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Figure 1: Left: An airport terminal model with planar quad faces generated by our conjugate direction field method. The maximum value
of the planarity measure (the angular difference in degrees between the sum of four internal angles of a quad face and 360◦) is 0.05◦. Right:
A comparison of the planar quad mesh on the roof of this model from the principal curvature network (top) and our method (bottom). Our
method allows us to control the layout of the planar quad mesh and reduces the number of singularities (non-four-valence vertices).

Abstract

We present a novel method to approximate a freeform shape with
a planar quadrilateral (PQ) mesh for modeling architectural glass
structures. Our method is based on the study of conjugate direction
fields (CDF) which allow the presence of ±k/4(k ∈ Z) singular-
ities. Starting with a triangle discretization of a freeform shape,
we first compute an as smooth as possible conjugate direction field
satisfying the user’s directional and angular constraints, then ap-
ply mixed-integer quadrangulation and planarization techniques to
generate a PQ mesh which approximates the input shape faithfully.
We demonstrate that our method is effective and robust on various
3D models.
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1 Introduction

Planar quadrilateral (PQ) meshes are essential in architectural ge-
ometry for discretizing a freeform architectural structure with pla-
nar quad faces [Glymph et al. 2004; Liu et al. 2006; Pottmann
et al. 2007b], and the study of PQ meshes is now an important
topic of discrete differential geometry [Pottmann and Wallner 2008;
Bobenko and Suris 2008]. Its continuous counterpart, in differen-
tial geometry, is the conjugate curve network [Sauer 1970; Liu et al.
2006; Bobenko and Suris 2008], which is defined to be two fami-
lies of one-parameter curves that cover a smooth surface, and their
tangent vectors v,w at an arbitrary point x on a surface are con-
jugate (see its formal definition in Section 3). These two families
of tangent directions v,w form a general cross field without the
requirement of orthogonality, which we call a conjugate direction
field (CDF) hereafter. The layout of a PQ mesh can be controlled
through the design of the CDF.

It has been recognized that an intuitive design tool for smooth
CDFs is desirable for architects to control the layout of the PQ
mesh [Pottmann et al. 2007a; Eigensatz et al. 2010]. Unfortunately,
there is no general solution currently available for CDF design. Ex-
isting techniques can handle two special cases. Principal directions,
as a typical example of CDFs, have been used in [Liu et al. 2006]
to produce PQ meshes. Since the principal directions are unique,
there are no degrees of freedom left for the architects. A recent
representation-vector based CDF design technique in [Zadravec
et al. 2010] is capable of producing a smooth CDF via measuring
the smoothness of the representation vector field. However, only
singularities with indices of ±k/2(k ∈ Z) can be modeled and it
fails in handling ±k/4(k ∈ Z) singularities, such as a surface with
convex corners (e.g., a round cube).

The main challenge of general CDF design is how to define a
correct smoothness measure for a CDF so that singularities of
±k/4(k ∈ Z) are allowed. Since a CDF on two adjacent faces
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consists of two pairs of directional vectors, its smoothness can only
be measured after the vector association issue is resolved. That is,
we need to figure out which vector is associated with which vec-
tor between the neighboring conjugate directions. The existing ap-
proach in [Zadravec et al. 2010] implies an order in two conjugate
directions and thus prohibits the arbitrary association of vectors.
Furthermore, note that a CDF is not a rotational symmetry (RoSy)
field since the angle between any pair of conjugate directions varies
across the surface. The vector association techniques for the RoSy
field, such as the period jump technique in [Ray et al. 2008] and the
trivial connection in [Crane et al. 2010], cannot be directly applied.

The main contribution of this paper is to propose a general CDF
design scheme that enables the user to fully explore the degrees of
freedom in a CDF. The key observation is that a CDF is exactly
smooth only when the vector association between neighboring con-
jugate directions can be modeled by a signed-permutation opera-
tion. Since the membership of direction vectors in a CDF are not
differentiated in this operation, arbitrary types of vector associa-
tions can be modeled to allow the appearance of ±k/4 singulari-
ties. We show that the signed-permutation condition for a smooth
CDF can be converted into a proper smoothness measure which can
be computed explicitly. Similar to the RoSy field smoothing objec-
tive function in [Ray et al. 2009], our smoothness measure is only a
summation of trigonometric functions. This significantly facilitates
the direction field optimization to seek an as smooth as possible
CDF on the surface. A side benefit of our measure is that it allows
the direct control of the angle between conjugate directions to avoid
self-conjugate directions (a direction that is conjugate to itself).

After the design of CDF, we adapt the global parametrization tech-
nique in [Bommes et al. 2009] to trace the iso-lines following the
conjugate directions, and then extract an initial quad mesh through
the intersections of the iso-lines. A perturbation algorithm is then
applied to optimize the quad mesh into a PQ mesh. Figure 1 illus-
trates an example from our method.

We have evaluated our method on a variety of models, including
architectural models with highly-varied curvature distributions and
3D freeform models, such as the Stanford Bunny. Experimental
results demonstrate the effectiveness and robustness of our method
in generating high-quality PQ meshes.

