
Gradient Domain Editing of Deforming Mesh Sequences

Weiwei Xu Kun Zhou Yizhou Yu∗ Qifeng Tan† Qunsheng Peng† Baining Guo

Microsoft Research Asia ∗University of Illinois at Urbana-Champaign † State Key Lab of CAD&CG, Zhejiang Univ.

Figure 1: A straight run is adapted to a curved path on an uneven terrain. The original deforming mesh sequence moves along a straight line on a plane. We

first make the HORSE move along a curve using path editing, and then adapt the sequence onto the terrain using footprint editing.

Abstract

Many graphics applications, including computer games and 3D ani-
mated films, make heavy use of deforming mesh sequences. In this
paper, we generalize gradient domain editing to deforming mesh
sequences. Our framework is keyframe based. Given sparse and ir-
regularly distributed constraints at unevenly spaced keyframes, our
solution first adjusts the meshes at the keyframes to satisfy these
constraints, and then smoothly propagate the constraints and defor-
mations at keyframes to the whole sequence to generate new de-
forming mesh sequence. To achieve convenient keyframe editing,
we have developed an efficient alternating least-squares method. It
harnesses the power of subspace deformation and two-pass linear
methods to achieve high-quality deformations. We have also de-
veloped an effective algorithm to define boundary conditions for all
frames using handle trajectory editing. Our deforming mesh edit-
ing framework has been successfully applied to a number of editing
scenarios with increasing complexity, including footprint editing,
path editing, temporal filtering, handle-based deformation mixing,
and spacetime morphing.

†This work was done while Qifeng Tan was an intern at Microsoft Re-

search Asia.

Keywords: Mesh Deformation, Keyframes, Control Meshes, Lo-
cal Frames, Handle Trajectory, Rotation Interpolation

1 Introduction

Many computer graphics applications, including computer games
and 3D animated films, make heavy use of deforming mesh se-
quences. Designing and producing visually pleasing mesh se-
quences, either manually or through physically based simulation,
is a costly and time-consuming process, during which one needs to
further consider effects caused by interactions between the deform-
ing object and its surroundings. For example, a running horse needs
to adjust its pace and body configuration according to obstacles and
turns in the path as well as undulations on the terrain. This moti-
vates a methodology that creates novel mesh sequences by reusing
and adapting existing ones.

The goal of adapting existing deforming mesh sequences is to con-
veniently produce desired ones that satisfy requirements from both
the user and the environment. Compared with static mesh editing,
deforming mesh sequences have an additional temporal dimension,
which leads to much increased data complexity and a few new tech-
nical challenges. First, a paramount demand is to minimize the
amount of user intervention. This is especially important for long
sequences and dictates the usability of the entire editing system.
Second, with minimal user intervention, the system should still per-
mit both flexible and precise user control. Third, given very sparse
constraints, the system should be able to produce desired results that
preserve both temporal coherence and important characteristics of
the deformations in original mesh sequences.

This paper generalizes, for the first time, gradient domain static
mesh editing [Alexa 2003; Sorkine et al. 2004; Yu et al. 2004; Lip-
man et al. 2005; Huang et al. 2006; Lipman et al. 2006; Shi et al.

2006] to deforming mesh sequences. Our framework is keyframe
based, and it can meet all the aforementioned challenges. The user
can choose to edit any frame in the original mesh sequence as well
as any handle on that frame. The environment may also induce
constraints at certain frames. Any frame with environment-induced
or user-supplied constraints subsequently becomes a keyframe.
The location of these constraints vary among different keyframes.
Adapting the original deforming mesh to satisfy such sparse and ir-
regularly distributed constraints at unevenly spaced keyframes is a
daunting task. Our solution first adjusts the meshes at the keyframes
to satisfy these constraints, and then smoothly “propagate” the con-
straints and deformations from keyframes to the entire sequence to
generate a new deforming mesh sequence.

Since all keyframes are edited independently, adjusting each of
them to satisfy its constraints is actually a static mesh editing prob-
lem. Present gradient domain mesh deformation techniques have
limitations when used repeatedly for many keyframes. Two-pass
linear methods, such as the one in [Lipman et al. 2005], require ad-
ditional rotational constraints, which are not very convenient to sup-
ply when such constraints are needed at many keyframes. Some-
times, it is even impossible to specify rotations for environment-
induced constraints. On the other hand, geometric subspace defor-
mation [Huang et al. 2006] can deduce rotations from positional
constraints via nonlinear optimization. Nevertheless, it requires a
control mesh for every frame and it is sensitive to the quality of the
control mesh. Meanwhile, it is very hard to guarantee the quality
of control meshes when they are automatically generated for all the
frames in a sequence. To this end, we have developed an efficient
alternating least-squares method for keyframe editing. It harnesses
the power of subspace deformation and two-pass linear methods to
achieve high-quality deformations even when the control mesh is
problematic.

After keyframe editing, both the deformations and constraints at
keyframes need to be smoothly propagated to the rest of the frames.
The deformations are defined as local transforms of the differen-
tial coordinates between a pair of original and deformed keyframes.
The propagated deformations are used for computing target differ-
ential coordinates for every frame. Subsequent mesh reconstruction
from target differential coordinates requires a boundary condition.
Therefore, we have also designed a least-squares handle trajectory
editing algorithm to propagate the constraints at keyframes to the
rest of the frames to serve as boundary conditions.

We have successfully applied our deforming mesh editing frame-
work to a number of editing scenarios with increasing complexity,
including footprint editing, path editing, temporal filtering, handle-
based deformation mixing, and spacetime morphing. We have de-
veloped techniques that make such applications possible as well as
user interfaces with further simplified user interaction specifically
tailored for each of these scenarios. For example, in path editing,
one only needs to quickly sketch a new path to make an entire mesh
sequence automatically follow that path. Moreover, our method is
not specifically designed for skeleton based mesh animations. We
demonstrate editing capabilities for non-articulated deformations,
including cloth animation and spacetime morphing.

