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a b s t r a c t

This paper presents a system for design and simulation of supporting tube structure. We

model each freeform tube component as a swept surface, and employ boundary control and

skeletal control to manipulate its cross-sections and its embedding respectively. With the

parametrization of the swept surface, a quadrilateral mesh consisting of nine-node general

shell elements is automatically generated and the stress distribution of the structure is sim-

ulated using the finite element method. In order to accelerate the complex finite element

simulation, we adopt a two-level subspace simulation strategy, which constructs a secondary

complementary subspace to improve the subspace simulation accuracy. Together with the do-

main decomposition method, our system is able to provide interactive feedback for paramet-

ric freeform tube editing. Experiments show that our system is able to predict the structural

character of the tube structure efficiently and accurately.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Tubes serve as a type of important supporting struc-

ture and are commonly used in people’s everyday life

(Fig. 1). Traditionally, such supporting structures are often

hollow to conserve the manufacture cost and self-weight.

They mostly consist of regular cylinders, which are more

budget-friendly for mass production with traditional man-

ufacturing techniques. On the other hand, the rapid develop-

ment of prototype technology (e.g. 3D printing) makes per-

sonalized and customized tube fabrication using generalized

cylinders conveniently possible, which greatly expands the

designing space of supporting tubes.

Although most existing computer-aided design (CAD)

softwares (e.g. AutoCAD) well support the geometric design

of such tubular structures. Users still need to manipulate
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many geometric degrees of freedom (DOFs) to model

freeform tubes. Interpolatory and tangential controls at the

boundary cross-sections are two widely-adopted mecha-

nisms to control the shape of the tube. However, profile con-

trol [1] or solving higher-order differential equations [2] is

still necessary to prevent shape distortion, which is often te-

dious or time-consuming. On the other hand, existing CAD

packages merely focus on the aspect of shape editing while

the structural properties of the 3D model remain unknown

to novice users. Following the trend of design-simulation in-

tegration, current commercial produces start to enable user

to analyze their design using finite element method. Unfor-

tunately, an accurate simulation of the structural character-

istic of a customized tubular structure is expensive because

generalized shell element with high-order shape functions

is usually required to avoid shear-locking artifact [3] and a

simulator often possesses a large number DOFs that is pro-

hibitive to regular desktop computers, not to mention per-

forming interactive structural analysis of the 3D model being

edited.

http://dx.doi.org/10.1016/j.gmod.2015.05.002
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Image sources：
http://journeyeast.com/products/tubeline-stool
http://www.pinterest.com/robertpatterson/pipe-furniture

Fig. 1. Two furniture designs using supporting tubes.
As a response to the aforementioned challenges, we

present a system for interactive design and simulation of

supporting tubular structures. Tube components can be in-

tuitively edited using boundary and skeletal controls and a

complex tube system can be handily created by assembling

tube components at their open interfaces. The underlying

simulation is carried out using general quadratic nine-node

quadrilateral element. A constraint subspace is constructed

at each component, which serves as the primary subspace

for the follow-up structural analysis. On the top of the con-

straint subspace, we build a load-dependent secondary sub-

space named residual subspace, which is able to precisely

capture the detailed intra-component deflection due to the

regional external loads without resorting to expensive full-

space simulation. As a result, our system is able to provide in-

teractive yet accurate structural analysis along with the edit-

ing operation of the tube.

Contribution In general, the contribution of our work can

be briefly summarized as follows:

• This paper presents a system integrating parametric

shape editing and finite element method based structural

analysis into a unified environment for the design and

simulation of freeform tubular supporting structures.
• We provide user an intuitive shape design mechanism

with lower geometric DOFs by using the boundary and

skeletal controls to manipulate the geometry of each tube

component.
• A new simulation strategy is proposed based on the fact

that the supporting tube is often of light self-weight com-

paring to its external loads. We use a two-level subspace

simulation that is able to accurately capture the deflec-

tion induced by external loads while still keep the simu-

lator compact.

2. Related work

Swept surface is often used to model general cylinders

[4] by transforming cross-section curves along a smooth rota-

tion field on a swept trajectory. Topics such as how to design

smooth rotation field on a given trajectory [5,6], how to inter-

polate cross-section curves [7,8] and how to support profile

editing [9,10] are all well studied in the literature. However,

it is tedious to manipulate lots of control vertices of swept

surfaces represented by standard tensor product spline sur-
faces. Recently, You et al. [1] suggest modeling swept sur-

faces by solving ordinary differential equations (ODE). They

showed that interpolatory and tangential boundary controls

are available by using fourth-order ODE, which leads to lower

DOFs in controlling the shape of swept surfaces. They also

derived analytical solutions to six-order partial differential

equations and gave extra curvature control to swept surfaces

[11]. The similar idea is also exploited in shape modeling us-

ing meshed surfaces. In [2,12], the authors showed that gen-

eralized cylinders can be obtained by solving harmonic and

higher-order harmonic equations. In our system, the geomet-

ric design of freeform supporting tubes is motivated by these

existing studies.

Thin shell element is a natural choice for the tubular

structure, which has a high width-thickness ratio. Such de-

generacy motivates researchers, especially in graphics com-

munity, to seek for alternative energy models to capture the

deformation of thin shell in a more efficient and intuitive

manner such as spline/NURBS [13–15], hinge-based bending

[16–19], or meshless method [20–22], rather than resorting

to classic strain theory [23]. Zhang et al. [24] proposed to use

1D orientated rod element with incremental strain theory to

model the thin shell structure, which could be considered

as an extended version of mass-spring system. While com-

pelling results have been reported, these methods only pro-

duce physically plausible animations while we are looking

for an accurate simulation that directly serves for potential

follow-up fabrication (e.g. via 3D printing).

