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Abstract

Widely used for morphing between objects with arbitrary topology, distance field interpolation (DFI) handles

topological transition naturally without the need for correspondence or remeshing, unlike surface-based interpo-

lation approaches. However, lack of correspondence in DFI also leads to ineffective control over the morphing

process. In particular, unless the user specifies a dense set of landmarks, it is not even possible to measure the

distortion of intermediate shapes during interpolation, let alone control it. To remedy such issues, we introduce

an approach for establishing correspondence between the interior of two arbitrary objects, formulated as an opti-

mal mass transport problem with a sparse set of landmarks. This correspondence enables us to compute non-rigid

warping functions that better align the source and target objects as well as to incorporate local rigidity constraints

to perform as-rigid-as-possible DFI. We demonstrate how our approach helps achieve flexible morphing results

with a small number of landmarks.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape interpolation/morphing between 2D or 3D objects
with arbitrary topology is of great interest for various appli-
cations. As a useful tool for smooth transition from a source
object to a target object, it has long been used in animation
and special effects in the film industry. There are two main
approaches for the morphing problem, surface morphing and
distance field interpolation (DFI). Surface morphing usually
establishes one-to-one correspondence between the source
and target surfaces via cross-parameterization and remesh-
ing, and achieves as-rigid-as-possible interpolation results.
It, however, has difficulty in handling objects with different
topologies. DFI approaches, on the other hand, represent the
shape as an isosurface, which does not require dense surface
correspondences and allows topological change without spe-
cial treatment.

However, without dense correspondences, DFI ap-
proaches also lack effective control over the morphing pro-
cess. One solution [COSL98] is to specify sparse anchor
points in the source and target objects, compute a warp-
ing function associated with the anchors, and then blend the
two warped distance fields to create intermediate objects. In
this manner, the morphing process is roughly controlled by

the sparse anchor points. Another solution [TPG01] approx-
imates the volume enclosed by the surface with spheres, us-
ing correspondences between source and target spheres to
provide control. Unfortunately, the sparse correspondences
used in these approaches are not enough to precisely align
the features during the morphing process. There is no way
to perform as-rigid-as-possible interpolation, which needs
neighborhood correspondences.

In order to improve the controllability and quality of the
DFI process, we propose a novel approach to as-rigid-as-
possible distance field morphing. We first construct shape
interior correspondence, a per-voxel fuzzy correspondence
between two distance fields. Such a correspondence allows
maintaining shape alignment throughout the morphing pro-
cess, without an excessive number of landmarks. Making use
of this correspondence, we then warp the source and target
distance fields to an intermediate time and blend them to
generate the intermediate distance field, taking into account
the local rigidity constraints implied in the correspondence.
The result is an as-rigid-as-possible distance field metamor-
phosis algorithm that can generate superior morphing se-
quences to those produced by previous DFI methods.

Our shape interior correspondence is computed through
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Figure 1: Top row: a morphing sequence generated by our algorithm. Bottom row: the corresponding sequence generated

using [COSL98]. The user-specified anchor points are also shown in the top row.

minimizing earth mover’s distance [Kan06], based on sparse
corresponding anchor points. Thus, our initial correspon-
dence is a fuzzy many-to-many correspondence, represented
by a function storing the portion of a source voxel trans-
ported to each target voxel. With a simple weighted av-
erage, each target voxel center corresponds to a point in
the source domain. This procedure avoids the difficulty in
directly establishing a one-to-one correspondence between
voxels, while reducing the shape distortion in the morphing
as well as providing flexible control.

We tested our approach on several 2D and 3D objects
with complicated shapes and topologies. In these tests, our
voxel-level as-rigid-as possible interpolation scheme pro-
duced smooth morphing results with proper feature align-
ment, as shown in Fig. 1, Fig. 5 and Fig. 7.

1.1. Related Work

We briefly review both the surface-based and the volumetric
approaches for morphing. We also discuss the mass transport
problem, the technique used in our fuzzy correspondence al-
gorithm, in the context of related areas.