1.1 Related Work

This paper is made possible by many inspirations from previous
work on surface and meshless deformations [Alexa 2003; Sheffer
and Kraevoy 2004; Sorkine et al. 2004; Yu et al. 2004; Lipman
et al. 2005; Müller et al. 2005; Zhou et al. 2005; Zayer et al. 2005;
Botsch et al. 2006; Huang et al. 2006; Lipman et al. 2006; Shi et al.
2006; Au et al. 2006], multiresolution mesh editing [Zorin et al.
1997; Kobbelt et al. 1998; Guskov et al. 1999; Kircher and Garland
2006], mesh skinning [Mohr and Gleicher 2003; James and Twigg

2005], mesh inverse kinematics (mesh-IK) [Sumner et al. 2005; Der
et al. 2006], and shape interpolation and manipulation [Alexa et al.
2000; Igarashi et al. 2005]. Surface-based mesh modeling and mul-
tiresolution mesh editing produce new results from a single input
mesh while skinning and mesh-IK require multiple existing defor-
mation examples.

Laplacian mesh editing has received much attention recently. This
approach extracts intrinsic geometric properties, such as differential
coordinates, from the input mesh, lets them subject to local transfor-
mations during editing, and finally reconstructs new meshes from
the transformed differential coordinates by solving a global system
of equations. The reconstruction step makes local editing in differ-
ential coordinates have global effects on the new mesh. The compo-
sition of these steps leads to an overall nonlinear process. Due to the
existence of efficient solvers for sparse linear systems, much effort
has been devoted in the past few years to obtain approximate so-
lutions using either linearizations [Sorkine et al. 2004] or multiple
linear passes [Lipman et al. 2005; Zayer et al. 2005; Lipman et al.
2006; Shi et al. 2006]. The latter typically requires explicit rota-
tional constraints. Alternatively, one can directly cast the problem
as a nonlinear optimization without rotational constraints. Since
nonlinear optimizations require more expensive iterative steps, sub-
space [Huang et al. 2006] methods have been developed to achieve
acceleration. A fast nonlinear optimization framework for mesh de-
formation based on shape matching among rigid prisms enveloping
the mesh faces has been presented in [Botsch et al. 2006]. In this
paper, we show that nonlinear Laplacian mesh editing can be solved
more accurately using alternating least-squares, which has provable
convergence. Note that Laplacian mesh editing has not been previ-
ously generalized to the spacetime domain.

Flexible mesh editing can also be achieved with a multiresolution
decomposition of the original mesh [Zorin et al. 1997; Kobbelt et al.
1998; Guskov et al. 1999]. By working at a specific resolution, one
can manipulate the mesh at a desired scale to reduce the amount of
user intervention. Multiresolution mesh editing has been recently
extended to deforming mesh editing in [Kircher and Garland 2006]
with an effective technique to maintain temporal coherence. How-
ever, without solving a global system as proposed in [Kobbelt et al.
1998] as well as in Laplacian mesh editing, effects achievable by
the method in [Kircher and Garland 2006] is rather local in the spa-
tial domain even at a very coarse scale, which means that precise
control of large deformations can only be achieved with much more
user intervention. We will compare our method with the one in
[Kircher and Garland 2006] in Section 3.

Skinning has been a popular method for producing deforming mesh
sequences suited for real-time rendering on graphics hardware.
Typically, there should be an underlying skeleton to make this
method applicable. The movement of every vertex is controlled by
a linear blend of the movement of a few nearby rigid bones. Blend-
ing coefficients are trained from deformation examples. James and
Twigg [2005] introduces a practical technique that converts a de-
forming mesh sequence to a linear blend skinning model. It auto-
matically extracts a set of “bones” from the input meshes instead
of requiring them as part of the input. However, being a hardware
friendly mesh representation, skinning is not well suited for generic
mesh editing, especially in the presence of highly nonrigid defor-
mations.

Recent techniques on mesh-IK [Sumner et al. 2005; Der et al. 2006]
share similarity with nonlinear Laplacian mesh editing. Both ap-
proaches avoid rotational constraints and allow the user to deform
meshes by specifying sparse positional constraints only. An impor-
tant distinction is that mesh-IK requires multiple existing deforma-
tion examples in order to deform a single input mesh. In its current
form, the input to mesh-IK is a static mesh instead of a deforming

(a) (b)

(c) (d)

Figure 2: Comparison between the subspace method and our alternating

least-squares method. (a) The rest pose of a mesh. (b) Its control mesh.

Since the HEAD and HAND of the DINOSAUR is too close, it causes self-

intersections in the control mesh. As a result, the subspace method produces

unnatural results shown in (c), while the alternating least-squares method

can preserve the details of the original shape very well (d).

mesh sequence.

2 Alternating Least-Squares for Mesh De-

formation

Let us first focus on individual keyframes and introduce an accurate
nonlinear solution method for static mesh deformation. A deformed
mesh should satisfy deformation constraints while optimally pre-
serving the local relative configurations among neighboring vertices
under rotation invariant criteria, which motivated the introduction
of a local frame at every vertex in [Lipman et al. 2005], where a so-
lution of the deformed mesh is obtained by solving the altered local
frames and vertex positions in two sequential linear steps. Suppose
v̂i and vi represent the same vertex in the original and deformed
meshes, respectively. One of the rotation-invariant properties in
this approach can be expressed as follows.

v j −vi = Riv̂i→ j, j ∈ Ni, (1)

where Ni represents the index set of the 1-ring neighbors of vi, Ri

is a 3 × 3 rotation matrix that represents the altered local frame
at vi, and v̂i→ j represents the local coordinates of v̂ j in the local

frame, R̂i, at v̂i in the original mesh. Note that the columns of
Ri consist of the three orthonormal axes, (bi

1,b
i
2,N

i), of the local
frame. Once the altered local frames are known, the equations in
(1) over all vertices give rise to an overdetermined linear system for
vertex positions and can be solved using least squares if a boundary
condition is given.