Design-simulation integration has received increased

attention recently and fabrication-purposed design system

becomes an active research topic. Simulation based opti-

mization has been widely applied to make sure the fab-

ricated object possesses the desired structural robustness

[25–27], kinematic constraints [28,29], and deformable be-

havior [30–32]. There are also many contributions trying

to unify the simulation and the design processing. Umetani

et al. [33] present a garment designing system that allows

an interactive editing between 2D patterns and 3D simulated

draped forms. Cirak et al. [34] propose to use subdivision

surface for the design-simulation integration for thin-shell

objects.

Simulation acceleration stands out a grand technical

challenge for the integration of design simulation because an

accurate finite element method (FEM) [3] simulation is often

expensive while timely-coupled design-simulation environ-

ment is always favored. To accelerate the FEM simulation of

thin shell, Seth et al. [35] employ a multi-resolution frame-

work. In regular FEM simulation of 3D solid volume, subspace

modal reduction is a widely used technique [36–38] and it

can also be applied to accelerate thin-shell simulation [39].

Our method well complements exiting contributions by

developing a design-simulation framework based on do-

main decomposition [40] and finite element tearing and

interconnect (FETI) method [41], as we notice that tubu-

lar structures are often component-wise and the geometric

symmetry commonly exists. The geometry of each tube

component is dealt with using boundary and skeletal con-

trols. The structural behavior is simulated using quadratic

nine-node quadrilateral mesh automatically generated via

the surface parametrization, which will assign five DOFs for

each free node. To accelerate the simulation, we construct
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the component-level subspace based on an engineering tech-

nique named component mode synthesis (CMS) [42,43]. Im-

proved simulation accuracy is achieved by computing the

residual deflection within a load-dependent secondary sub-

space. As a result, our system is able to provide accurate

stress analysis while keeping the simulator compact and

efficient.

3. System overview

Fig. 2 sketches an overview of the proposed design-

simulation system. The entire structure is composed of mul-

tiple tubular components which are inter-connected at their

interfaces. The shape of each component is modeled as a

swept surface that can be freely edited with an intuitive

interface that allows users to manipulate key cross-section

curves and their trajectory (Section 4). Based on the param-

eterization, a quadrilateral finite element mesh is automati-

cally generated. Each of its element is a nine-node quadratic

shell element (Section 5), where the mid-edge nodes are de-

termined using cubic Hermite interpolation. We adopt a two-

level subspace simulation strategy to accelerate the simula-

tion so that an interactive structural analysis is made possible

(Section 6) and the stress distribution can be timely visual-

ized by the designer to ensure the tubular model is robust

and stable under the prescribed external loads.

4. Geometric design of freeform tubes

Our goal of the geometric design is to provide users in-

tuitive and flexible controls of freeform tubular components,

which are modeled using swept surfaces in our system. Sim-

ilar to previous works [1], we use boundary constraints to

manipulate geometric variation of the cross-section of the

tube along the neutral axis instead of using control vertices

for the tensor product spline surfaces, since it is intuitive and

requires fewer control parameters. Instead of profile edit-

ing introduced in [1], we employ the sweep trajectory to

control the design in our system, or namely skeletal con-

trol. Comparing to multiple profile curves, one freeform tube

only have one sweep trajectory, which significantly eases

the overall shape editing operation. Specifically, as shown in

Fig. 3, our system allows users to control (1) the sweep trajec-

tory S(v), (2) a few key cross-section curves Ci(u) = C(u, vi)

at S(vi), and (3) each key cross-section curve’s variation at

both extensions D−(u, vi) and D+(u, vi), such that D−(u, vi)

and D+(u, vi) are the tangent directions. The output swept

surface C(u, v) at [vi, vi+1] must satisfy the following

conditions:

C(u, vi) = Ci(u),
∂C(u, vi)

∂v
= D+(u, vi)

C(u, vi+1) = Ci+1(u),
∂C(u, vi+1)

∂v
= D−(u, vi+1)

You et al. [1] presented a formulation to construct the

swept surface with the above constraints by solving a fourth-

order ODEs. Unfortunately, we found that this approach

yields unpleasant shape distortion if the boundary tangents

are not in parallel, as shown in Fig. 4(a) . To prevent such dis-

tortion, extra control information must be provided from the

user such as profile control [1] or curvature control [2,11],
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Fig. 3. The boundary conditions and sweep trajectory of a freeform tube.

The designed freeform tube is on the left and its shape space of cross-

sections is shown on the right.
which inevitably induces more editing freedoms and could

potentially make novice users confusing.

Alternatively, we combine the rotation minimizing frames

(RMF) [6] together with the existing ODE-based techniques.

The geometry of the swept surface is decoupled into two

parts: the shape defined by cross-sections and their 3D em-

bedding defined by sweep trajectories. In our system, we

constrain each cross-section curve C(u, vi) to be planar and

the editing operations associated with cross-section curves

are performed with an intuitive 2D user interface. Suppose

a rigid transformation T(v) maps a planar curve C̃(u, v) to

C(u, v), we call C̃(u, vt ) the shape of cross-section at v = vt .