Surface morphing: Surface morphing techniques usually
start with building dense vertex-to-vertex correspondences
and then compute vertex paths to create intermediate shapes.
Since the source and target shapes are usually of differ-
ent mesh connectivity, a cross parameterization method
is required to remesh the shapes and build correspon-
dence [KS04, SAPH04]. The vertex correspondences can
also be established through functional correspondences on
the mesh, such as harmonic coordinates [ZRKS05] and func-
tional maps [OBCS∗12].

The challenge in vertex path computation is how to
reduce the shape distortion in the morphing. Sederberg
et al. [SGWM93] developed an intrinsic coordinate for
2D shape blending, using edge lengths and interior an-
gles. This method has been extended to polyhedral meshes

in [SWC97]. To reduce the non-rigid distortion in surface
shape blending, the as-rigid-as possible interpolation tech-
nique was introduced in [ACOL00, IMH05]. The technique
proposed by Alexa et al. [ACOL00] can handle volumetric
object interpolation but requires that the source and target
objects have the same number of tetrahedra and the same
connectivity. For 3D meshes, low-distortion surface mor-
phing results can be achieved by changing the underlying
surface representation. Laplacian coordinates [SCOL∗04],
rotation-invariant coordinates [LSLCO05] and Poisson
shape representation [XZWB05] are popular techniques to
enforce the local rigidity constraint during morphing. A re-
cent contribution [KMP07] realized as-isometric-as-possible
shape morphing results via finding a geodesic path in shape
space with the designated metric.

DFI morphing: Signed distance field is an implicit repre-
sentation of a surface. One of its advantages in shape mor-
phing is that it can handle the topological change during
the morphing between two surfaces with different topology
without any additional processing, while a triangle-based
representation requires special topological modifications for
surface split and merge operations and may have to remesh
some regions to maintain reasonable triangle shapes.

The early work in DFI morphing simply cross-dissolves
two distance fields and reconstructs the intermediate sur-
face from the blended distance field [PT92]. However, this
simple scheme cannot preserve the essential features in
the source and target objects. To improve feature preser-
vation, a wavelet volumetric morphing technique is devel-
oped in [HWK94]. Fine control of feature alignment for
two distance fields is achieved in [LGL95] by using var-
ious types of feature handles. Sphere correspondences are
adopted in [TPG01] to control the DFI morphing process.
The most related DFI method to our work is the 3D dis-
tance field metamorphosis by Cohen-Or et al. [COSL98]. It
separates the transformation between source and target ob-
jects into rigid and non-rigid parts according to the sparse
correspondence points on the surface, and the intermediate
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distance field is generated by blending the warped distance
fields.

As described earlier, the advantage of our algorithm is to
compute a dense shape interior correspondence, which al-
lows the shape alignment to be consistent with the 3D ob-
jects enclosed by the surfaces. To our knowledge, ours is
the first algorithm that incorporates local rigidity constraints
into DFI morhping, leading to reduced distortion.

Mass transport: We model the morphing problem as a
mass transport problem, a shape transformation with a mass
preservation property, where the weighted 2D or 3D volume
is treated as the mass to be transported. The optimal mass
transport of this sort was first considered in 1781 by Gaspard
Monge, who referred to it as the “Earth Mover’s Distance”
(EMD). Its modern formulation first appeared in [Kan06].
Optimal mass transport has been applied to image regis-
tration [HZTA04], content-based image retrieval [RTG00]
and feature similarity measure [GD05]. In [MY11], EMD
is also applied to topology free 2D image morphing. How-
ever, explicit non-rigid distortion control is not directly
available in this method, which hinders its application to
shape morphing with the feature preservation requirement.
In [LPD11, SNB∗12], EMD is used to compute soft corre-
spondences between surfaces.

1.2. Overview

We present the overall framework here, before elaborating
on the algorithm in the following sections.

