IZADI, S. 2013. Scalable real-
time volumetric surface reconstruction. ACM Trans. Graph. 32,
4 (July), 113:1-113:16.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004.
Variational shape approximation. ACM Trans. Graph. 23, 3
(Aug.), 905-914.

Dou, M., GuaN, L., FRAHM, J.-M., AND FucHs, H. 2013.
Exploring high-level plane primitives for indoor 3d reconstruc-
tion with a hand-held rgb-d camera. In Computer Vision - ACCV
2012 Workshops, vol. 7729. 94-108.

DouGLAS, D. H., AND PEUCKER, T. K. 2011. Algorithms for
the Reduction of the Number of Points Required to Represent a
Digitized Line or its Caricature. John Wiley & Sons, Ltd, 15-28.

Du, H., HENRY, P., REN, X., CHENG, M., GOLDMAN, D. B.,
SEITZ, S. M., AND FoXx, D. 2011. Interactive 3d modeling of
indoor environments with a consumer depth camera. In Proc. of
Ubicomp, 75-84.

FAHN, C.-S., WANG, J.-F., AND LEE, J.-Y. 1989. An adaptive
reduction procedure for the piecewise linear approximation of
digitized curves. IEEE Trans. PAMI. 11,9, 967-973.

FURUKAWA, Y., CURLESS, B., SEITZ, S. M., AND SZELISKI, R.
2009. Manhattan-world stereo. In Proc. CVPR, 1EEE, 1422—-
1429.

FURUKAWA, Y., CURLESS, B., SEITZ, S. M., AND SZELISKI, R.
2009. Reconstructing Building Interiors from Images. In Proc.
ICCV, IEEE.

GLOVER, F., AND LAGUNA, M. 1997. Tabu Search. Kluwer
Academic Publishers.

HARTLEY, R. 1., AND ZISSERMAN, A. 2004. Multiple View Ge-
ometry in Computer Vision, second ed. Cambridge University
Press.

HULIK, R., SPANEL, M., SMRZ, P., AND MATERNA, Z. 2014.
Continuous plane detection in point-cloud data based on 3d
hough transform. Journal of Visual Communication and Image
Representation 25, 1, 86 — 97.

1zapI, S., KiM, D., HILLIGES, O., MOLYNEAUX, D., NEwW-
COMBE, R., KOHLI, P., SHOTTON, J., HODGES, S., FREE-
MAN, D., DAVISON, A., AND FITZGIBBON, A. 2011. Kinect-
fusion: real-time 3d reconstruction and interaction using a mov-
ing depth camera. In Proc. of ACM UIST, 559-568.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proc. SGP, Eurographics, 61-70.

KHOSHELHAM, K., AND ELBERINK, S. O. 2012. Accuracy and
resolution of kinect depth data for indoor mapping applications.
Sensors 12,2, 1437-1454.

KiM, Y. M., MITRA, N. J., YAN, D.-M., AND GUIBAS, L. 2012.
Acquiring 3d indoor environments with variability and repeti-
tion. ACM Trans. Graph. 31, 6, 138.

KOLESNIKOV, A. 2003. Efficient Algorithms for Vectorization and
Polygonal Approximation. University of Joensuu.

LATECKI, L. J., AND LAKMPER, R. 1999. Convexity rule for
shape decomposition based on discrete contour evolution. Com-
puter Vision and Image Understanding 73, 441-454.

LEE, D. C., HEBERT, M., AND KANADE, T. 2009. Geometric
reasoning for single image structure recovery. In Proc. CVPR,
IEEE, 2136-2143.

LEE, D. C., GUPTA, A., HEBERT, M., AND KANADE, T. 2010.
Estimating spatial layout of rooms using volumetric reasoning
about objects and surfaces. In NIPS, 1288-1296.

LEE, T.-K., Lim, S., LEE, S., AN, S., AND OH, S.-v. 2012.
Indoor mapping using planes extracted from noisy rgb-d sensors.
In Proc. IEEE/RSJ IROS, 1727-1733.

L1, Y., WU, X., CHRYSATHOU, Y., SHARF, A., COHEN-OR, D.,
AND MITRA, N. J. 2011. Globfit: Consistently fitting primitives
by discovering global relations. ACM Trans. Graph. 30, 4 (July),
52:1-52:12.

MATTAUSCH, O., PAN0zzO, D., MuURA, C., SORKINE-
HORNUNG, O., AND PAJAROLA, R. 2014. Object detection
and classification from large-scale cluttered indoor scans. Com-
puter Graphics Forum.