It should be noted that it is suboptimal to first solve local frames
and then solve vertex positions in the sense that they may not opti-
mally satisfy the overdetermined system expressed in (1). Instead,
we would like to solve both local frames and vertex positions si-
multaneously by minimizing the following objective function.

∑
i

∑
j∈Ni

‖v j −vi −Riv̂i→ j‖
2 +‖CV−U‖2

, (2)

where vi, v j and Ri are unknowns, V represents the set of con-
strained vertices on handles, C is the positional constraint matrix,
and U is the target positions of the constrained vertices.

Simultaneously optimizing all the unknowns in (2) gives rise to an
expensive nonlinear least-squares problem. Fortunately, an initial
inaccurate solution to this nonlinear problem can be refined until
convergence by iteratively alternating two simpler and more effi-
cient least-squares steps, which are respectively responsible for im-
proving the estimation of the local frames and vertex positions. The
first of these two steps minimizes (2) by fixing the vertex positions
and optimizing Ri’s only. The second step does the opposite. Note
that the second step results in the same overdetermined linear sys-
tem as in (1). Although the first step is nonlinear, the fixed vertex
positions let us solve the optimal local frame at each vertex inde-
pendently. Thus, minimizing (2) becomes equivalent to minimizing
the following local objective function once for each local frame.

∑
j∈Ni

‖(v j −vi)−Riv̂i→ j‖
2
, (3)

where the optimal rotation matrix Ri can be conveniently obtained
from the closed-form quaternion-based solution provided in [Horn
1987]. This is actually a local shape matching problem similar to
the ones that occur in [Müller et al. 2005; Botsch et al. 2006; Park
and Hodgins 2006]. It has a unique solution as long as vi has two
or more 1-ring neighbors and vi is not collinear with them. Note
that since the number of vertices in a 1-ring neighborhood is prac-
tically bounded, solving the local frames at all vertices using this
closed-form solution has a linear complexity. Overall, we success-
fully minimize (2) using a combination of local shape matching
and sparse linear systems without expensive global shape match-
ing typically solved using nonlinear optimization. The convergence
of the alternating least square server can be guaranteed, since the
two alternating steps respectively obtain optimal least-squares so-
lutions with respect to the subset of the variables they optimize. The
first step optimizes the rotations using Horn’s closed-form solution,
which has the same least-squares objective function in Equation 2.
The second step optimizes vertex positions while fixing rotations.
Both steps monotonically decrease the least-squares objective func-
tion defined in Equation (2) and, therefore, guarantee convergence.

An initial solution to (2) is still required to start the iterations. The
subspace method in [Huang et al. 2006] uses a coarse control mesh
to obtain an approximate solution inside a subspace. This approxi-
mate subspace solution can serve as a good initial solution for our
alternating least squares. In addition, this subspace method only
requires positional constraints. Even though our iterative method
involves rotations, the initial rotations can be estimated from the ini-
tially deformed vertex positions supplied by the subspace method.
As a result, our method can also work with positional constraints
only. In all our experiments, achieving smooth and visually pleas-
ing results with our alternating least-squares method requires less
than 10 iterations. Using the sparse linear solver from CHOLMOD
[Davis 2006], the running time for each iteration is 0.03 second on
a 3.2GHz Pentium processor for a mesh with 10,000 vertices.

Since our iterative method can reach a more globally optimal solu-
tion than the methods in [Lipman et al. 2005; Huang et al. 2006], it
can achieve better visual results as well. On the other hand, the
methods in [Lipman et al. 2005; Lipman et al. 2006; Shi et al.
2006] need user-supplied rotational constraints while our method
does not. Although we do not explicitly enforce the smoothness of
the rotation field over the deformed mesh as in [Lipman et al. 2006],
the local frames as well as the resulting rotation field we obtain
are in fact smoothly varying because they are extracted from 1-ring
neighborhoods as in (3) and the 1-ring neighborhoods of adjacent
vertices have partial overlap. Fig. 2 compares our method with the
subspace method in [Huang et al. 2006]. Self-intersections in the
control mesh as well as its coarse resolution can result in unnatural
deformation results from the subspace method while our alternat-
ing least-squares method can successfully eliminate the problems

(a)

(b)

(c)

Figure 3: Comparison between our gradient domain method and the mul-

tiresolution method for deforming mesh editing in [Kircher and Garland

2006]. (a) Original box twisting sequence. (b) The edited result from our

system. (c) The edited result from the multiresolution method. In this exam-

ple, we edit the first frame which becomes a keyframe, and then propagate

the deformation at the first frame to the entire sequence. The left column

shows the original and edited first frame. The middle and right columns

show two frames in resulting mesh sequences. Note that our method gener-

ates natural results while the results from the multiresolution method have

severe distortions. This is because the multiresolution method is based on

local detail vectors only while our method is based on local rotations.

in such results.

We note that several other nonlinear algorithms, including Primo
[Botsch et al. 2006], can be used to produce good deformation re-
sults for the static mesh shown in Figure 2 as well. Our alternative
deformation method is built upon the subspace method in [Huang
et al. 2006] that supports many useful controls over deformation
results, including the volume constraint, skeleton constraint, and
projection constraint. Therefore, we deem our alternative deforma-
tion method a more convenient tool in interactive keyframe editing.

3 Editing Deforming Mesh Sequences

In our spacetime framework, given a deforming mesh sequence, the
user can choose to edit an arbitrary subset of frames. In the follow-
ing, these chosen frames are called keyframes. At each keyframe,
the user can also choose to edit an arbitrary subset of handles. A
handle is defined as a subset of nearby vertices within the same
frame. When manipulating a handle, the user only needs to drag
one vertex in the handle to provide a positional constraint. The
rotation of the handle will be obtained automatically from the non-
linear optimization introduced in the previous section. We assume
that the mesh connectivity remains the same across all frames.