The two given 3D solid objects, a source Ω0 and a tar-
get Ω1, are represented as signed distance fields to their re-
spective boundary surfaces, D0 and D1, stored on a volumet-
ric grid. More precisely, for any point q in the domain, the
value of D0(q) (or D1(q)) is defined as the signed shortest
Euclidean distance between q and the boundary of Ω0 (or
Ω1), negative for points inside the objects and positive for
the outside points. Our goal is to continuously deform Ω0 to
Ω1 and produce the in-between objects {Ωt ,0 < t < 1} (i.e.,
{Dt ,0 < t < 1}). The user can specify a set of anchor point
pairs {(pi

0, pi
1),1 ≤ i ≤ K}, such that point pi

0 in the source
domain corresponds to point pi

1 in the target domain.

Our algorithm first establishes a fuzzy correspondence be-
tween the interiors of Ω0 and Ω1 (Sec. 2). Treating morphing
as a process of transporting the mass of Ω0 to Ω1, we formu-
late the correspondence as the solution to an optimal mass
transport problem from the interior voxels of Ω0 to those of
Ω1. The underlying physical optimality of this correspon-
dence makes the morphing results reasonable, in the sense
that it moves the voxels with the minimum total transport
cost. To produce correspondences consistent with the user-
specified anchor pairs, we define a mass transportation cost
induced by the anchor points.

Making use of the above correspondence, we use thin

plate spline interpolation to compute warping functions
W0→1 and W1→0 that can align the shapes of Ω0 and Ω1

as well as possible (Sec. 3.1), i.e.,

W0→1(Ω0)≈ Ω1, W1→0(Ω1)≈ Ω0. (1)

Next, given a morphing parameter t ∈ [0,1], we find warp-
ing functions W0→t (W1→t ) that can transform Ω0 (Ω1) to
time t (Sec. 3.2) as an as-rigid-as-possible interpolation be-
tween the identity transformation and W0→1 (W1→0). We
then compute their inverses, the backward mapping func-
tions Bt→0 and Bt→1. Finally, the distance field Dt at t can
be evaluated as the interpolation of D0 and D1 guided by the
backward mappings:

Dt(v) = (1− t)D0(Bt→0(v))+ tD1(Bt→1(v)), (2)

where v is an arbitrary voxel in the domain.

Once we have the distance field, we can use the marching
cubes method [LC87] to extract the zero set surface, which
is represented as a triangular mesh. Note that the extracted
meshes at contiguous time frames may have different num-
ber of vertices/triangles and connectivity, and it is difficult
to enforce any temporal coherence between the two meshes.
Fortunately, in practice, we found that the generated morph-
ing sequences exhibit smooth transition as demonstrated in
our video demo. It is also possible to use the recent surface
tracking technique [BHLW12] to track the correspondence
for the mesh sequence and improve the mesh coherence.

2. Shape Interior Correspondence

We formulate the desired shape interior correspondence be-
tween Ω0 and Ω1 as the optimal mass transport. Suppose
that the total mass of a solid object is a constant value 1,
evenly distributed among its interior voxels. The problem is
then to find a mapping f that transports all the mass from
the interior voxels of Ω0 to those of Ω1 with the minimal
transportation cost.

Specifically, let Ω0 have N0 interior voxels and Ω1 have
N1 interior voxels. We construct a complete bipartite graph,
with N0 source nodes each of which corresponds to an in-
terior voxel of Ω0 and N1 target nodes each of which cor-
responds to an interior voxel of Ω1. We can then regard the
mapping f as an assignment of edge weights, with f (i, j)
representing the amount of mass transported from source
voxel i to target voxel j (see Fig. 2). The goal is thus to
solve for the mapping f that minimizes the total transporta-
tion cost,

argmin
f

∑
i, j

d(i, j) · f (i, j), (3)

subject to f (i, j) ≥ 0, ∑i f (i, j) = 1/N1 and ∑ j f (i, j) =
1/N0, where 0 < i ≤ N0 and 0 < j ≤ N1. Here d(i, j) is
some distance between the i-th source node and the j-th tar-
get node. We solve Eq. (3) using the network simplex algo-
rithm proposed by Bonneel et al. [BPPH11].
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f (i, j)

i j

Figure 2: Illustration of shape interior correspondence. For

every source node i and target node j, f (i, j) represents the

amount of mass transported from source voxel i to target

voxel j.