2 Related Work

N -RoSy Field represents N coupled directions which are invari-
ant under rotations of an integer multiple of 2π

N
. Therefore, the

N -RoSy field design algorithm should be able to handle the vec-
tor association issue to model fractional singularities. Hertzmann
and Zorin [2000] adopted an angle formulation to formulate the
smoothness energy of a cross field. Vector association is achieved
using integer variables, which are eliminated through the trigono-
metric function in the nonlinear optimization procedure.

Ray et al. [2008] proposed a period-jump based discretization of a
4-RoSy field on a surface, where the period-jump is an integer vari-
able encoded at an edge for the vector association. Their method
built a linear system to solve for a globally smooth 4-RoSy field.
However, the direct rounding scheme in their method might lead to
undesirable singularities in the resulting field. To solve this prob-
lem, a geometry-aware method [Ray et al. 2009] was developed
to control the topology of an N -RoSy field by integrating the fil-
tered defect angles into a smoothness energy function. Bommes
et al. [2009] proposed a mixed-integer solver for the design of an
N -RoSy field. Instead of direct rounding, their method iteratively
rounds the integer variables to further reduce the smoothness en-
ergy and the number of singularities. In contrast, Palacios and
Zhang [2007] used representation vectors to control the singularity

of the N -RoSy field. They also provided an intuitive interface for
design and editing. Recently, an elegant method based on the triv-
ial connection [Crane et al. 2010] simplified the design of a smooth
N -RoSy field by solving a linear system only.

Our algorithm is inspired by the N -RoSy field design algorithm.
However, we adopt the signed-permutation technique to handle the
varying angles between the conjugate directions.

Quadrangulation is to compute a quadrilateral structure on a sur-
face and it is well studied in the mesh generation community.
With an augmented vector/cross field on a surface, curve tracing or
global parameterization methods are developed to generate a quad
mesh [Alliez et al. 2003; Boier-Martin et al. 2004; Tong et al. 2006;
Ray et al. 2006; Kälberer et al. 2007; Bommes et al. 2009]. The
Morse-Smale complex of a scalar function, as another approach,
can generate a global quadrilateral structure and automatically opti-
mize the distribution of singularities [Dong et al. 2006; Huang et al.
2008]. In this paper, we adapt the mixed integer quadrangulation
method [Bommes et al. 2009] to guarantee the global topological
structure and produce all-quad meshes.

PQ mesh is preferable for the purpose of fabrication in architec-
ture [Glymph et al. 2004], especially for glass structures. Liu et
al. [2006] extracted quad meshes from the principal curvature lines
and developed a PQ perturbation algorithm to enforce planarity of
quad faces. Recently Zadravec et al. [2010] cast the design of the
conjugate curve network into a vector field design problem, and the
conjugate directions are computed after the optimization of a vec-
tor field. However, as mentioned in Section 1, their algorithm has
a limitation in modeling singularities of the index ±k/4(k ∈ Z).
In addition, the angle between conjugate directions cannot be con-
trolled directly. In comparison, our method completely solves the
vector association issue in a CDF so that singularities of ±k/4 can
be well handled. Our algorithm also enforces the explicit constraint
on the angle between two conjugate directions to avoid the appear-
ance of self-conjugacy.

3 CDF On Triangle Meshes

It is well known that, on a smooth surface S ⊂ R3, two tan-
gent vectors vp,wp in the tangential space Tp(S) at the point
p ∈ S are conjugate if and only if the bilinear form IIp(vp,wp) =
0 [Do Carmo 1976], where IIp is the second fundamental form at
p. If vp and wp are treated as two vectors in R3, the preceding
equality can be written in the following form:

κp,1(vp · ep,1)(wp · ep,1) + κp,2(vp · ep,2)(wp · ep,2) = 0 (1)

where κp,1, κp,2 are the principal curvatures at p, and ep,1, ep,2 are
the corresponding principal directions.

Following the direction field discretization method in [Ray et al.
2009], we define a CDF on a triangular mesh to be two families
of tangent direction fields {v,w} sampled at each triangle f , and
they are conjugate to each other, i.e., Eqn. 1 holds at each triangle
f . In the following, we first introduce the notations for a CDF, and
then describe how to define its signed-permutation-based smooth-
ness and singularity index, which are critical to the design of a CDF.
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As shown in the right inset, a
CDF on a triangle fi is four
vectors {vi,wi,−vi,−wi}, and
they can be parameterized by two
scalar parameters {θi, αi}, where
θi is the oriented angle between
ei,1 and vi, and αi is the oriented angle between vi and
wi. Therefore, we have vi = 〈cos θi, sin θi〉T and wi =

〈cos(θi + αi), sin(θi + αi)〉T .



vi

vi

vi
wiwi

wi

fifi fi

vjvj vj

wjwj wj

fjfj fj

(a) (b) (c)

Figure 2: (a-b) Two cases of vector associations in a smooth CDF
and the corresponding signed-permutation matrices:

(
0 1

−1 0

)
and

(
−1 0
0 −1

)
. (c) An example of a pair of non-smooth conju-

gate directions.