Given sparse positional constraints on the handles, an overall ob-
jective function for spacetime editing across all frames can be for-
mulated as

∑
k

∑
i

‖Lkvk
i −Rk

i d̂k
i ‖

2 +∑
k

∑
i

‖∆tR
k
i ‖

2
F +∑

k

‖CkVk −Uk‖2 (4)

where Lk is the matrix for computing spatial Laplacian differential

coordinates at the k-th frame, d̂k
i is the vector of differential coor-

dinates at the i-th vertex of the original mesh at the k-th frame, Rk
i

is the local rotation matrix at vk
i , ∆tR

k
i represents the differences

of corresponding rotation matrices in consecutive frames, and Ck,

Vk and Uk are similar to C, V and U in (2). The second term in
(4) enforces temporal coherence of local rotations. In this objec-
tive function, for the sake of clarity, we have left out terms accom-

modating additional constraints, such as volume preservation. Di-
rectly optimizing such a nonlinear objective function with respect
to vertex positions and local rotations across all the frames is ex-
tremely expensive. More importantly, we have observed in our ex-
periments that simultaneous optimization in both spatial and tem-
poral domains does not well preserve the shape of the meshes at
individual frames because the solution needs to provide a tradeoff
between these two domains.

In practice, we have devised an efficient algorithm to obtain a nu-
merically suboptimal solution, which nonetheless is capable of pro-
ducing visually pleasing results. Once constraints are set up, our
algorithm performs the following sequential steps to minimize (4)
and produce a new deforming mesh sequence that is consistent with
all constraints while maintaining temporal coherence of both local
rotations and handle positions. Our system is based on the mesh
deformation technique presented in the previous section.

• First, since obtaining the initial solution for alternating least-
squares requires a coarse control mesh, to make it applicable in
the spacetime domain, we need a control mesh for every frame in
the input sequence. To minimize user interaction, our framework
only requires a control mesh for the first frame and automatically
generates a control mesh for each subsequent frame by adjusting
the first one.

• Second, the mesh at every keyframe is deformed to satisfy the po-
sitional constraints at that keyframe using alternating least squares
introduced in the previous section. As a product, we obtain an al-
tered local coordinate frame as well as an associated rotation at ev-
ery vertex over the deformed mesh.

• Third, these per-vertex rotations at the keyframes are smoothly
interpolated to obtain dense rotational constraints at every interme-
diate frame. Rotations are represented as unit quaternions, and the
logarithm of the quaternions are interpolated using Hermite splines.
Those frames at the very beginning or end of the mesh sequence
may not be bracketed by sufficient number of keyframes and, there-
fore, are only linearly interpolated or not interpolated at all. The
user can optionally designate an influence interval for a keyframe
to have finer control over the interpolation.

• Fourth, we extract an average translation and rotation for each
handle from the translations and rotations associated with individ-
ual vertices in the handle. Since each handle has its own temporal
trajectory in the original mesh sequence, this trajectory is automat-
ically edited and updated using the extracted average translations
and rotations at keyframes to guarantee its temporal consistency.

• Lastly, a deformed mesh is solved for every intermediate frame
using the interpolated rotational constraints as well as the positional
constraints from the updated handles. Here, since we already have a
rotational constraint at every free vertex, we can obtain a deformed
mesh quickly by simply solving the overdetermined linear system
in (1) without invoking the more expensive subspace method. A
few iterations of alternating least squares can be optionally applied
to improve the deformed mesh.

In terms of the objective function in (4), its first and third terms are
minimized by the second and last steps respectively for keyframes
and intermediate frames. Its second term is reduced by the third
step. The positional constraints at intermediate frames are auto-
matically set up by the fourth step. Comparing to simultaneous
optimization of all the unknowns, our sequential steps can better
preserve the shapes at individual frames. More details regarding
automatic control mesh generation (the first step) and handle prop-
agation (the fourth step) follow.

Figure 3 shows a comparison between our gradient domain editing
method and the multiresolution method in [Kircher and Garland

Frame 1 Frame 4

Our handle propagation algorithm Local translation

(a) Keyframes

(b) Deformation at frame 1

(c) Handle propagation

Figure 4: Handle trajectory editing. (a) Frames #1 and #4 in a horse run-

ning sequence are set as keyframes. (b) Edited frame #1 (c) Edited results

at frame #2. Editing based on simple local translation generates severe

distortion in the edited leg while our method generates natural results.

2006]. Our method can produce more natural results because our
method is based on per-vertex local rotations while the method in
[Kircher and Garland 2006] is based on “edit replicators” which
are actually displacement vectors represented in the local coordi-
nate frames defined at the vertices of the fine mesh. Once the bar
is twisted, the orientation of a local coordinate frame is changed
significantly from frame to frame. As a result, the same local dis-
placement vectors become pointing in drastically different direc-
tions once they have been transformed into the world coordinate
system. In addition, displacement vectors have inherent ambiguity
in representing 3D transformations such as twisting.

3.1 Handle Trajectory Editing

It is critical to correctly propagate the handle editing results from
the keyframes to all intermediate frames since altered handles will
serve as new boundary conditions when the meshes at the inter-
mediate frames are deformed and reconstructed. Because there are
multiple vertices in the same handle and interpolating each vertex
position individually at intermediate frames would severely distort
the overall shape of the handle, these vertices are forced to move
together rigidly using the extracted average translation and rota-
tion. We define a single local coordinate frame for each handle and
represent the vertices in that handle using their local coordinates.

Formally, a deformation handle i at frame k is denoted as Hk
i =

{ck
i ,F

k
i ,{vk

im
|m = 0, ...,np − 1}}, where {vk

im
|m = 0, ...,np − 1} is

the set of vertices in this handle, ck
i and columns of Fk

i define the

origin and axes of the local coordinate frame. ck
i can be the centroid

of the vertices and the initial axes can be defined arbitrarily since
we will only consider the rotation between the initial and altered
axes.

Suppose there are n f frames in the entire mesh sequence. If we con-

sider a set of corresponding handles, {Hk
i ,0≤ k ≤ n f }, collectively,

we can define a piecewise linear curve in the temporal domain and

{ck
i ,0 ≤ k ≤ n f } is the set of vertices of this curve. We can also use

Figure 5: Control mesh transfer. Left: the first frame with assigned control

mesh in two deforming mesh sequences. Right: the automatically trans-

ferred control meshes at a later frame.