The distance d(i, j) between source nodes and target
nodes should be defined with the correspondence of user-
specified anchor point pairs taken into account. Intuitively,
if (i, j) is an anchor point pair, d(i, j) should be a mini-
mal value to favor the mass transportation between the two
nodes. Inspired by Zayer et al.’s work [ZRKS05], we com-
pute a K-dimensional vector field in either of the source
or target domains with respect to the K anchor point pairs.
Specifically, for each source anchor point i, we compute a
harmonic field hi

0 in the source domain with Dirichlet bound-
ary conditions by setting its value to 1 at this anchor point
and to 0 at all other source anchor points. This is equivalent
to solving the following linear system in the volumetric grid

∆h
i
0 = 0, with h

i
0(p

i
0) = 1, h

i
0(p

j
0) = 0, j 6= i, (4)

where ∆ = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is the Laplacian operator. In our

current implementation, the Laplacian at voxel v, ∆hi
0(v),

is calculated as hi
0(v)−

1
6 ∑u∈Ψ(v) hi

0(u), where Ψ(v) rep-
resents v’s 6-connected neighboring voxels.

Solving the above equation for all K source anchor points
gives us a K-dimensional vector field h0 = (h1

0, ...,h
K
0 ). Sim-

ilarly we can compute a K-dimensional vector field h1 =
(h1

1, ...,h
K
1 ) in the target domain. We then define the distance

between source node i and target node j as

d(i, j) = ‖h0(v
i
0)−h1(v

j
1)‖, (5)

where vi
0 and v

j
1 are the positions of the i-th source node and

the j-th target node respectively.

Note that unlike [ZRKS05], we cannot directly use the
harmonic fields to construct the correspondence as this may
make exterior regions of the source correspond to interior re-
gions of the target or vice versa. We only use harmonic fields
to calculate the distance between source and target nodes.
The final correspondence is computed by minimizing the to-
tal mass transportation cost.

The minimizer f of the total transportation cost gives a
many-to-many correspondence: for each target node j, any
source node i that has a nonzero f (i, j) could partially cor-
respond to j. To perform DFI, we need to compute a unique
corresponding position in the source domain for each target
node j. For this purpose, we first find the source node with
the largest f (i, j) with given j, i.e., l = argmaxi f (i, j). The

source corresponding position of the j-th target node, q
j
0, is

then computed through

q
j
0 =

∑k∈ϒ(l) f (k, j)vk
0

∑k∈ϒ(l) f (k, j)
, (6)

where ϒ(l) is the 3× 3× 3 volume grid centered at source
node l. We can compute the target corresponding position qi

1
of every source node i in a similar way.

Although we compute a unique corresponding position in
the source for each target node, such a correspondence is
not a one-to-one mapping between the source and target do-
mains. Our intuition is that although the corresponding posi-
tion of each individual node may not be optimal, the corre-
sponding positions of all nodes can be used as a good guid-
ance to aligning the source and target shapes. Note that as
we only need a fuzzy correspondence, we can also compute

q
j
0 as the the average position of all source nodes having

nonzero f (i, j) values. According to our experiments, this
hardly affects the final morphing results.

3. As-Rigid-As-Possible Distance Field Interpolation

We first describe how to compute warping functions that
align the source and target shapes as well as possible, then
introduce an algorithm to perform as-rigid-as-possible inter-
polation for these warping functions and generate the inter-
mediate shape.

3.1. Computing Warping Functions

We employ thin plate spline (TPS) interpolation [Boo89] to
compute the warping functions from the dense correspon-
dence computed in the previous section.