Given a sparse set of key cross-section shapes C̃i(u) = C̃(u, vi)

for i = 1, · · · , n and a sweep trajectory S(v), we are comput-

ing for interpolated cross-section shapes C̃(u, v) and trans-

formations T(v) for all vi ∈ [v1, vn]. The transformation T(v) is

composed of a translation t(v) and a rotation R(v). We de-

fine the translation t(v) = S(v), to make the cross-section

curves sweep coincide with the specified trajectory S(v). The

rotation R(v) is computed by using the RMF on S(v). Besides

interpolatory constraints, we also allow users to control the

tangent in the shape space of cross-sections. Specifically, we

embed all planar cross-section shapes in 3D by defining v as

the height (z direction) of C̃(u, v), as shown in Fig. 3. The tan-

gential controls D̃+(u, vi) and D̃−(u, vi) in the shape space of

cross-sections are also defined in this embedding. C̃(u, v) is

solved with the following tangential constraints:

C̃(u, vi) = Ci(u),
∂ C̃(u, vi)

∂v
= D̃+(u, vi)

C̃(u, vi+1) = Ci+1(u),
∂ C̃(u, vi+1)

∂v
= D̃−(u, vi+1).
Fig. 4. Boundary constrained swept surfaces using ODE-based tech
We take the shape on the plane z = v j as the interpolated

cross-section at v = v j . Note that in our system, D̃−(u, vi) and

D̃+(u, vi) provide only tangential control in the shape space

of cross-sections. They are not the tangents on the swept sur-

face if the sweep trajectory is not straight. In our implemen-

tation, we set D̃±(u, vi) = R�(v)D±(u, vi), where R(v) is the

rotation of the RMF at v.

As shown in Fig. 4(b), with the same boundary conditions,

swept surfaces using our method are free of distortion. In this

example, the sweep trajectory is defined by a cubic Bezier

curve whose end points and tangents are the same with the

input boundary conditions. If profile control is still required,

users can simply insert extra key cross-section curves to con-

trol the profile. Note that although existing commercial prod-

ucts support cross-section sketching followed by sweep path

design, tangential control is mostly applied on the sweep tra-

jectory but not on the surface. An alternative way is to di-

rectly manipulate on the control points, which leads to heav-

ier data and interactions.

Since the cross-sections are interpolated analytically

and the RMFs are computed explicitly, the computation

associated with editing operations is negligible. Please note

that our current system does not explicitly handle the self-

intersection, which could be possible for highly curved tubes.

An alert will be sent as soon as the user’s editing leads to any

self-collisions or intersections.

5. Formulation of general shell element

Shell element is a degenerated structural element. Unlike

regular 3D solid volumetric elements such as brick or tetra-

hedra, the dimension along its thickness is much smaller (e.g.

over 50 times) than the other two dimensions. Such degen-

eracy leads serious numerical stability issue. As a result, nec-

essary geometric/kinematic constraints and simplifications

must be assumed. This section will briefly explain the finite

element formulation of the nine-node quadrilateral shell el-

ement. We refer readers to the related literature [3,44], for a

more detailed derivation.

The parametrization of the swept surface handily gener-

ates a quadrilateral mesh. Each four-node quadrilateral will

be converted into a nine-node quadratic shell element. The

extra mid-edge nodes are determined by using cubic Hermite

interpolation so that the resulting nine-node element has

smoothly-curved edges. For the ease of derivation, we adopt

the isoparametric formulation, which begins with a standard

shell element (Fig. 5) defined in a virtual rst coordinate frame

or natural coordinate frame. This element spans from −1 to 1
niques without (a) and with (b) sweep trajectory control.
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in both r and s directions. For elements with arbitrary loca-

tion and geometry, we take use of the Jacobian matrix to map

it back to the real coordinate system.

For an arbitrary mass point within the element, all of its

kinematic terms are interpolated using nodal shape func-

tions. Shape functions always have ones at their host nodes

and vanished values at the other nodes. High-order shape

function can be considered as the superposition of the scaled

low-order ones. Based on this property, the shape function of

this standard element can be easily written as:

h1 = 1
4
(1 + r)(1 + s) − 1

2
h5 − 1

2
h8 − 1

4
h9

h2 = 1
4
(1 + r)(1 + s) − 1

2
h5 − 1

2
h6 − 1

4
h9

h3 = 1
4
(1 + r)(1 + s) − 1

2
h6 − 1

2
h7 − 1

4
h9

h4 = 1
4
(1 + r)(1 + s) − 1

2
h7 − 1

2
h8 − 1

4
h9

h5 = 1
2
(1 + r)(1 + s) − 1

2
h9

h6 = 1
2
(1 + r)(1 + s) − 1

2
h9

h7 = 1
2
(1 + r)(1 + s) − 1

2
h9

h8 = 1
2
(1 + r)(1 + s) − 1

2
h9

h9 = (1 − r2)(1 − s2).

(1)

Fig. 5 shows a nine-node shell element in the rest (left)

and deflected (right) configurations respectively, indicated

with the superscript l. When l = 0, the corresponding vari-

able is at the rest configuration; when l = 1, the correspond-

ing variable is at the deflected configuration. A unit vector
lvk

n = [lvk
nx,

lvk
ny,

lvk
nz]

�
is defined in the regular xyz coordi-

nate frame at node k, which corresponds to the tangent di-

rection of t axis in rst frame. lvk
1

and lvk
2

are two mutually

perpendicular unit vectors sitting the plane normal to lvk
n.