{Fk
i ,0 ≤ k ≤ n f } to define the axes of the local coordinate frames at

these vertices. Once the meshes at keyframes have been adjusted,
a new local coordinate frame is defined at each altered handle us-
ing the extracted average translation and rotation. These new local
coordinate frames impose both positional and rotational constraints
on the curve. Under these constraints, we need to figure out the
new positions and rotations for the rest of the vertices on the curve.
Thus, handle trajectory editing can be cast as a temporal curve edit-
ing problem.

We extend the rotation invariant property in (1) from spatial meshes
to temporal curves. Thus, (1) can be reformulated as

cl
i − ck

i = Fk
i ĉk→l

i , l ∈ Nk
, (5)

where ĉk
i and ck

i represent the original and new handle centroids, Nk

represents the index set of the immediate neighbors of ck
i , |Nk| ≤ 2,

and ĉk→l
i represents the local coordinates of ĉl

i in the local frame,

F̂k
i , defined at ĉk

i in the original curve. We simply interpolate corre-
sponding handle rotations at keyframes over the rest of the vertices
on the curve to figure out the orientation of all the new local coordi-

nate frames, {Fk
i }, at these vertices. Once these altered local frames

are known, the equations in (5) over all unconstrained vertices give
rise to an overdetermined linear system for vertex positions and can
be solved using least squares. We solve such a least-squares prob-
lem for each curve. Since the number of vertices on a curve is
relatively small, it can be solved very quickly. The new world coor-
dinates of the vertices inside each handle at an intermediate frame
can be obtained by maintaining their original local coordinates in
the new local coordinate frame at that handle.

Figure 4 shows a comparison between our handle trajectory edit-
ing algorithm and simple local translation at each vertex. We can
see that local translation obviously shrinks the size of the horse leg
while the results from our method remain natural.

3.2 Control Mesh Transfer

In the subspace method in [Huang et al. 2006], a coarse con-
trol mesh is used for creating a deformed version of a finer mesh

Figure 6: Footprint editing. A planar walking sequence is adapted to a stair

walking. Black handles represent the footprints of the left leg, and white

handles represent those of the right leg. In this example, the user only needs

to relocate the footprints to the stairs, and our system can automatically

generate the stair walking sequence.

through a linear relationship,

V f = WVc
, (6)

where V f represents vertices of the finer mesh, Vc represents ver-
tices of the control mesh, and W is a matrix of mean value coor-
dinates [Ju et al. 2005]. In the current context, given the control
mesh of the first frame in a deforming mesh sequence, we need to
exploit the frame-to-frame deformation of the finer mesh to auto-
matically construct an altered control mesh for every keyframe in
the sequence. The altered control mesh has altered vertex positions
but the same mesh connectivity.

Here we draw an analogy between this problem and linear blend
skinning, and consider the control mesh as the “skin” while a sub-
set of vertices on the finer mesh as the “bones”. Our control mesh
transfer algorithm first binds the control mesh to the finer mesh at
the first frame, and then uses the same binding throughout the rest
of the sequence. At the first frame, for each vertex ṽ j of the control

mesh, find nb vertices, {vim}
nb−1
m=0 , on the finer mesh where the mean

value coordinate from ṽ j is the largest. We achieve this by search-
ing the j-th column of W. We represent ṽ j in the local frames of
these nb vertices. That is, ṽ j = vim + Rim ṽim→ j,m = 0, ...,nb − 1,
where ṽim→ j represents ṽ j’s local coordinates in vim ’s local coor-
dinate frame. When we need to work out ṽ j’s new world coor-
dinates for another frame in the mesh sequence, we first find the

corresponding vertices of {vim}
nb−1
m=0 in the finer mesh at that frame,

and then transfer ṽ j’s local coordinates, {ṽim→ j}
nb−1
m=0 , to the local

coordinate frames at these corresponding vertices. Potentially dif-
ferent world coordinates can be recovered from these multiple local
frames. And we simply use their linear blend as ṽ j’s new world
coordinates. We find out that even uniform weighting in the lin-
ear blending can achieve good results. Figure 5 shows two typical
results from this control mesh transfer algorithm.

4 Advanced Editing

Even though the editing framework in the previous section is al-
ready powerful, sometimes, it may become tedious for the user to
generate more advanced editing effects. For example, porting a
walking sequence from a plane to an uneven terrain would need
much user interaction using this editing framework. In this sec-
tion, we present advanced editing modes built on top of this editing
framework. Among these advanced modes, footprint editing and
path editing are specifically designed for motion similar to walk-
ing and running. Handle-based deformation mixing can be used for
duplicating handle movements from a source sequence to a target
sequence. In advanced editing modes, we can not only alter the
shape of the deforming mesh sequence but also the overall motion
of the shape, which is very hard to achieve using multiresolution

Figure 7: Path editing. The path of a planar walking sequence is adapted

to a user sketched curve (cyan). The original sequence is the same as in

Figure 6.

mesh editing [Kircher and Garland 2006].

4.1 Footprint Editing

During walking or running, humans or animals may have at least
one support leg in contact with the ground. It will leave a so-called
footprint there. In our system, we define the footprint to be an
interval of the frames where a handle keeps fixed on the ground.
In footprint editing, we revise the original footprints, and let the
system automatically adapt the original walking motion to the new
footprints. There are two major advantages of footprint editing.
First, when manipulating footprints, the user actually saves time by
editing the same handle at several frames simultaneously. Second,
footprints correctly capture the constraints that should be satisfied
in walking motion. So the user does not need to take time to explic-
itly specify keyframes to avoid annoying footskating.

To extract footprints, the user needs to first define a handle that rep-
resents the foot. After that, the footprints are automatically detected
by checking in what interval the position of the handle is unchanged
or the changes are less than a threshold. Any frame that contains a
footprint is automatically set as a keyframe. We further allow the
user to either directly place or project footprints onto a terrain. The
footprint can be rotated during projection by aligning the local sur-
face normal of the terrain and the up axis of local frame at footprint.