Specifically, to compute the warping function W1→0 from
the target shape to the source shape, we solve the following
problem

W1→0 = argmin
W

∑
j

‖W (v
j
1)− q

j
0‖

2 +λ

∫
|D2

W |2, (7)

where D2W is the matrix of second-order partial derivatives
of W and the matrix norm used in |D2W |2 is the Frobenius
norm. The first term preserves the interior correspondence,
and the second term ensures the smoothness of the warping.
The weight λ is set to 0.5 in all of our tests.

The above problem has a closed form solution when re-
stricted to the following form:

W1→0(p) = a1 +a2 px +a3 py +a4 pz +∑
j

ciϕ(‖p− v
j
1‖),

(8)
where px, py and pz indicate coordinate components of p,
ϕ(r) = r2 logr is the kernel function, and a1, a2, a3, a4

and c j are mapping coefficients (∈ R
3) solved from Eq. (7),
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Figure 3: Illustration of the eight trirectangular tetrahedra

surrounding voxel i. For each tetrahedron, an affine trans-

formation can be computed from its node positions in the

source (a) and target (d). Interpolating the transformations

of the eight tetrahedra independently will disconnect them

(b). Our global optimization stitches them together again (c).

which is simply a quadratic energy minimization with re-
spect to these coefficients. See [Boo89] for details on com-
puting the mapping coefficients.

The warping function from the source to the target, W0→1,
can be computed in a similar way.

3.2. As-Rigid-As-Possible Interpolation

Given the warping functions W0→1 and W1→0 computed
above, we can now warp both the source Ω0 and the tar-
get Ω1 to time t and compute the intermediate shape Ωt .
First, we need to compute the warping functions W0→t and
W1→t , and their backward mappings Bt→0 and Bt→1. Then,
Ωt (represented by Dt ) is generated according to Eq. (2).

Note that W0→t should be smoothly changing with t, and
be the identity transformation at t = 0 and W0→1 at t = 1.
At time t, each interior voxel vi in the source domain will be
transformed to vt

i =W0→t (vi). In the following we describe
an approach for computing W0→t as an as-rigid-as-possible
interpolation between the identity transformation and W0→1.
We first explain how to solve for the optimal positions of all
interior voxels vt = (vt

1, . . .,v
t
N0
) at time t.

For each interior voxel vi and its 6-connected neighbors in
the source domain (see Fig. 3), we can construct eight trirect-
angular tetrahedra with voxel center vi as their right angle.
Let (vi,v j,vk,vl) be one of the tetrahedra, we can find its
corresponding tetrahedra (ui,u j,uk,ul) in the target domain
through W0→1,

um =W0→1(vm), m ∈ {i, j,k, l}. (9)

An affine transformation defined by a 3×3 matrix M and
a displacement vector b can transform the source tetrahedron
to the target tetrahedron

um = Mvm +b, m ∈ {i, j,k, l}. (10)

M can be easily solved through

M = [u j − ui uk − ui ul − ui][v j − vi vk − vi vl − vi]
−1.
(11)

Figure 4: A horse is warped to align with a mechanical-like

horse. Left: our alignment result. Right: the alignment result

by [COSL98]. We only show the silhouette of the horse for

better illustration.

Following [ACOL00,SZGP05], we decompose M (defor-
mation gradient) through polar decomposition into a sin-
gle rotation and a symmetric matrix (right stretch tensor):
M = RrS. Based on this decomposition, the transformation
for the tetrahedron at time t can be constructed by linearly
interpolating the free parameters in the factorization

M(t) = Rt((1− t)I+ tS), (12)

where I is an identity matrix.