The infinitesimal rotations around lvk
1

and lvk
2

are denoted as

α and β , which serve as extra two DOFs of node k1. There-

fore, each node possesses five DOFs i.e. xk, yk, zk, αk and βk.

Let p(r, s, t) be an arbitrary mass point within the element. Its

rest/deflected position can be interpolated as

lφ(r, s, t) =
∑

k

hk
lφk + 1

2

∑
k

akhk
lvk

nφ, φ = x, y or z, (2)

where ak is the thickness of the shell at node k. The first term

in Eq. (2) corresponds to the regular shape function interpo-

lation and the second term (i.e. 1
2

∑
akhk

lvk
nφ

) assumes that

r and s displacements at p(r, s, t) are linearly proportional to

its t coordinate when r and s are fixed. The displacement vec-

tor u(r, s, t) = [u, v, w]� at p can be interpolated in a similar
1 α and β are small because the thickness (t dimension) of the shell is

much smaller than its r and s dimensions.
fashion

u(r, s, t) =
∑

k

hkuk + 1

2

∑
k

akhkvk
nx

v(r, s, t) =
∑

k

hkvk + 1

2

∑
k

akhkvk
ny (3)

w(r, s, t) =
∑

k

hkwk + 1

2

∑
k

akhkvk
nz

where vk
nx, vk

ny and vk
nz are the three components of the dis-

placement vector vk
n from 0vk

n to 1vk
n (i.e. vk

n � 1vk
n − 0vk

n). It

can be expressed using nodal DOFs αk and βk such that

vk
n = −0v

k

2αk + 0vk
1βk. (4)

Substituting Eqs. (3) and (4) into Eq. (2) leads to the final in-

terpolation of the shell element

[
u
v
w

]
=

∑
k

Hk

⎡
⎢⎢⎣

uk

vk

wk

αk

βk

⎤
⎥⎥⎦, (5)

where

Hk =

⎡
⎢⎢⎢⎣

hk −hk

t

2
ak

0vk
2x hk

t

2
ak

0vk
1x

hk −hk

t

2
ak

0vk
2y hk

t

2
ak

0vk
1y

hk −hk

t

2
ak

0vk
2z hk

t

2
ak

0vk
1z

⎤
⎥⎥⎥⎦. (6)

The element stiffness matrix is in the format of

Ke =
∫

Ve

B�CBdv, (7)

where B is the strain–displacement matrix obtained by ap-

plying the partial derivative to nodal displacements using

Eq. (5). C is the stress–strain matrix determined by the mate-

rial property. In this paper, linear elasticity is assumed and C

is constant.

Due to the degeneracy of the shell element along its t

direction, the stress components normal to the midsurface

must always be zero. As a result, we need transforms the C

matrix to make it aligned with the orientation of the shell el-

ement. As shown in Fig. 6, let r, s, t be the unit vectors corre-

sponding to three axes in the natural coordinate frame. They

may be distorted and no longer orthogonal to each other

when being viewed from the regular xyz coordinate frame.

Let r′, s′, t′ be the unit vectors at the tangent directions of

the corresponding axis (note that t′ = t). We can extract a

new set of basis vectors r̄, s̄ and t̄ such that: r̄ = s′×t′
||s′×t′|| ,
2
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2 In fact, even if the the structure’s self-weight is not neglectable, we can

further incorporate the inertia-relief mode set (extra six modes per compo-

nent) to make the local primary subspace a statically complete mode set,

which is able to accurately capture the static system response due to the

rigid body acceleration as proven in [42].
s̄ = t′×r̄
||t′×r̄||2 , and t̄ = t′

||t′||2 . Afterwards, a transformation ma-

trix Qsh ∈ R
6×6 can be constructed from the direction cosines

of the r̄, s̄ and t̄ measured in xyz coordinate frame, such that:

Qsh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l2
1 m2

1 n2
1 l1m1 m1n1 n1l1

l2
2 m2

2 n2
2 l2m2 m2n2 n2l2

l2
3 m2

3 n2
3 l3m3 m3n3 n3l3

ll1,2 mm1,2 nn1,2 lm1,2 mn1,2 nl1,2

ll2,3 mm2,3 nn2,3 lm2,3 mn2,3 nl2,3

ll3,1 mm3,1 nn3,1 lm3,1 mn3,1 nl3,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(8)

where

l1 = cos(x, r̄); m1 = cos(y, r̄); n1 = cos(z, r̄);
l2 = cos(x, s̄); m2 = cos(y, s̄); n2 = cos(z, s̄); (9)

l3 = cos(x, t̄); m3 = cos(y, t̄); n3 = cos(z, t̄).

The notation abi, j denotes aib j + a jbi, for instance lm1,2 =
l1m2 + l2m1. The transformed C matrix is computed as

Csh = Q�
shCQsh. (10)

The volumetric integral in Eq. (7) is evaluated numerically at

18 sampling points pi(ri, si, ti) according to Gauss–Legendre

integration strategy

Ke ≈
∑

i

det(Ji)wiB
�CshB, (11)

where Ji is the Jacobian matrix encoding how rst frame is

transformed to xyz frame at pi. wi is the constant sampling

weight of pi. The r, s and t coordinates of pi are selected

from the combinations of r = ±0.77460, 0, s = ±0.77460, 0

and t = ±0.57735.