NAN, L., XIE, K., AND SHARF, A. 2012. A search-classify ap-
proach for cluttered indoor scene understanding. ACM Trans.
Graph. 31, 6, 137.

NEWCOMBE, R. A., 1zAD1, S., HILLIGES, O., MOLYNEAUX, D.,
KiM, D., DAVISON, A. J., KOHLI, P., SHOTTON, J., HODGES,
S., AND FITZGIBBON, A. W. 2011. Kinectfusion: Real-time
dense surface mapping and tracking. In Proc. of IEEE ISMAR,
127-136.

NIESSNER, M., ZOLLHOFER, M., IZADI, S., AND STAMMINGER,
M. 2013. Real-time 3d reconstruction at scale using voxel hash-
ing. ACM Trans. Graph. 32, 6 (Nov.), 169:1-169:11.

PERO, L. D., BOWDISH, J., FRIED, D., KERMGARD, B., HART-
LEY, E., AND BARNARD, K. 2012. Bayesian geometric model-
ing of indoor scenes. In Proc. CVPR, IEEE, 2719-2726.

REISNER-KOLLMANN, I., MAIERHOFER, S., AND PURGATH-
OFER, W. 2013. Reconstructing shape boundaries with mul-
timodal constraints. Comput. Graph. 37, 3 (May), 137-147.

ROTH, H., AND VONA, M. 2012. Moving volume kinectfusion.
In British Machine Vision Conference (BMVC), 1-11.

SALAS-MORENO, R. F., NEWCOMBE, R. A., STRASDAT, H.,
KELLY, P. H. J., AND DAVISON, A. J. 2013. Slam++: Si-
multaneous localisation and mapping at the level of objects. In
Proc. CVPR, IEEE, 1352-1359.

SCHNABEL, R., WAHL, R., AND KLEIN, R. 2007. Efficient ransac
for point-cloud shape detection. Computer Graphics Forum 26,
2, 214-226.

SHAO, T., Xu, W., ZHOU, K., WANG, J., LI, D., AND GUO, B.
2012. An interactive approach to semantic modeling of indoor
scenes with an rgbd camera. ACM Trans. Graph. 31, 6 (Nov.),
136:1-136:11.

SILBERMAN, N., SHAPIRA, L., GAL, R., AND KOHLI, P. 2014.
A contour completion model for augmenting surface reconstruc-
tions. In Computer Vision-ECCV 2014. Springer, 488-503.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo
tourism: exploring photo collections in 3d. ACM Trans. Graph.
25, 3 (July), 835-846.

STEINBRUCKER, F., KERL, C., CREMERS, D., AND STURM, J.
2013. Large-scale multi-resolution surface reconstruction from
rgb-d sequences. In Proc. ICCV, IEEE, 3264-3271.

SUN, Y.-N., AND HUANG, S.-C. 2000. Genetic algorithms for
error-bounded polygonal approximation. International Journal
of Pattern Recognition and Articial Intelligence 14, 3, 297-314.

TAGUCHI, Y., JIAN, Y.-D., RAMALINGAM, S., AND FENG, C.
2013. Point-plane slam for hand-held 3d sensors. In Proc. ICRA,
IEEE, 5182-5189.

ToMoNO, M. 2012. Image-based planar reconstruction for dense
robotic mapping. In Proc. ICRA, IEEE, 3005-3012.

TRIGGS, B., MCLAUCHLAN, P., HARTLEY, R., AND FITZGIB-
BON, A. 2000. Bundle adjustment — a modern synthesis. In
Vision Algorithms: Theory and Practice, LNCS, Springer Ver-
lag, 298-375.

WHELAN, T., JOHANNSSON, H., KAESS, M., LEONARD, J. J.,
AND MCDONALD, J. B., 2012. Robust tracking for real-time
dense RGB-D mapping with Kintinuous. Technical Report, Sept.

ZHOU, Q.-Y., AND KOLTUN, V. 2013. Dense scene reconstruction
with points of interest. ACM Trans. Graph. 32, 4 (July), 112:1—
112:8.

ZHOoU, Q.-Y., AND KOLTUN, V. 2014. Color map optimization
for 3d reconstruction with consumer depth cameras. ACM Trans.
Graph. 33, 4 (July), 155:1-155:10.

ZHOU, Q.-Y., AND KOLTUN, V. 2014. Simultaneous localization
and calibration: Self-calibration of consumer depth cameras. In
Proc. CVPR, IEEE.