3.1 The Smoothness of a CDF

Similar to the N -RoSy field [Ray et al. 2008], the smoothness of a
CDF is also computed at each edge eij incident to two triangles fi
and fj . In fact, we compute the angle difference between the asso-
ciated direction vectors, which is formally called a discrete connec-
tion in [Crane et al. 2010], at each edge eij to measure the change
of the conjugate directions. Due to the fact that there are two direc-
tions on a face and the angle between them varies across the mesh,
we treat a CDF as two coupled 2-RoSy fields on the mesh to mea-
sure its smoothness. Consequently, two angle differences C1(eij)
and C2(eij) need to be computed at edge eij :

C1(eij) = (θj + qαj) + rij − θi + p1π;
C2(eij) = (θj + (1− q)αj) + rij − (θi + αi) + p2π

(2)
where rij is the rotation angle between two local reference frames
ei,1 on fi and ej,1 on fj . q ∈ {0, 1} is used to choose vj or wj

at fj for associating vectors, and p1 and p2 are integers serving as
the period jumps in the N-RoSy field design [Ray et al. 2008]. Note
that q plays an important role here in modeling the associations of
vectors.

Smoothness Measure. To produce a smooth CDF, an ideal algo-
rithm needs to minimize the magnitudes of C1(eij) and C2(eij)
simultaneously. However, note that this formulation builds a non-
linear relationship between the (0, 1)-integer variable q and the
floating-point variable αj , so it dramatically increases the com-
plexity for further optimization. As a result, it is very difficult
to design an efficient algorithm to minimize this nonlinear mixed-
integer optimization problem. Neither the mixed-integer technique
employed in [Bommes et al. 2009] nor the trivial connection tech-
nique in [Crane et al. 2010] can be used to solve this problem.

However, note that when both C1(eij), C2(eij) vanish, i.e., the
CDF is perfectly smooth, the corresponding directions on two ad-
jacent faces can be permuted to each other, i.e., we have

(vi|wi)Pij = (ṽj |w̃j) .

Here Pij is a 2 × 2 signed-permutation matrix, i.e., Pij is a
0, 1,−1-matrix with one nonzero entry in each row and each col-
umn. (ṽj , w̃j) are the representations of (vj ,wj) in the local
reference frames at fi by using a hinge map as a local isomet-
ric parametrization, i.e., ṽj = 〈cos(θj + rij), sin(θj + rij)〉T

and w̃j = 〈cos(θj + αj + rij), sin(θj + αj + rij)〉T . Figure 2a
and 2b illustrate two cases of vector association in a smooth CDF
and their corresponding Pijs.

From Eqn. 3.1, Pij can be estimated from the CDF using the fol-
lowing formula:

Pij = (vi|wi)
−1 (ṽj |w̃j) =

1

sinαi
Cij

where Cij =

(
sin(θi − θj + αi − rij) sin(θi − θj + αi − αj − rij)

sin(θj − θi + rij) sin(θj − θi + αj + rij)

)
.

When the magnitude of C1(eij) or C2(eij) is large, the computed
Pij from the above equations can be far from a signed-permutation
matrix. Figure 2c illustrates an example of a non-smooth CDF on
fi and fj .

Motivated by the above observation, we resort to a signed-
permutation matrix approach to define the smoothness of a CDF
directly. The smoothness measure of a CDF is then based on the
computation of the deviation from Pij to the signed permutation
matrix group. It can be described by the following proposition:

Proposition 1 Pij is a signed-permutation matrix iff the following
two conditions hold: P−1

ij = PT
ij and C1(eij)+C2(eij)

2
= 0.

Proof. The first condition is due to the fact that any signed permu-
tation matrix is an orthogonal matrix. It can be re-organized into:

Dij := (vi|wi) (vi|wi)
T − (ṽj |w̃j) (ṽj |w̃j)

T = 0.

The second condition comes from the fact that both C1(eij) and
C2(eij) vanish when Pij is a signed-permutation matrix. By sub-
stituting Eqn. 2 into this condition and multiplying it by 4, we have
4(θi +

αi
2
) = 4(θj +

αj
2
) + 4rij + 2(p1 + p2)π. To eliminate the

two integers p1 and p2, we take the cosine and sine on both sides
and get the following formula:

Eij :=

(
cos(4θi + 2αi)− cos(4θj + 2αj + 4rij)
sin(4θi + 2αi)− sin(4θj + 2αj + 4rij)

)
= 0.

From the above derivation, it is obvious that Dij = 0 and Eij = 0
are necessary conditions when Pij is a signed-permutation matrix.
We only need to prove that they are also sufficient conditions. From
Eij = 0, we have:

θj + rij = θi +
αi − αj

2
+
kπ

2
, k ∈ Z. (3)

By substituting Eqn. 3 into Dij = 0, we can derive that cosαi =
(−1)k cosαj . Therefore, if k is even, then αj = αi + 2lπ, l ∈ Z.
We have:{

θj + rij = θi + ( k
2
− l)π

θj + αj + rij = θi + αi + ( k
2
+ l)π

, l ∈ Z.

If k is odd, then αj = (2l + 1)π − αi, l ∈ Z, and we have:{
θj + rij = θi + αi + ( k−1

2
− l)π

θj + αj + rij = θi + ( k+1
2

+ l)π
, l ∈ Z.