Figure 6 shows an example of footprint editing. The user only needs
to relocate the footprints, and our system can automatically gener-
ate the edited sequence.

4.2 Path Editing

During path editing, the user only needs to sketch a curve on the
ground as a new motion path. Our system can automatically adapt
the original mesh sequence to follow the new path. Path editing
has been addressed in the editing of motion capture data [Gleicher
2001]. We adapt this idea to deforming mesh sequences.

To estimate the motion path of the original mesh sequence, we first
project the centroids of the meshes in the original sequence onto the
ground, and then fit a B-spline curve through these projected points.
The path editing algorithm builds correspondence between the orig-
inal path porig(s) and the new one pnew(t) using arc length. There is
a default local coordinate frame at any point on a path. It is defined
by the tangent, normal and binormal at that point. Suppose porig(sk)
is the point for frame k on the original path, and it corresponds to
pnew(tk) on the new path. We use the rigid body transform between
the two local frames at these two points to transform the mesh at
frame k in the original sequence so that the transformed mesh has a
position and orientation consistent with the new path. There is one
additional issue with footprints though. Since a footprint may last a
few frames each of which may have different transforms, the same
footprint in the original sequence may be transformed to multiple
different locations. We simply average these multiple locations and
set the result as the corresponding footprint for the edited sequence.
To make the transformed meshes consistent with the new footprints,
we need to apply our basic spacetime solver to these transformed
meshes while considering the new footprints as handle constraints.

(a) (b)

Figure 8: Deformation mixing. Top: MoCAP data for running. Bottom: the running sequence is mixed with a flag animation. The wrinkles on the cloth are

generated using cloth simulation. The user defines corresponding handles between the human model and cloth. For instance, handles on the arms of the human

model correspond to upper corners of the cloth while handles on the feet of the human model correspond to lower corners of the cloth.

Figure 7 illustrates path editing. We use the same original mesh
sequence as in Figure 6. Figure 1 shows a more complex example
where a straight run is adapted to a curved path on an uneven terrain.
During editing, we adjust the pose of the horse’s head as well to
make the animation look more natural.

4.3 Handle Based Deformation Mixing

Deformation transfer has been used for making a static mesh follow
the deformation sequence of a second mesh. The original deforma-
tion transfer algorithm [Sumner and Popović 2004] requires a com-
plete correspondence between triangles on the two meshes. In the
current context, we propose deformation mixing, which means that
we start with two deforming meshes and generate a new sequence
that mixes the large-scale deformations of the first mesh with the
small-scale deformations of the second. We use the motion tra-
jectories of a sparse set of handles on the first mesh to define its
large-scale deformations, and force the corresponding handles on
the second mesh to follow these trajectories. Thus, we only need to
define the correspondence between handles on the two meshes.

Each handle on these two meshes generates a motion trajectory
within its own mesh sequence. Since there may be global differ-
ences between two corresponding trajectories, directly forcing the
second handle to follow the trajectory of the first one may produce
noticeable inconsistencies between the transferred handle trajectory
and the rest of the deformation on the second mesh. We there-
fore typically align the two corresponding trajectories first using a
global transformation, including scaling, translation, and rotation,
between them. After that, we set the transformed handle positions
and rotations from the first trajectory as constraints for the corre-
sponding handle on the second mesh. We repeatedly set up such
constraints on the second mesh for all the handles defined on the
first mesh, and then apply our basic spacetime solver to deform ev-
ery frame of the second sequence.

Figure 8 shows our deformation mixing results. We mix human
motion, such as running and boxing, with a cloth animation (a flag
blown in a wind). Note that the wrinkles are well preserved using
our method.

4.4 Mesh Deformation Filtering

Once multiple handles have been defined on a mesh sequence, the
trajectory of the center of each handle becomes a temporal signal.
Instead of transferring them to a second mesh as in the previous sec-
tion, we can apply signal processing techniques to produce filtered
versions of the trajectories, and then use these filtered trajectories
as constraints on the handles to deform the original mesh sequence.
As we know, in a deforming mesh sequence, the mesh surface itself
has characteristic small-scale details in addition to frame-to-frame
deformations. Deformation filtering is designed to alter the latter
but preserve the details. Performing filtering at the level of han-
dles lets us achieve this goal while directly filtering the trajectory
of every vertex would destroy such details.

Our system further allows the user to create a hierarchy among the
handles. The root of the hierarchy is always the centroid of the
entire mesh. The centroids of the meshes at all frames defines the
trajectory of the root. All the user-defined handles are children of
the root. The user can optionally set one handle as a child of an-
other handle. There is a local coordinate frame at each node of the
hierarchy. The trajectory of each handle is transformed to the local
coordinate frame at its parent. All these relative trajectories as well
as the global trajectory at the root are subject to filtering. How-
ever, there is one exception. Detected footprints are not filtered to
avoid footskating. The filtered relative trajectories are transformed
back to the world coordinate system before used as constraints in
the spacetime solver.

The cartoon animation filter introduced in [Wang et al. 2006] is an
interesting filter that can produce exaggerated cartoon style motion.
It is actually a signal enhancement filter defined as follows.

X∗(t) = X(t)−X(t)⊗LOG, (7)

where LOG is the Laplacian of the Gaussian, X(t) is the original
signal, and X∗(t) is the filtered signal. We have successfully exper-
imented with this filter. In Figure 9, we show one filtering example.
Figure 9(a) and (b) illustrates the handles and their initial hierar-
chy defined for the DINOSAUR. The trajectory of each handle is
filtered to create cartoon style motion. To maintain existing con-
tact constraints, the foot trajectories are not filtered. Please see the

1

2 3

4

5

6

8

7

(a) (b)

5 7

8

Center

…….. ……1 4 6

(d)(c)
Figure 9: Handle Hierarchy and filtering (handles have distinct colors.) (a)

A DINOSAUR model with user-specified handles. (b) An example hierarchy

among the handles. (c) One frame in the original deforming mesh sequence.