6. Subspace simulation acceleration

We project the FEM simulator into a pre-constructed sub-

space to accelerate the associated computation in order to

provide an interactive design-simulation interplay. It is well-

known that the cost of subspace simulation acceleration is

the accuracy compromise as the system response beyond the

pre-defined subspace cannot be captured. This problem is

dealt with by using a secondary residual subspace, in our sys-

tem, to accurately obtain the necessary intra-component de-

flection due to the external load.

The Choice of Subspace Our subspace construction strat-

egy is devised based on the following three important obser-

vations/assumptions:

✦ The entire tube system is composed of multiple small-size

components, many of which are of the same geometry because

of the geometric symmetry.

Accordingly, we compute the subspace basis vectors or

modes at each of the tubular components individually so that

the expensive computation associated with global finite ele-

ment mesh is avoided. For tubular components of the same

geometry but different locations/orientations, the modes can

be directly synthesized by applying the corresponding rota-

tion and translation.

✦ Only a static equilibrium structural analysis is required

in our case while vibrational response under highly accelerated

velocity field (e.g. a launching rocket) is not our concern.
Correspondingly, we safely ignore the dynamical struc-

tural analysis and only focus on the static equilibrium analy-

sis with the format of Ku = f.

✦ The supporting tubular structure often undertakes a much

larger external regional loads comparing with its self-weight.

Consequently, we build a complementary subspace at

run-time to capture the residual deformation that is not in-

cluded in the primary subspace. It can be mathematically

proven that such two-level subspace simulation strategy is

able to produce the same result as using the full-space2.

6.1. Constraint subspace – the primary subspace

Our primary subspace construction method is inspired by

the boundary mode [45], which is essentially an extension of

the classic CMS technique [43]. The basis vectors are com-

puted per component by solving a static equilibrium system.

For a given tubular component, we classify all of its DOFs

into two categories namely, the internal DOF set and bound-

ary DOF set, which are denoted using subscripts i and b re-

spectively in the following formulation. We impose one unit

displacement to each boundary DOF while restrain the rest

boundary DOFs anchored, which leads to[
KL

ii
KL

ib

KL
ib

�
KL

bb

][
�L

i

�L
b

]
=

[
FL

i

FL
b

]
, (12)

where superscript L denotes the variables are local. �L
b

is an identity matrix corresponding to the unit boundary

excitement imposed. FL
i

= 0 as no external loads are applied

at internal DOFs. The unknown internal response �L
i

can be

easily computed by expanding the first line of Eq. (12):

�L
i = −KL

ii

−1
KL

ib, (13)

and mode vectors at the component are assembled by con-

catenating the �L
i

and �L
b

such that �L = [�L
i

�|�L
b

�
]�. We

notice that the formulation of �L is consistent with the con-

straint mode in CMS [42]. Therefore, we refer the subspace

spanned by �L as the constraint subspace. Fig. 7 shows the

shapes of five constraint modes associated with a boundary

node while other boundary nodes (red nodes in the figure)

are fixed.

With constraint modes, the system’s displacement can be

expressed using the reduced coordinates at each component

such that

u = �̄q̄, (14)

where �̄ = diag(�1,�2, ...�k) and q̄ = [q1�
, q2�

, ...qk�
, ]

are the global subspace matrix and generalized displacement

vector of the system with k tubular components.

6.2. Multiplier-free component coupling

All the tubular components are mutually connected at

their interfaces. Such coupling can be formulated as the inter-

face constraint (IC) between a pair of adjacency components.
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Fig. 7. The shapes of five constraint modes associated with a boundary node (highlighted as blue node). Other restrained boundary DOFs are marked as red

nodes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
As shown in Fig. 8, IC requires that duplicated boundary DOFs

from components η and ζ must always have identical values

e.g. u
η
b

= u
ζ
b

. It can be re-written using the reduced coordi-

nate in constraint subspace

E
η
b
�ηqη = E

ζ
b
�ζ qζ , (15)

where E
η
b

and E
ζ
b

are two elementary matrices extracting

boundary DOFs from each component. A commonly-adopted

approach to enforce Eq. (15) is to use the Lagrange multiplier

method, which explicitly formulates the interface forces as

the unknown multipliers [41]. While our simulator can also

be handled this way, there are two obvious drawbacks asso-

ciated with multiplier-based solution: (1) the dimension of

the resulting linear system is greatly increased due to the ex-

istence of the multipliers and the redundancy of the bound-

ary DOFs and (2) the system matrix is no longer a symmetric

positive definite (SPD) matrix as we have vanished diagonal

elements at locations corresponding to the IC. Consequently,

the effectiveness of subspace acceleration is compromised.

Alternatively, we enforce the interface constraint with-

out replying on the Lagrange multiplier method to main-

tain a more compact and better-conditioned subspace solver.
Fig. 8. An illustrative example showing the coupling of tubular components

η and ζ assuming that an appropriate boundary condition has been specified

at the highlighted nodes.
Note that ICs are a set of linear constraints, which can be re-

written as

Cq̄ = 0, (16)

where q̄ = [qη�
, qζ �

]� and C = [E
η
b
�η| − E

ζ
b
�ζ ] as in the

case shown in Fig. 8. C ∈ R
c×d is a rectangular matrix, where

c is the number of ICs of the system and d is the total number

of the reduced coordinates at components η and ζ including

the duplicated interface DOFs. Obviously, d > c, therefore C

can be further split into two parts

C = [C1|C2], (17)

such that C1 ∈ R
c×c is a full-rank square matrix. Eq. (16) can

be re-written as

C1qd + C2q f = 0, (18)

where qf represents a subset of q̄ consisting of only indepen-

dent or free DOFs and qd represents a subset of dependent

DOFs. In the example shown in Fig. 8, if the DOFs on the red

interface are free DOFs, the DOFs on the green interface are

dependent ones and vice versa.