It is easy to verify that {vi,wi} can be signed-permuted to
{ṽj , w̃j}. Therefore Pij is a signed permutation matrix. �

Having got the equivalent conditions for Pij to be a signed permu-
tation matrix, we define the smoothness of a CDF Sij at edge eij
as follows:

Sij := ‖Dij‖2F + ‖Eij‖22 = 4 + cos(2αi) + cos(2αj)−
cos(2(θi + αi − θj − rij))− cos(2(θj + αj − θi + rij))−

cos(2(θj − θi + rij))− 2 cos(4(θi +
αi
2
− θj −

αj
2
− rij)), (4)

where ‖ · ‖F is the Frobenius norm.

Remark: If αi and αj are π
2

, we have Sij = ‖Eij‖22 = 2 −
2 cos(4θ1 − 4θ2 − 4rij) which is the smoothness measure of a
cross field used in [Hertzmann and Zorin 2000; Ray et al. 2009].



(a) (b) (c) (d)

Figure 3: CDF design on an airport terminal model. (a) The original model. (b) An initial CDF from user-specified strokes (red lines). (c)
The optimized CDF. (d) The resulting PQ mesh.

3.2 Index of Singularity

The index of singularity is a fundamental concept introduced by
Poincaré and Hopf to identify the singularities of a vector/direction
field. For a CDF, we define the index of a CDF at a vertex u as

I(u) =
Kd(u) +

∑
eij∈N(u)

C1(eij) + C2(eij)

2
2π

(5)

whereKd(u) denotes the angle defect of u (i.e., 2π minus the sum-
mation of angles adjacent to u), and N(u) denotes the edges in-
cident to u and the average of C1(eij) and C2(eij) measures the
difference between two pairs of conjugate directions on two neigh-
boring faces at edge eij .

Actually C1(eij)+C2(eij)

2
is exactly the angle difference at eij of a

4-RoSy field B where its member direction vectors are the bisec-
tors of vi and wi. Our observation is from the following simple
calculation:

C1(eij) + C2(eij)

2
=
(
θj +

αj
2

+ rij
)
−
(
θi +

αi
2

)
+
(p1 + p2)π

2
.

(6)
This fact indicates that the computation of the index of a singularity
in a CDF can be performed in its adjoint 4-RoSy field B.

4 CDF Optimization

With the definition of smoothness and index, we are ready to de-
velop a CDF optimization algorithm. Given a triangular mesh and
user-specified directional constraints on a subset of faces, our di-
rection field optimization algorithm seeks an as smooth as possible
CDF satisfying these constraints. The overall workflow of CDF
optimization is illustrated in Figure 3.

In the direction field optimization, we seek for optimal θi, αi at
each triangle by minimizing the smoothness energy under the con-
jugacy constraints, angular constraints, and directional constraints.

Smoothness energy function is used to measure the smoothness of
the CDF. It is a summation of Sij defined in Eqn. 4 over each edge:

Es =
∑
eij

Sij . (7)

Conjugacy constraint. The conjugacy at each face can be mea-
sured through Eqn. 1. Since we set the local reference frame to be
the principal curvature directions, the conjugacy constraint on fi is:

Cfi = κi,1 cos(θi) cos(θi + αi) + κi,2 sin(θi) sin(θi + αi) = 0.

We adopt the normal cycle technique in [Cohen-Steiner and Mor-
van 2003] to compute the principal curvatures κi,1, κi,2 and princi-
pal directions at face fi. Curvature tensors are first estimated at ver-
tices, and then smoothed to filter out the discretization noise [Alliez
et al. 2003]. The curvature tensor at fi is approximated by averag-
ing the curvature tensors at its vertices.

In our optimization, we introduce an inequality conjugacy con-
straint at each face:

−εcc ≤ Ci ≤ εcc (8)

where c = maxi(|κi,1|, |κi,2|), and εc is a small value (default:
0.001) to control how well the conjugacy condition should be satis-
fied. Our inequality formulation of the conjugacy constraint avoids
numerical instability due to unreliable curvature tensor estimation
at noisy areas.

Directional constraint. Control of the local orientation of the CDF
is critical in our algorithm. We provide a stroke-based interface
for the user to specify the directional constraints on the mesh. We
support this constraint by introducing the following inequality con-
straint:

αd ≤ ψic − θic ≤ αd

where ic denotes the face which contains the directional constraint,
ψic is the angle between user-specified directions and local refer-
ence vectors on fic , and αd is a user-supplied angle to control the
angular difference between the conjugate directions and the user’s
input (default: 10◦).

Angular constraint. Small angles between two conjugate direc-
tions need to be avoided to guarantee the quality of the resulting
PQ mesh. We thus set the angular constraint at each face to be:

αs ≤ αi ≤ π − αs.

Hereαs is the minimal angle defined by the user (default: 15◦). The
angular constraint is not added to faces with directional constraints
due to the possible conflict.