(d) Filtered result for this frame with the silhouette of the original shape in

the background.

accompanied video for the filtered sequence.

4.5 Spacetime Morphing

Spacetime morphing is a novel application based on our deforming
mesh sequences editing algorithm. It morphs a source deforming
mesh As to a target deforming mesh At in terms of both shape and
deformation. For example, given a walking dinosaur as the source
mesh and a walking lion as the target mesh, spacetime morphing
tries to generate a new sequence, where the shape of the dinosaur
is morphed into the shape of the lion while the dinosaur walking
transits to the lion walking.

In a preprocessing step, both deforming sequences are remeshed
so that every pair of corresponding frames have the same topol-
ogy. To achieve this, we first perform cross-parametrization be-
tween the first pair of corresponding frames as in [Kraevoy and
Sheffer 2004], and then bind the resulting meshes to their respec-
tive control meshes by computing mean value coordinates for their
vertices: Ṽ f ,0 = W0Vc,0, where Ṽ f ,0 represents the set of vertices
from a resulting mesh, W0 is the matrix of mean value coordinates,
and Vc,0 is the set of vertices from its control mesh. Then every
subsequent frame is generated as follows: maintain the same topol-
ogy as the cross-parameterized mesh at the first frame and compute

the new vertex positions using the formula, Ṽ f ,k = W0Vc,k, where

Ṽ f ,k represents the new vertex positions at the k-th frame, and Vc,k

represents the vertices of the control mesh at the k-th frame. Note

that Vc,k was computed as in Section 3.2 using the original mesh
topology.

Before start of morphing, we designate a temporal morph interval
for As and At respectively. Let us assume it is (f s

1 , f s
2) for the source

and (f t
1, f t

2) for the target. Note that the number of frames in the two
intervals can be different. Second, we align the two mesh sequences
in the world coordinate system. It is achieved by computing an opti-
mal rigid transformation to make the mesh at f t

1 align with the mesh
at f s

1 , or it can be specified by user. The computed transformation
is then applied to every frame in At to align the two sequences. The
final step is to blend the portion of the two sequences inside the
morph intervals. For each blended frame, we calculate a parameter

t (∈ [0,1]) to sample a source and target mesh from (f s
1 , f s

2) and
(f t

1, f t
2) respectively. The local frames and Laplacian differential

coordinates of the sampled meshes are interpolated using a method
similar to the one presented in [Lipman et al. 2005], and a mesh for
the blended frame is reconstructed from the interpolated Laplacian
coordinates.

We need to pay attention to constraints, such as footprints in a walk-
ing motion, in spacetime morphing as well. In the morph inter-
val, we mark the frames where a constraint should be satisfied and
maintain that constraint when we solve the meshes for the blended
frames.

Figure 10 demonstrates spacetime morphing. We concatenate di-
nosaur walking with lion walking by morphing the DINOSAUR into
the LION in one and half walking cycles (starting out with right
foot). The middle three images in figure 10 show how the shape
and motion of the two original sequences are blended to generate
the final results.

5 Results

We have demonstrated a variety of deforming mesh sequence edit-
ing results throughout the paper. Prior to interactively editing a
deforming mesh sequence, we need to transfer the control mesh at
the first frame to all frames, and compute the mean-value matrix
from the control mesh to the fine mesh for every frame. Lapla-
cian matrices necessary for minimizing Eq. (4) are precomputed.
Once the user have specified handles, we obtain sparse coefficient
matrices resulting from the steps in Section 3, and precompute the
factorization of such sparse matrices for every frame.

An editing session has both online and offline stages. During online
keyframe editing, our system provides interactive frame rates. This
is achieved by using the subspace solver to show approximate initial
solutions quickly. The alternating least-squares solver is activated
by the user only when the subspace solver cannot produce good
results. After keyframe editing, we perform offline computation to
obtain the entire edited sequence because there are usually more
than 100 frames in the sequence and we need to solve for every
frame.

In the current implementation, we use UMFPACK [2005] to per-
form LU decomposition of the matrices. Table 1 summarizes the
statistics and timing for the deforming mesh sequences used in this
paper. The performance of our system can be much improved if we
switch to faster sparse linear solvers, such as those in [Davis 2006;
Shi et al. 2006].

6 Conclusions and Future Work

We have successfully generalized gradient domain static mesh edit-
ing to deforming mesh sequences editing. Given sparse and irregu-
larly distributed constraints at keyframes throughout the deforming
sequence, our system first adjusts the meshes at keyframes to satisfy
the constraints, and then propagates the constraints and deforma-
tions at keyframes to the entire sequence to generate new deform-
ing mesh sequences. Our framework enables several novel applica-
tions, including footprint editing, path editing, handle based defor-
mation mixing, deformation filtering and space-time morphing. In
addition, an alternating least-squares method has been developed to
obtain high-quality deformation results at keyframes.

Since the problem scale of deforming mesh sequences editing is
much larger than static mesh editing. It is necessary to develop
novel acceleration techniques to achieve fast response. Even though
we have employed precomputation to save time during interaction,
the solution time for an entire sequence is still reasonably long.

Figure 10: Spacetime morphing. Dinosaur walking is morphed into lion walking.

Mesh Triangles Editing Frames Precomputation Solve Session Time

box 1664 Basic editing 20 1.3s 0.2s 30s

cloth 5000 Running 87 ∼ 12s 6.15s ∼ 8m

Dinosaur-1 8476 Footprint Editing && Path editing 154 ∼ 3m 28.14s ∼ 15m

Dinosaur-2 20k deformation filtering 190 ∼ 22m 108.61s ∼ 5m

frog 23k Footprint editing 187 ∼ 25m 201.43s ∼10m

horse 29k Footprint editing & Path editing 420 ∼50m 30m ∼ 1 hour

Table 1: Statistics and timings. All the timing data are measured on a 3.2GHz Intel Xeon workstation with 4GB memory. Precomputation time includes the

time for control mesh transfer and factorization of sparse matrices. Session time means user interaction time. Since the horse sequence is too large to entirely

load into the physical memory, the timing for this example includes virtual memory paging. The entire interactive session took about 60 minutes because of the

complexity of this editing scenario.