Since C1 is full-rank, we can use qf to represent the other

“redundant” DOFs qd

qd = −C−1
1 C2q f , (19)

as well as the complete q̄ vector

q̄ =
[

q f

qd

]
=

[
I

−C−1
1

C2

]
q f . (20)
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Substituting Eq. (20) into Eq. (14) yields

u = �̄

[
I

−C−1
1

C2

]
q f = �q, (21)

where � � �̄
[

I

−C−1
1

C2

]
and q�qf. The full-space equilibrium

Ku = f3 can be directly projected onto the new subspace

spanned by � where IC is implicitly encoded

Kqq = fq. (22)

Here, Kq = ��K� and fq = ��f. This derivation can be easily

extended for multiple components.

6.3. Residual subspace – the secondary subspace

Using constraint modes is able to significantly improve

the performance, yet it also sacrifices the accuracy of the sim-

ulation. Tubular supporting structure is often exerted con-

centrated regional loads of large magnitude. While the de-

flections at load-free components are accurately captured

(when the gravity effect can be ignored) because all the inter-

component stress propagations are losslessly passed via the

interface whose DOFs are fully preserved within constraint

subspace, deflection at the loading components where the

forces are applied is not able to be well represented with con-

straint modes. To resolve this issue, a local secondary sub-

space is built to capture the residual deflection and improve

the simulation accuracy at loading components, which is de-

tailed in this subsection. As all the formulation is for a certain

loading component, the superscript L is omitted.

We denote all the internal DOFs undertaking the exter-

nal loads as the exciting DOFs while all the other internal

DOFs as passive DOFs. They are symbolized using subscripts

e and p respectively. Similar to constraint mode, a unit dis-

placement is imposed to the each of the exciting DOF while

keep other exciting DOFs and boundary DOFs fixed. We re-

strain the boundary DOFs so that the complementary deflec-

tion computed will not affect the status of other load-free

components. A equilibrium system can be listed accordingly:⎡
⎢⎣

Kee Kep Keb

Kep
� Kpp Kpb

Keb
� Kpb

� Kbb

⎤
⎥⎦

[
	e

	p

	b

]
=

[
Fe

Fp

Fb

]
, (23)

where 	e = I and 	b = 0 correspond to the imposed unit

displacement at exciting DOFs and anchored boundary DOFs.

Fp = 0 as no forces are applied at the passive DOFs. Again, the

superscript L indicating the local variables is omitted here.

The unknown system response at passive DOFs can be com-

puted by expanding the second line of Eq. (23)

	p = −K−1
pp K�

ep. (24)

We use span(	) to represent the subspace spanned by 	 , and

name it as the residual subspace whose basis vectors are resid-

ual modes. Fig. 9 shows the shapes of five residual modes as-

sociated with an internal exciting node.
3 Note that here K is a diagonal block sparse matrix, each diagonal block

is the component’s local stiffness matrix.
The residual modes are employed based on the fact that

the response of a linear system of a composite input is equiv-

alent to the superposition of the system’s responses with

respect to each individual input. In fact, it can be proven

that the superset of � and 	 is able to completely capture

the deflection at loading components. We refer readers to

Appendix A for mathematical proof details.

In other words, it means that an accurate result will be

obtained if the system is solved within span(�) ∪ span(	)[
��

	�

]
K[�|	]

[
q
p

]
=

[
��f
	�f

]
,

or[
K�� K�	

K	� K		

][
q
p

]
=

[
f�
f	

]
, (25)

where⎧⎪⎨
⎪⎩

K�� = ��K�
K�	 = ��K	
K	� = 	�K�
K		 = 	�K	

. (26)

Here, q and p are the reduced coordinates of constraint

modes and residual modes. While � can be pre-computed

for each component, 	 is a load-dependent matrix as differ-

ent external loads would specify different exciting DOF sets

and therefore, yield different mode matrices. It implies that

as soon as the external loads are changed, the entire system

must be re-computed, which significantly downgrades the

useability of the system.

We notice that if the off-diagonal blocks (e.g. K�	 and

K�
�	

) in Eq. (25) are zero, the constraint subspace and resid-

ual subspace will be decoupled and the computation of q

and p are isolated. Therefore, we apply the modified Gram–

Schmidt process (MGS) [46] towards 	 with respect to K�,

which yields a new set of residual modes 	̃ such that

	̃⊥K� or (K�)�	̃ = 0. Boundary DOFs are always fixed

during the computation of 	 . On the contrary, there al-

ways exists one non-zero boundary DOF in the constraint

mode. Such properties of constraint modes and residual

modes guarantee that span(�) ∩ span(	) = ∅. Therefore,

span(	) = span(	̃) and span(�) ∪ span(	) = span(�) ∪
span(	̃). Substituting 	 with 	̃, Eq. (25) is simplified to{

K��q = f�
K	̃	̃p = f	̃ .