Initialization. Since we are dealing with a nonlinear optimization
problem, an properly initialized CDF has to be determined to start
the optimization. Our initialization procedure is to mimic parallel
transport operation to propagate the conjugate directions at con-
strained faces to the whole mesh. However, since conjugate di-
rections are not unique at each face, we choose to first generate
a smooth bisector direction field B which is 4-RoSy, then use the
curvature information to compute a pair of conjugate directions on
each face. The initialization procedure is as follows:

1. Compute conjugate directions for each face fic with a di-
rectional constraint by solving Eqn. 1 where vi or wi is
set by this direction. Set the bisector direction at fic to



bic =
vic+wic
‖vic+wic‖

, and denote the oriented angle between bic
and eic,1 by φic . Push these faces with directional constraints
into a queueQ and label them visited. For other faces without
directional constraints, label them unvisited.

2. Generate a 4-RoSy field by a FIFO propagation. Pop a face
fi from Q. For each of its neighboring faces fj , push it into
the queue if fj is unvisited. Label fj visited, and set φj to
minimize |(φi − (φj + rij)) + k π

2
| (k is an integer value).

This push/pop procedure iterates until Q is empty.

3. Compute conjugate directions for each unconstrained face fi.
Two parameters, θi and αi, can be found through the solutions
of two equations, θi + αi

2
= φi and Cfi = 0. Note that

the solution may not exist in the negative Gaussian curvature
region. In this case, we simply assign θi = 0, αi =

π
2

.

Figure 3 demonstrates an example of the initialization of a CDF.

An alternative way is to use the mixed-integer technique [Bommes
et al. 2009] to generate a smooth B with less singularities. How-
ever, our approach is lightweight and fast to compute. It is enough
to produce good initial CDFs for further optimization in our exper-
iments.

Optimization. The smooth energy function and the inequality con-
straints form a nonlinear constrained optimization problem. Since
the number of variables and constraints can be very large (propor-
tional to the number of faces), we use an augmented Lagrangian
method to solve it efficiently.

The augmented Lagrangian method converts a nonlinear con-
strained problem {min f(x), s.t. ci(x) = 0, i = 1, . . . , r; ci(x) ≥
0, i = r + 1, . . . , n} to an unconstrained problem:

minϕ(x, λ, σ) = f(x)− λTd(x) + 1

2
σd(x)Td(x)

where

di(x) =

{
ci(x) if i ≤ r or ci(x) ≤ λi

σ
;

λi
σ

otherwise.

λ is the Lagrangian multiplier associated with each constraint and
σ is the penalty parameter. They are iteratively updated to tighten
the tolerances of the constraint error [Nocedal and Wright 1999]. At
each iteration, the limited-memory BFGS (L-BFGS) algorithm [Liu
and Nocedal 1989] is adopted to solve the unconstrained optimiza-
tion problem in our implementation.

Singularity editing. With the index formula defined in Eqn. 5,
we are able to detect all the singularities of a CDF via its bisec-
tor directional field B. However, our smoothness function does
not penalize the number of singularities directly and the distribu-
tion of singularity points may be unsatisfactory. To tackle this,
we follow the geometry-aware approach proposed in [Ray et al.
2009] to manipulate singularities of B, i.e., allow the user to select
and edit the singular vertices by move, merge and cancel opera-
tions. Recalling that B is a 4-RoSy field (see Eqn. 6), we denote
B(eij) =

C1(eij)+C2(eij)

2
as the angle difference of B defined on

edge eij . Now we sketch the editing steps as follows; please refer
to [Ray et al. 2009] for more details:

1. Apply a Gaussian filter to obtain the smoothed angle defects
Kcorr on vertices.

2. Modify Kcorr according to the editing of singularities: move a
singularity of index I from a vertex u1 to a vertex u2 by adding
2πI to Kcorr(u1) and subtracting 2πI from Kcorr(u2). The
merging and canceling operations can be achieved by the mov-
ing operation.

Figure 4: Singularity editing. Left: a CDF with 6 singularities. The
blue ball indicates a 1/4 singularity, and the yellow ball indicates
a −1/4 singularity. Right: the editing result. Two singularities in
the central region are canceled, and the singularity at the top-left is
moved away from others.

3. RecomputeB(eij) by minimizing
∑
eij
B(eij)

2 under the con-
straints

∑
eij∈N(u)B(eij) = Kcorr(u) − Kd(u) defined at

each vertex u.
4. Modify the rotation angle rij on each edge by letting rij be r0ij−
B(eij), and then optimize the smoothness of CDF. Here r0ij is
the unmodified rotation angle.

Figure 4 shows an editing result.

5 PQ Mesh Generation

The goal of PQ mesh generation is to find a PQ mesh following the
optimized CDF. We first adapt the global parametrization method
in [Dong et al. 2006; Bommes et al. 2009] to generate an initial
quad mesh, and then improve its quality by planarization.