Under this transformation and ignoring the translation, the
positions of the tetrahedron at time t should be

g
t
m = M(t)vm, m ∈ {i, j,k, l}. (13)

Now we solve for the optimal vt that can match the shape
of tetrahedron (vi,v j,vk,vl) at time t to the shape of the tetra-
hedron computed with Eq. (13) as much as possible. Specif-
ically, we measure the similarity using the relative positions
of v j , vk and vl to vi, and propose the following energy

Ea(v
t
i ,v

t
j,v

t
k,v

t
l) = ∑

m∈{ j,k,l}

‖v
t
m − v

t
i − (gt

m − g
t
i)‖

2. (14)

The optimal positions of all interior voxels can be cal-
culated by summing the energies for all possible tetrahedra
together

argmin
vt

∑Ea(v
t
i ,v

t
j,v

t
k,v

t
l), (15)

where the summation is over all tetrahedra whose vertices
are all interior voxels.

As Ea is a quadratic function, the above equation can be
solved via least-squares optimization (using a conjugate gra-
dient solver in our implementation). To set the boundary
condition, we ask the user to specify an anchor point whose
position is directly computed via linear interpolation. Alter-
natively, the center of mass can be forced to be static. This
forms the boundary condition for Eq. (15).

Having solved vt , we directly apply the TPS interpolation
described in Sec. 3.1 to calculate W0→t and its backward
mapping Bt→0. W1→t and Bt→1 can be computed in a simi-
lar way.
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Figure 5: Top row: a morphing sequence generated by our algorithm. Bottom row: the corresponding sequence generated

using [COSL98]. The user-specified anchor points are also shown in the top row.

Figure 6: Top row: a morphing sequence generated by our as-rigid-as-possible DFI. Bottom row: the corresponding sequence

generated using linearly interpolated warping functions.

We note that many tetrahedra constructed in our approach
overlap with each other and do not form a tetrahedraliza-
tion of the object. They are only used to impose local trans-
formation constraints and finally produce global as-rigid-as-
possible interpolation. This distinguishes our approach from
[ACOL00], where an isomorphic tetrahedralization needs to
be constructed for two objects with the correspondence on
the boundaries already established.

4. Experimental Results

We have implemented the correspondence and DFI morph-
ing algorithms on an Intel Xeon E5620 workstation. We pro-
vide statistics for the models presented in this paper in Ta-
ble 1, including the timings and the numbers of anchor points
used. We selected several examples to demonstrate the ef-
fects of the resulting algorithm. See also the accompanying
video for morphing animations.

As shown in Table 1, among the stages of our approach,
constructing correspondence takes the least amount of time
as it is performed on grids of smaller sizes. TPS interpo-
lation and as-rigid-as-possible DFI spend comparable time.

Example Grid Size #Achors Corresp. TPS Interp.

Fig. 1 1803/403 12 10 58 24
Fig. 5 5002/502 12 1 14 1
Fig. 7 1803/303 5 9 20 22
Fig. 9 1803/403 13 10 62 18
Fig. 10 1803/403 14 9 21 33
Fig. 11 1803/403 12 10 19 27

Table 1: The volume grid sizes for distance fields/mass

transport, the number of anchor points and the timing results

(in seconds) for building correspondence, TPS interpolation,

and as-rigid-as-possible DFI for a single frame.

The zero set surface extraction (i.e., marching cube) takes
less than two seconds for a single frame in all examples.
Overall, we can generate an animation frame in less than
two minutes, with much room for acceleration as the current
implementation is not well optimized.

Fig. 1 demonstrates the advantages of our dense interior
correspondence. As only twelve anchors are specified by the
user, some shape features of the source and target are not
well aligned by the warping function computed in [COSL98]
(see Fig. 4, right), producing artifacts (e.g., small blobs) dur-
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Figure 7: Morphing a simple object of genus 2 to the Bunny model. Top row: a morphing sequence generated by our as-rigid-

as-possible DFI. Middle row: the corresponding sequence generated using linearly interpolated warping functions with our

interior correspondence. Bottom row: the corresponding sequence generated using [COSL98].

ing morphing as observed in the bottom row of Fig. 1. While
increasing the number of anchor points can help alleviate
this problem, it becomes a tedious trial-and-error process. In
contrast, using the same sparse anchor points, our algorithm
can compute a dense interior correspondence that better
aligns shape features such as the horse leg (see Fig. 4, left),
generating superior results to those produced by [COSL98].
Fig. 5 compares our algorithm with [COSL98] in a 2D ex-
ample. While judging the quality of the morphing results in
this example could be subjective and different people may
have different opinions, we would like to point out that our
interior correspondence helps to avoid creating unpleasant
ghosting features during morphing that are not exhibited in
the source and target, as highlighted in the the bottom row
of Fig. 5.