(27)

The final component deflection is computed using

u = [�|	̃][q�|p�]�

= �q + 	p

� u� + u	̃ . (28)

Note that u� is the constraint subspace displacement. There-

fore, we only need to calculate an incremental displacement

u	̃ in order to obtain the exact full-space result at loading

components. Fig. 10 summarizes the major computational

procedures in our system.

7. Experimental results

We report and discuss experiments we have conducted

in this section. Please refer to the accompanying video for
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Fig. 10. Overall computational procedures of the two-level subspace simulation method.
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more results including the test use of the fabricated tubular

models.

7.1. Hardware & software platform

Our experiments are carried out on a Dell Optiplex

9010 workstation computer equipped with an Intel i7-3770,

3.40 GHz CPU and 16G memory. The proposed system is im-

plemented on 64-bit Microsoft Windows 7 using Visual Stu-

dio 2010. We use Eigen numerical library [47] for most linear

system related calculations. Note that we only use the single-

core implementation however, many computations (e.g. per-

component subspace construction) can be trivially paral-

lelized using multi-threading.

7.2. Four-node element vs. nine-node element

Existing FEM literatures [3,44] have mentioned that lin-

ear four-node element is not a good choice for general shell

simulation. It is partially because the governing stress equi-

librium is characterized using a second-order partial differ-

ential equation. The adoption of weak form (well-known as

virtual work principle in the context of continuum mechan-

ics) allows the usage of linear interpolation functions (e.g.

linear element) however, the accuracy of the simulation is

compromised. The adoption of the linear element also leads

to the shear locking artifact, which is shown in Fig. 11. The

regular cylinder-shaped tube is simulated using the same

number of four-node shell elements (left) and nine-node

shell elements (right), respectively. The external forces are

applied at the highlighted nodes in the positive y direction.

The bending deformation can be well observed with nine-

node element which is however, “locked” with four-node

element.

7.3. User interface & implementation details

Fig. 12 shows a screen capture of the user interface of

the proposed design-simulation system. Right to the main

3D view, our system provides an intuitive interface for the

user to specify the boundary (top) and skeletal (bottom) con-

trols of tube components. Our system maintains a tube li-

brary shown blew the main 3D view. The geometry of each

tube component can be freely edited. Immediately after the

geometric edit of a component is committed, the updated

component will be inserted into the library as a new com-

ponent. All the related pre-computation is also carried out at

this stage. On average, a tube component holds about 4000–

7000 DOFs. The related computations like assembling the

stiffness matrix K, computing the constraint modes � as well

as calculating the matrix-vector product of K�, which is for

the potential MGS to be applied if this component is a loading

component, can be done in real-time. During the model as-

semblage, each component can be freely copied and pasted.

User is also able to specify the geometric symmetry during

the editing so that the shape edits applied at a component

will be automatically mapped to its geometrically symmetric

counterparts like the stool legs shown in Fig. 2.

As soon as the entire structure is assembled, we need to

build the global � matrix (Eq. 21) as the primary subspace

basis vectors. Therefore matrices C and C (Eq. 17) must
1 2
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Fig. 12. The user interface of the proposed system.
be identified. They can be efficiently found as each column

in the original C matrix corresponds to a system DOF while

all the row vectors in C are guaranteed to be linearly inde-

pendent (as long as the IC are not redundantly defined in

C). Therefore, we only need to construct another elementary

matrix encoding the necessary column permutation to move

all the columns corresponding to independent DOFs to the

left-end of the matrix. As long as the topology of the tubular

structure is not altered, this elementary matrix remains the

same.

After the displacement is computed. The strain vector ε ∈
R

6×1 can be easily evaluated using the strain-displacement

matrix B, which is further converted to the stress vector σ ac-

cording to the assumed linear elasticity: σ = Cε. Finally, we

visualize the von Mises stress using the GLSL shader. The von

Mises stress is a scalar and can be computed as

σ 2
von =

σ 2
1,2 + σ 2

2,3 + σ 2
3,1 + 6

(
σ 2

12 + σ 2
23 + σ 2

31

)
2

, (29)

where σi, j = σii − σ j j and σ ij is the i, j component in the ten-

sor representation of σ . We simulate the tubular structure

of stereolithography (SLA) material with Young Modulus of

2.5e9 and Poisson Ration of 0.41. Regions with high von Mises
stress are likely to fail under the prescribed external loads as

shown in Fig. 14.

Fig. 13 shows the snapshots of using our system for de-

signing and simulating various tubular structures. Since au-

thors are not professional designers, we just follow some

design ideas searched from internet shown in the leftmost

column of the figure. When high-stress regions is observed,

we apply some further geometric edits to the model includ-

ing altering the shapes of the cross-sections at critical re-

gion (row 1, the lamp stand model), reducing the curvature

connecting neighbor components (row 2, the laptop holder

model), adding extra supporting components (row 3, the

bookshelf model) and reducing the force moment (row 4, the

camera rack model). The edited regions are highlighted in the

rightmost column in the figure.

7.4. Time performance

Table 1 reports the detailed statistic of the 3D models we

have tested. We compare the time performance of the pro-

posed two-level subspace simulation method with the full-

space simulation as well as the subspace simulator using

the Lagrange multiplier method. While the full-space system

can be solved using the sparse Cholesky solver (the built-in
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Image source:
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Fig. 13. Snapshots of using the proposed design-simulation system.