5.1 Global Parametrization

In the global parametrization, we assign an (s, t) parameter value
to each vertex of the input mesh so that its iso-parameter lines on
the surface are locally oriented according to the optimized CDF.
Specifically, we minimize the following energy function to seek for
the optimal (s, t) parameter values:

Ep =
∑
fi

area(fi)

[(
∇si
‖∇si‖

· vTi
)2

+

(
∇ti
‖∇ti‖

·wT
i

)2
]
(9)

where (vTi ,w
T
i ) = rot90(vi,wi) (rot90 means rotation counter-

clockwise by 90 degrees). Note that we introduce a normalization
operator into the objective function to convert the gradient field of
(s, t) into a direction field, which is different from the parametriza-
tion energy function in the mixed integer technique [Bommes et al.
2009]. This means that our formulation focuses on the orientation
alignment and does not care about the length mismatch. It can lead
to better alignment between the parameter lines and the optimized
CDF. The advantage of the formulation in Eqn. 9 is illustrated in
Fig. 5.

However, Eqn. 9 is a nonlinear energy function with many integer
variables introduced at the topology cut and singularities [Bommes
et al. 2009]. We thus design a nonlinear mixed integer solver to
solve it. The solver performs three steps to minimize the energy
function until convergence: (a) optimize the function with the L-
BFGS method; (b) round an integer variable to its nearest integer
and set this variable as a constant; goto (a) until all the integer vari-
ables are fixed; (c) optimize the function until the L-BFGS method
converges.

The number of integer variables can significantly influence the
speed of the solver. We observe that the topology cut can be seg-



Figure 5: A zoom-in view of the airport model (parameterized lines
are in black). Left: the mixed technique approach; right: our ap-
proach. The parameter lines generated by our approach aligns to
the CDF better due to nonlinear optimization.

mented into polylines whose end points are located at the singu-
larities, the branching points of the cut or some boundary vertices.
If the edges of each polyline share the same type of signed per-
mutation, their integer translational variables should be the same.
Utilizing these observations, we can introduce only one pair of in-
teger translational variables on each segment to reduce the number
of integer variables dramatically. For instance, the number of in-
teger variables in the optimization of the airport model (Fig. 3) is
reduced from 366 to 64.

5.2 Planarity Optimization

Similar to the PQ perturbation algorithm in [Liu et al. 2006;
Zadravec et al. 2010], our planarity optimization is formulated as a
nonlinear constrained optimization problem and solved by the aug-
mented Lagrangian method.

Ef = wfairEfair + w2ndE2nd + wdistEdist
subject to: φ1

ij + φ2
ij + φ3

ij + φ4
ij = 2π;

(10)
where the objective functionEf includes two fairness terms, Efair
and E2nd, and a distance term Edist to keep the optimized mesh
close to the original mesh. They can be represented by:

Efair =
∑
i,j

(
‖δi,j,1‖2 + ‖δi,j,2‖2

)
E2nd =

∑
i,j

(
‖δi,j,1 − δ0i,j,1‖2 + ‖δi,j,2 − δ0i,j,2‖2

)
Edist =

∑
i,j ‖vi,j − v0i,j‖2

where vi,j and v0i,j denote the position of the optimized vertex and
the original vertex on the quad mesh. For the non-singular vertex
vi,j , δi,j,1 = vi+1,j+vi−1,j−2vi,j , δi,j,2 = vi,j+1+vi,j−1−2vi,j ,
and δ0i,j,1, δ

0
i,j,2 are the original values of δi,j,1 and δi,j,2 before

optimization. For the singular vertex, δ is the Laplacian operation
defined by its one ring neighborhood. The equality constraint en-
sures the sum of four internal angles, φ1

ij , ..., φ
4
ij , to be 2π for each

quad Qij in a mesh. This constraint enforces the optimized Qij to
be planar and convex.

6 Experimental Results and Comparisons

We demonstrate the effectiveness of our CDF optimization algo-
rithm through a variety of architectural models and complex 3D
models like the Stanford Bunny (see Figure 6 for models and the
user’s strokes), and the statistics and timings are reported in Ta-
ble 1. The quality of planarity is measured by two criterions: (a)
δ is the maximum angle difference in degrees between the sum of
four internal angles of a quad and 2π. δ is irrelevant to the size of
quads and is zero when all the quads are planar and convex. (b) η is
the maximum distance between diagonals of the quad face divided
by the mean length of diagonals of the quad mesh. η reflects how
much the glass panel should be bent and is more relevant to archi-
tectural applications. The approximation quality ζ of the generated

Figure 6: Models with the user-specified strokes overlaid in red.
Left: a tower. Top middle: a roof. Bottom middle: a snail-shell.
Top right: the Stanford Bunny. Bottom right: a Costa surface.
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Figure 7: PQ meshes of architectural models. Strokes are shown in
Figure 6. The top of the tower model is zoomed to show singularity
nodes of valence 3. The histogram measures the distribution of face
planarity.

PQ mesh to the original shape is measured by the average distance
from vertices on the PQ mesh to the original model normalized by
the diagonal length of the bounding box of the model.

Our algorithm can efficiently generate a smooth CDF for models
with a highly varied distribution of curvatures. Figure 3 illus-
trates a design result of an airport terminal model. Its roof is a
wavy surface with transition areas from the positive Gaussian cur-
vature to the negative Gaussian curvature. With the user-specified
strokes (shown in Figure 3b), our algorithm successfully generates
a smooth CDF, and the resulting PQ mesh is shown in Figure 3d. A
comparison of PQ meshes on the roof between the principal direc-
tion field and our CDF is illustrated in Figure 1. Due to the complex
distribution of curvatures, the principal direction field leads to an
uneven distribution of quads and more singularities (111 in total)
than our method (24 in total).