Our as-rigid-as-possible DFI can greatly improve the
quality of the morphing results. Fig. 6 shows a 2D example.
The results in both the first and second rows are generated
using our dense interior correspondence, which is employed
to compute the warping functions between the source and
target. In the first row, we perform as-rigid-as-possible DFI,
while in the second row we linearly interpolate the warp-
ing functions. A shown, as-rigid-as-possible DFI can gener-

ate more natural intermediate objects with less distortion –
linear interpolation makes the dinosaur’s tail shrink in the
morphing process.

In Fig. 7, an object of genus two is changing smoothly
to the Bunny model. Again, the sparse correspondence of
five landmarks cannot align the source and target well, re-
sulting in disconnected components in the morphing results
produced by [COSL98] (see the bottom row). While linear
interpolation using our computed dense interior correspon-
dence greatly improves the results (the middle row), it intro-
duces significant volume shrinkage in the bunny’s body part,
leading to more distortion than our as-rigid-as-possible DFI
results (the top row).

Limitations and Discussion. Although our technique can
produce visually plausible morphing animations with a small
number of landmarks, we note that in order to get satisfac-
tory results these landmarks need to be carefully placed in
meaningful positions that correspond to geometric features
of the source and target objects. And if the number of land-
marks is too low, our approach may generate unwanted re-
sults (see Fig. 8, top row). Adding more landmarks can cer-
tainly improve the results (see Fig. 8, bottom row).

One problem with our current correspondence is that the
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Figure 8: Morphing results with different numbers of land-

marks. Top row: the results of three landmarks. Bottom row:

the results of five landmarks.

computation of harmonic fields is performed in the ambient
space and does not consider the shapes of the source and
target objects. This may cause correspondences not in ac-
cordance with the user’s perception of the shapes and gener-
ates unsatisfactory morphing results (see Fig. 9, top row). To
remedy this problem, we can restrict the harmonic field com-
putation in Sec. 2 to be within the shape interior. Specifically,
we only compute the harmonic field values for interior vox-
els. And when calculating the Laplacian at a voxel, we only
consider those interior voxels in its 6-connected neighbors.
The harmonic fields computed this way lead to a better cor-
respondence and significant improve the morphing results
(see Fig. 9, bottom row). Fig. 10 and Fig. 11 show two more
morphing results generated using this approach. Note that
this approach works only for shapes containing a single con-
nected component (i.e., all interior voxels of the shape are
connected). For shapes with multiple disconnected compo-
nents such as those shown in Fig. 1 and Fig. 5, we still have
to compute harmonic fields in the ambient space.

Another problem of our work is that the computed cor-
respondence is not a one-to-one correspondence between
shapes. It is thus difficult to evaluate the quality of the cor-
respondence as in surface parameterization where the dis-
tortion of the correspondence can be rigorously defined.
While the morphing results based on this correspondence
are better than previous DFI methods, we found it hard to
further improve the results without using more landmarks.
Furthermore, lack of one-to-one correspondence also makes
our method problematic when handling colored or textured
shapes. The correspondence of each individual voxel is
fuzzy, which may cause unpleasant ghosting artifacts if it is
directly used for color interpolation. A possible solution is to
firstly generate the morphing surfaces using our algorithm,
track the correspondence information through time for the
surfaces using the recent method introduced in [BHLW12],
and use the tracked correspondence for color interpolation.