Table 1

Time performance of our method, full-space simulator as well as subspace simulator using Lagrange multiplier method.

#Ele.: the number of elements; #Nodes: the number of free nodes; #DOFs: the number of full-space DOFs: #S(L)DOFs

the size of the simulator using constraint mode and Lagrange multiplier method; SDOFs: the size of the simulator using

the propose multiplier-free coupling method; FT: time used to solve the system in full-space; S(L)T: time used to solve the

multiplier-based subspace system; ST: time for our method; #Com: the number of the tube components.

Model #Ele. #Nodes #DOFs S(L)DOFs SDOFs FT (s) S(L)T (s) ST (s) #Com.

Lamp stand 5184 5216 25,920 1120 480 0.406 0.093 0.01 3

Stool legs 6456 25,946 129,090 5160 2,040 2.108 7.278 0.633 14

Bookshelf 25,824 19,547 97,750 5120 2080 1.532 6.96 0.66 11

Bookshelf edited 25,280 22,942 114,710 5760 1,920 1.861 9.484 0.51 13

Camera rack 22,400 22,170 110,850 4920 2040 2.060 6.301 0.62 13

Laptop holder 12,096 12,128 60,480 3040 1,120 0.784 1.472 0.103 7
SimplicialLLT routine in Eigen library), the simulation is

not interactive along with the design operations with lags of

seconds. On the other hand, the multiplier based subspace

solver often has doubled or tripled size comparing with our

method, due to the dulcification of the boundary DOFs as

well as the explicit formulation of unknown multipliers. In

addition, the resulting system matrix is no longer SPD either

and cannot be handled with LLT decomposition. Therefore,

the performance data listed in Table 1 is the one using the LU

decomposition (the built-in PartialPivLU solver in Eigen li-
brary), which is slower than LLT decomposition in most cases.

As a result, even with much fewer DOFs, Lagrange multiplier

based subspace solver could be even slower than the full-

space solver.

The proposed multiplier-free coupling mechanism will

have a dense SPD matrix of much smaller size. Therefore, it is

much more efficient than the above-mentioned two solvers.

For 3D models with over 100k full-space DOFs, our method

is still able to perform the accurate structural analysis at an

interactive rate. We would like to remind the reader that
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Fig. 14. The 3D printed lamp stand fails and the failure location matches the area where high stress distribution is observed.
unlike most existing subspace model reduction methods, our

method does not compromise simulation accuracy while mak-

ing the simulation an order of magnitude faster. Extra com-

putations are required for applying the MGS, constructing

the residual subspace and solving the secondary deflection.

However, such computations are light-weight as they are

conducted at the component level. In most cases, they can

be finished within milliseconds.

8. Conclusion and limitation

In this paper, we present a system for design and simu-

lation of tubular supporting structure. Besides an intuitive
shape control mechanism, our system is able to interac-

tively perform the structural analysis using a two-level sub-

space FEM simulation. We show the interactive and accurate

design and simulation of large 3D model of over 100k DOFs.

However, there still exist several limitations in the current

version of the system. First of all, our design system is only

able to handle simple tubular components with two open in-

terfaces. More complex tubes of T-shape or Y-shape are not

able to be intuitively edited. A possible solution is to deform

a template with boundary control by solving higher-order

harmonic equations. As a future work, we will study how to

use fundamental solutions to accelerate the geometric de-

sign of multi-interface tube components. During the shape
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editing, self-intersection could occur at highly curved re-

gions. However, our current system cannot automatically fix

such problem and it only sends out an alert to the user. Fea-

ture modeling is not supported in our system. Different do-

main decomposition strategies are required to accelerate the

simulation if features are added to tubular structures, which

gives another direction of our future work. In the simulation

part, we ignore the deflection induced by component’s self-

weight, which could also induce simulation inaccuracy when

the tubular component is fabricated using material of high

density. We plan to incorporate the inertia-relief modes [42]

to fully accommodate the gravity effect to the system in the

future. Another interest future direction is to make simula-

tion active meaning the simulator will provide the user po-

tential solutions to fix a “faulty” geometric edit as in many

recent design-simulation systems [26].
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Appendix A

Proof. We show that the subspace component deflection

computed using Eq. (25) is identical to the solution of the

full-space equilibrium (e.g. Ku = f). Noticing that for a load-

ing component, external forces are only applied to the ex-

citing DOFs and the corresponding component equilibrium

becomes[
Kee Kep Keb

Kep
� Kpp Kpb

Keb
� Kpb

� Kbb

][
ue

up

ub

]
=

[
fe

0p

fb

]
. (A.1)

Expanding the second line of Eq. A.1 yields

up = −K−1
pp K�

epue − K−1
pp Kpbub. (A.2)

Similarly, we also expand the equilibrium of the passive DOFs

through the definition of constraint mode and residual mode

(e.g. Eqs. (12) and (23)), which gives

K�
ep�e + Kpp�p + KpbIb = 0, (A.3)

and

Kpp	p + K�
ep = 0. (A.4)

By substituting Eqs. A.3 and A.4 into Eq. A.2, we obtain

up = 	pue + (�p − 	p�e)ub,

which leads to[
ue

up

ub

]
=

[
�e 	e

�p 	p

Ib 	b

][
ub

ue − �eub

]
= [�|	]

[
q
p

]
.

�
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Supplementary material associated with this

article can be found, in the online version, at
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