Figure 7 demonstrates more CDF design results for architectural
models. For these models, only simple strokes (shown in Figure 6)
are required to guide the generation of smooth CDFs. This further



Model #Tri/Quad δ η ζ tcdf tp tPQ
Airport 7214/2968 0.05 ◦ 0.023 0.002 2.9 12.5 10
Tower 6751/1447 0.05 ◦ 0.013 0.003 2.7 1.7 3.7
Costa 12202/2825 0.01 ◦ 0.012 0.005 4.8 34.2 11
Roof 10979/3536 0.05 ◦ 0.020 0.002 4.4 19 9
Shell 1653/635 0.01 ◦ 0.007 0.001 0.6 0.31 2
Bunny 28576/6920 0.08 ◦ 0.023 0.004 11.2 109.6 25

Table 1: Statistics and Timings. Timings are measured in seconds
on a 2.66GHz Intel Quad core CPU with 8GB of RAM (our imple-
mentation utilizes multicores to parallelize the computation). From
left to right: number of triangles and quads in the PQ mesh, face
planarity δ, normalized diagonal distance η, perturbation distance
ζ, the optimization time for a smooth CDF, the parametrization time
and planarization time. The parametrization time varies with the
number of triangles and singularities.

0◦ 0.01◦ 0◦ 0.08◦

ζ = 0.005

η = 0.012

ζ = 0.004

η = 0.023

δhist δhist

(a) (b)

Figure 8: (a) The resulting PQ mesh of the Costa model. Note that
our algorithm can generate a boundary conforming PQ mesh. (b)
The PQ mesh of the Stanford Bunny.

shows the efficiency of our CDF optimization algorithm. The PQ
mesh for the tower model contains vertices of valence 3, which cor-
responds to 1/4 singularities in the CDF. This cannot be modeled in
the representation vector based approach of [Zadravec et al. 2010].

Two more complicated results are shown in Figure 8. Figure 8a
illustrates a PQ mesh for the Costa model with genus 6. The re-
sult shows that our algorithm can handle models of high genus.
Moreover, by specifying strokes at the boundary and employing the
similar feature-line-alignment technique in [Bommes et al. 2009],
a boundary-conforming PQ mesh is obtained.

The Bunny model shown in Figure 6 is a challenging case for PQ
mesh generation since the curvature tensor estimation is not faithful
in some noisy regions. In this case, we relax the conjugacy condi-
tion by specifying εc = 0.1 in the inequality constraint (Eqn. 8),
and a pleasant PQ mesh is produced then (see Figure 8b).

Comparisons The superiority of the conjugate curve network
over other curve networks in quad planarity has been proven in
[Sauer 1970][Bobenko and Tsarev 2007, pp 10-11]. We briefly
review their conclusion: taking four points A = f(u0, v0), B =
f(u0 + ε, v0), C = f(u0, v0 + ε), D = f(u0 + ε, v0 + ε) from a
smooth surface f(u, v), the Euclidean distance d(D,πABC) from
D to the plane spanned by A,B,C is O(ε4) if and only if the u, v-
curvilinear net is a conjugate net. If the conjugacy does not hold,
d(D,πABC) is O(ε3).

Fig. 9 illustrates this superiority using a simple cylinder model with
radius 1. On the left of Fig. 9, we show the parameter lines of
a parametrization: fγ(u, v) = (cos v, sin v, u cos γ + v sin γ),
where γ is a parameter to control the angle between (u, v) param-

η = 0

δ = 0◦

η = 0.06

δ = 1.55◦

Figure 9: Two curve networks on a cylinder model. Left: a con-
jugate curve network. Right: a 4-RoSy curve network. Note the
quads from the conjugate curve network are exactly planar. Two
curve networks are generated by setting the parameter γ to be π/4.
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η = 0.017

δ = 10−14◦
η = 0

(a) (b) (c)
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δ = 0.736◦
η = 0.03

δ = 0.010◦
η = 0.002

5707 faces

δ = 0.106◦
ζ = 0.01

(d) (e) (f)

Figure 10: Comparison between CDF and 4-RoSy field in the PQ
mesh generation of a half ellipsoid. (a) a red stroke which specifies
the directional constraint. (b&c) Quad meshes generated from our
CDF design method before and after planarization. (d) A quad
mesh generated by the mixed-integer method [Bommes et al. 2009]
using a 4-RoSy field. (e) The planarization result of (d). (f) A dense
sampling of the quad mesh in (d).

eter lines. It characterizes a family of conjugate curve networks,
since the u parameter lines are ruling directions on the cylinder. In
this case, all the quads are exactly planar. On the right, the family
of parameter lines are defined by the parametrization gγ(u, v) =
(cos(u cos γ − v sin γ), sin(u cos γ − v sin γ), u cos γ + v sin γ).
They are orthogonal curve networks, i.e., 4-RoSy. However when
(γ mod π) 6= 0, all the quads from the orthogonal network are
not planar.