Finally, if an object contains multiple sematic compo-
nents, we have to treat the object as a single distance field

Figure 9: Top row: a morphing sequence generated using

harmonic fields computed in the whole volume. Bottom row:

the corresponding sequence generated using harmonic fields

computed in the shape interior.

and ignore the semantic information. This may generate
morphing results that do not capture structure-aware effects,
which are critical for some manmade objects (e.g., furni-
ture). We would like to explore these problems in the future.

5. Conclusion

We have introduced a novel approach to performing as-rigid-
as-possible interpolation between two distance fields. It es-
tablishes dense correspondence between the interior of two
arbitrary objects based on the theory of optimal mass trans-
portation. The resulting correspondence is consistent with
the user-specified anchor pairs, enabling us to compute non-
rigid warping functions that better align the source and tar-
get objects, and thus makes it possible to incorporate local
rigidity constraints to perform as-rigid-as-possible DFI. We
found in our tests that our approach greatly improves the
quality and flexibility of DFI morphing techniques.
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[KMP07] KILIAN M., MITRA N. J., POTTMANN H.: Geometric
modeling in shape space. ACM Trans. Graph. 26, 3 (July 2007).
2

[KS04] KRAEVOY V., SHEFFER A.: Cross-parameterization and
compatible remeshing of 3d models. ACM Trans. Graph. 23, 3
(Aug. 2004), 861–869. 2

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3d surface construction algorithm. In ACM SIG-

GRAPH ’87 (1987), pp. 163–169. 3

[LGL95] LERIOS A., GARFINKLE C. D., LEVOY M.: Feature-
based volume metamorphosis. In ACM SIGGRAPH ’95 (1995),
pp. 449–456. 2

[LPD11] LIPMAN Y., PUENTE J., DAUBECHIES I.: Conformal
wasserstein distance: Ii. computational aspects and extensions.
arXiv preprint arXiv:1103.4681 (2011). 3

[LSLCO05] LIPMAN Y., SORKINE O., LEVIN D., COHEN-OR

D.: Linear rotation-invariant coordinates for meshes. ACM

Trans. Graph. 24, 3 (July 2005), 479–487. 2

[MY11] MAKIHARA Y., YAGI Y.: Earth mover’s morphing:
topology-free shape morphing using cluster-based emd flows. In
ACCV ’10, Volume Part IV (2011), pp. 202–215. 3

[OBCS∗12] OVSJANIKOV M., BEN-CHEN M., SOLOMON J.,
BUTSCHER A., GUIBAS L.: Functional maps: a flexible rep-
resentation of maps between shapes. ACM Trans. Graph. 31, 4
(July 2012), 30:1–30:11. 2

[PT92] PAYNE B. A., TOGA A. W.: Distance field manipulation
of surface models. IEEE Comput. Graph. Appl. 12, 1 (Jan. 1992),
65–71. 2

[RTG00] RUBNER Y., TOMASI C., GUIBAS L.: The earth
mover’s distance as a metric for image retrieval. International

Journal of Computer Vision 40, 2 (2000), 99–121. 3

[SAPH04] SCHREINER J., ASIRVATHAM A., PRAUN E., HOPPE

H.: Inter-surface mapping. ACM Trans. Graph. 23, 3 (Aug.
2004), 870–877. 2

[SCOL∗04] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA

M., RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In SGP

’04 (2004), pp. 175–184. 2

[SGWM93] SEDERBERG T. W., GAO P., WANG G., MU H.: 2-D
shape blending: an intrinsic solution to the vertex path problem.
In ACM SIGGRAPH ’93 (1993), pp. 15–18. 2

[SNB∗12] SOLOMON J., NGUYEN A., BUTSCHER A., BEN-
CHEN M., GUIBAS L.: Soft maps between surfaces. Comp.

Graph. Forum 31, 5 (Aug. 2012), 1617–1626. 3

[SWC97] SUN Y. M., WANG W., CHIN F. Y. L.: Interpolating
polyhedral models using intrinsic shape parameters. The Journal

of Visualization and Computer Animation 8, 2 (1997), 81–96. 2

[SZGP05] SUMNER R. W., ZWICKER M., GOTSMAN C.,
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