A subspace or multigrid method built simultaneously on the spa-
tial and temporal domains should be able to significantly shorten
the solution time. Meanwhile, the reconstruction of intermediate
frames can be easily made multiple times faster by exploiting mul-
tithreading on multicore processors.

Acknowledgements

The authors would like to thank Lincan zhou and Kit Thambirat-
nam for their help in video production. Special thanks to Junzhi Lu
and Shanchuan Huang for preparing the mesh animation data. We
are also very grateful to the anonymous reviewers for their help-
ful suggestions and comments to improve the paper. The boxing
and running sequence used in deformation mixing were obtained
from CMU motion capture database. Qunsheng Peng is partially
supported by the 973 program of China (No. 2002CB312101).

References

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-as-
possible shape interpolation. In SIGGRAPH 2000 Conference
Proceedings, 157–164.

ALEXA, M. 2003. Differential coordinates for local mesh morph-
ing and deformation. The Visual Computer 19, 2, 105–114.

AU, O. K.-C., TAI, C.-L., LIU, L., AND FU, H. 2006. Dual
laplacian editing for meshes. IEEE Transactions on Visualization
and Computer Graphics 12, 3, 386–395.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006.
Primo: Coupled prisms for intuitive surface modeling. 11–20.

DAVIS, T. A. 2005. Umfpack version 4.4 user guide. Tech. Rep.
TR-04-003, University of Florida.

DAVIS, T. A. 2006. User guide for cholmod. Tech. rep., University
of Florida.

DER, K., SUMNER, R., AND POPOVIĆ, J. 2006. Inverse kine-
matics for reduced deformable models. ACM Transactions on
Graphics 25, 3, 1174–1179.

GLEICHER, M. 2001. Motion path editing. In Symposium on

Interactive 3D Graphics, 195–202.

GUSKOV, I., SWELDENS, W., AND SCHRÖDER, P. 1999.
Multiresolution signal processing for meshes. In Proc. SIG-
GRAPH’99, 325–334.

HORN, B. 1987. Closed-form solution of absolute orientation using
unit quaternions. J. Opt. Soc. Am. A 4, 4, 629–642.

HUANG, J., SHI, X., LIU, X., ZHOU, K., WEI, L.-Y., TENG,
S.-H., BAO, H., GUO, B., AND SHUM, H.-Y. 2006. Sub-
space gradient domain mesh deformation. ACM Transactions on
Graphics 25, 3, 1126–1134.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. 2005. As-
rigid-as-possible shape manipulation. ACM TOG 24, 3, 1134–
1141.

JAMES, D., AND TWIGG, C. 2005. Skinning mesh animations.
ACM TOG 24, 3, 399–407.

JU, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value co-
ordinates for closed triangular meshes. ACM Transactions on
Graphics 24, 3, 561–566.

KIRCHER, S., AND GARLAND, M. 2006. Editing arbitrarily de-
forming surface animations. ACM Transactions on Graphics 25,
3, 1098–1107.

KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P.
1998. Interactive multi-resolution modeling on arbitrary meshes.
In Proc. SIGGRAPH’98, 105–114.

KRAEVOY, V., AND SHEFFER, A. 2004. Cross-parameterization
and compatible remeshing of 3d models. ACM Transactions on
Graphics 23, 3, 861–869.

LIPMAN, Y., SORKINE, O., LEVIN, D., AND COHEN-OR, D.
2005. Linear rotation-invariant coordinates for meshes. ACM
Transactions on Graphics 24, 3.

LIPMAN, Y., COHEN-OR, D., GAL, R., AND LEVIN, D. 2006.
Volume and shape preservation via moving frame manipulation.
Technical report.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM TOG 22, 3, 562–568.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND

GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Transactions on Graphics 24, 3.

PARK, S., AND HODGINS, J. 2006. Capturing and animating skin
deformation in human motion. ACM Transactions on Graphics
25, 3, 881–889.

SHEFFER, A., AND KRAEVOY, V. 2004. Pyramid coordinates for
morphing and deformation. In Second International Symposium
on 3D Data Processing, Visualization, and Transmission, 68–75.

SHI, L., YU, Y., BELL, N., AND FENG, W.-W. 2006. A fast
multigrid algorithm for mesh deformation. ACM Transactions
on Graphics 25, 3, 1108–1117.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Symposium of Geometry Processing.

SUMNER, R., AND POPOVIĆ, J. 2004. Deformation transfer for
triangle meshes. ACM Transactions on Graphics 23, 3, 397–403.

SUMNER, R., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ, J.
2005. Mesh-based inverse kinematics. ACM Transactions on
Graphics 24, 3, 488–495.

WANG, J., DRUCKER, S., AGRAWALA, M., AND COHEN, M.
2006. The cartoon animation filter. ACM Transactions on Graph-
ics 25, 3, 1169–1173.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND

SHUM, H.-Y. 2004. Mesh editing with poisson-based gradi-
ent field manipulation. ACM Transactions on Graphics (special
issue for SIGGRAPH 2004) 23, 3, 641–648.

ZAYER, R., RÖSSL, C., KARNI, Z., AND SEIDEL, H.-P. 2005.
Harmonic guidance for surface deformation. Computer Graph-
ics Forum (Eurographics 2005) 24, 3.

ZHOU, K., HUANG, J., SNYDER, J., LIU, X., BAO, H., GUO, B.,
AND SHUM, H.-Y. 2005. Large mesh deformation using the
volumetric graph laplacian. ACM Transactions on Graphics 24,
3, 496–503.

ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1997. Inter-
active mutiresolution mesh editing. In SIGGRAPH 97 Proceed-
ings, 259–268.