Since the initial quad mesh from a 4-RoSy field might be far from
planar, it can lead to a wrong local minimum in planarity optimiza-
tion. Figure 10 illustrates an experimental verification of this situa-
tion. In Figure 10a, on a half ellipsoid model, a drawn stroke away
from the principal curvature direction is specified to guide the gen-
eration of a PQ mesh. The meshes in Figure 10b and Figure 10d are
generated by our CDF method and a 4-RoSy field before planariza-
tion respectively. Although they have a similar number of faces,
the planarity measure of our CDF result is one-order smaller since
the orientation of quads are very different. We also compare the
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Figure 11: Comparison between PQ meshes from a 4-RoSy field
and a CDF. (a&b) Quad meshes generated from a 4-RoSy field be-
fore and after planarization. (c&d) Quad meshes generated from
our CDF before and after planarization.

qualities after planarity optimization. The mesh generated by our
method can be perturbed slightly to be exactly planar. In contrast, a
large distortion must be introduced to the quad mesh from 4-RoSy
to improve its planarity since its parameter lines are far from conju-
gate. This validates the necessity of our CDF design method in PQ
mesh generation. An alternative way to achieve similar planarity is
to subdivide the mesh densely (see Figure 10e). However, increas-
ing the number of faces is not desirable in architecture modeling,
since it increases the fabrication cost significantly.

Figure 11 illustrates a comparison between a CDF and a 4-RoSy
field in PQ mesh generation for the airport terminal model. Both
fields are generated from the same set of user-specified strokes as
shown in Figure 3. Since the conjugacy condition is not considered
in the 4-RoSy field, the generated 4-RoSy field is far from conjugate
although it contains fewer singularities (8 in total) than our CDF (24
in total). To achieve better planarity, the approximation quality is
sacrificed (the bumps on the top are flattened in Figure 11-left). In
contrast, the PQ mesh from our CDF design algorithm can approx-
imate the original model faithfully.

A further validation of the advantage of CDF in PQ meshing is il-
lustrated in Fig. 12. Comparing to the PQ mesh from CDF for the
bunny model in Fig. 8b, the PQ mesh from the 4-RoSy field con-
tains the distorted quads at the foot of the bunny model. The reason
is that the 4-RoSy field cannot satisfy the conjugacy condition espe-
cially at high curvature regions. Therefore, the quad faces on these
regions might be distorted with high probability after the planariza-
tion step (see Fig. 12b).

7 Discussion and Limitations

It is worth to mention that the usage of our method is not limited
to architecture geometry. By removing the restriction of conjugacy
and noticing that the conjugacy condition is not involved explicitly
or implicitly in the smoothness measure in Section 3.1, our CDF is
actually a general cross field where the angle does not need to be 90
degrees, so it may find applications in interactive modeling [Chen
et al. 2008] and quad mesh generation [Bommes et al. 2010] to
align the field with geometry. We believe that our formulation of
the smoothness measure and index computation opens a door in de-
signing a general cross field for more interesting computer graphics

ζ = 0.004

δ = 0.18◦

η = 0.022

δ = 49.8◦

η = 0.311

(a) (b)
Figure 12: Quad meshes for the Bunny model generated from a
4-RoSy field before (a) and after (b) planarization.

applications.

There are a few limitations of our method that should be addressed.
First, because of the nonlinearity of conjugacy, we cannot formu-
late the CDF optimization problem into a linear problem, which
is different from the linear approaches in RoSy field design, such
as the mixed integer approach in [Bommes et al. 2009] and the
trivial connection in [Crane et al. 2010]. A proper initialization
of the CDF must be provided for the success of the optimization.
Figure 13 shows that a random initialization would introduce more
singularities even after the CDF optimization. However, a random
initialization is not intended in practice and a proper initialization
has already been provided in Section 4.

The second limitation is the control of singularities. In our current
algorithm, we cannot define the singularities in the design phase and
a number of singularity editing operations is required for a complex
model. It would be interesting to investigate how to incorporate
the trivial connection approach into our CDF design for the user to
exactly control the locus of the singularities.

8 Conclusion and Future Work

By introducing a novel signed-permutation-based representation of
a smoothness measure for a CDF, we develop a general CDF de-
sign scheme in this paper. Since the vector association is treated
as a permutation operation in this representation, arbitrary types of
vector associations can be modeled to allow ±k/4 singularities in
a CDF. Furthermore the smoothness measure converts to a simple
summation of cosine functions that simplifies the computation and
results in an efficient direction field optimization algorithm.

In the future, we plan to integrate more functional properties into
our CDF design to reduce the panel cost by limiting the types
of quad faces [Fu et al. 2010] and to support the statics analysis
for practical architectural construction [Schiftner and Balzer 2010].
Other research directions include the extension of the CDF to pla-
nar hexagonal meshes which possess many useful offset properties
for fabrication [Pottmann et al. 2007b], and the study of discrete 3D
conjugate nets [Bobenko and Suris 2008] inside a bounded volume
for planar hexahedral mesh generation, where the planarity will im-
prove the accuracy of linear hexahedral finite elements significantly.
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