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Abstract

This paper presents a novel 2D shape deformation algo-
rithm based on nonlinear least squares optimization. The
algorithm aims to preserve two local shape properties:
Laplacian coordinates of the boundary curve and local area
of the shape interior, which are together represented in a
non-quadric energy function. An iterative Gauss-Newton
method is used to minimize this nonlinear energy function.
The result is an interactive shape deformation system that
can achieve physically plausible results that are hard to
achieve with previous linear least squares methods. Be-
sides preserving local shape properties, we also introduce
a scheme to preserve the global area of the shape which is
useful for deforming incompressible objects.

1. Introduction

2D shape deformation is a useful tool in various ap-
plications such as realtime live performance and enriching
graphical user interfaces. A good shape deformation system
aims to produce visually pleasing results with simple opera-
tions and provide interactive feedback to users. Many tech-
niques have been proposed to achieve a balance between
these two objectives.

Free form deformation (FFD) [15] and skeleton-based
methods [8] are widely used methods in commercial soft-
wares nowadays. They run fast, however, setting FFD do-
mains and skeleton configuration is tedious and it is labori-
ous to manipulate many control points in FFD. Physically-
based simulations [4] can achieve pleasing results but with
very low convergence.

Recently, Igarashi et al. [6] presents an interactive sys-
tem that allows the user to deform a 2D shape by manipu-
lating a few points. The shape is represented by a triangle
mesh and the user moves several vertices of the mesh as
constrained handles. The system then computes the posi-
tions of the remaining free vertices by minimizing the dis-
tortion of each triangle. To make the problem linear, they
present a two-step solution: the first step to compute the
rotation and the second step to compute the scale. As the

Figure 1. 2D Deformation of Cartoon man.
Left:the original shape; Middle and right: the
deformation results generated by our algo-
rithm.

authors admitted, the two-step algorithm is merely a prac-
tical approximation to achieve interactive performance and
may cause unplausible results in some cases due to its linear
nature.

In this paper we present a novel 2D shape deformation
algorithm based on nonlinear least squares optimization.
The algorithm aims to preserve two geometric properties
of 2D shapes: the Laplacian coordinates of the boundary
curve of the shape and local areas inside the shape, which
are together represented in a non-quadric energy function.
Instead of linearizing these nonlinear properties, we cast
the problem as an nonlinear least squares minimization and
solve it using an iterative method. The resulting system is
able to achieve physically plausible deformation results and
runs interactively. Besides preserving local shape proper-
ties, we also introduce a scheme to preserve the global area
of the shape which is useful for deforming incompressible
objects.

1.1. Related Work

There are a lot of literatures on shape deformation. Here
we only overview those most related works to 2D shape de-
formation.

The best known method for shape deformation may be



free form deformation (FFD) [10, 13, 15]. In FFD, a shape
is embedded in a a lattice, then is deformed by moving the
control points of the lattice. While FFD is simple and easy
to use, it does not take into account the natural way in which
shapes features are controlled. For example, many animals
have a skeleton. Skeleton-based deformation [8] provides
an intuitive approach to control deformation of animal-like
shapes. Skeleton-based algorithms define the position of a
point as a weighted linear combination of the initial state of
the point projected into several moving coordinate frames,
corresponding to the bones, which is usually specified man-
ually. Appropriate weight selection is a painful process.

To achieve physically plausible deformation, physically-
based simulations can be employed [2, 4, 7]. Among these
methods, the most popular one is the mass-spring models
[4]. However, it is too slow to converge and needs careful
tuning of various parameters. Finite-element methods [2]
can get more physically accurate simulation at the expense
of long solving time. Therefore, they are inappropriate for
interactive deformation applications. The ArtDefo system
[7] can run interactively, but is limited to small deforma-
tions.

Gradient domain techniques [6, 9, 17, 18, 19] cast de-
formation as an energy minimization problem. The en-
ergy function contains both the term for detail-preserving
constraint and the term for position constraint. The detail-
preserving constraint is nonlinear because it involves both
the differentials for local details and the local transforma-
tions which are position dependent. For computational effi-
ciency, existing techniques convert this nonlinear constraint
into a linear one by using various approximations includ-
ing local linearization of transformation [17], transforma-
tion interpolation from handles [9, 18, 19] and the decom-
position of rotation and scaling computation [6]. The price
for employing these least squares minimization schemes is
suboptimal deformation results.

Our algorithm can be viewed as a variant of recent non-
linear mesh deformation methods [1, 5, 16]. All these meth-
ods try to minimize a nonlinear energy function represent-
ing some kinds of local properties of the surface. Instead of
3D mesh, our algorithm only deal with 2D shapes. There-
fore the local properties we are trying to preserve are quite
different from those in 3D surface.

2. Overview

The input of our algorithm is a 2D shape (see Fig-
ure 2(a)), with the boundary represented as a simple closed
polygon. The algorithm automatically inserts a set of points
into the interior region of the shape and generates a graph
by connecting the vertices of the boundary polygon and the
inside points (see Figure 2(b)). Then the user can drag the
points to deform the shape.

The algorithm aims to preserving two local properties:
Laplacian coordinates of the boundary curve and the local
area inside the shape. The Laplacian coordinates represent
the local details of the shape boundary and are widely used
in 3D mesh deformation methods [9, 17, 19]. While pre-
serving Laplacian coordinates often produces good defor-
mation results 3D meshes, it is not enough to produce visu-
ally pleasing deformation results for 2D shapes (see Figure
3). Therefore, we also try to preserve the local areas inside
the shape. To achieve this goal, we build a graph and intro-
duce two new local properties for the graph: the relative po-
sition (mean value coordinates) of each interior point with
respect to its neighbors and the length of each edge. To con-
trol a deformation, the user inputs the deformed positions
for a subset of the graph points. The deformed positions of
all graph points are then obtained by minimizing an energy
function that consists of four parts: Laplacian coordinate
preserving, mean value coordinates preserving, edge length
preserving and position constraints (see details in Section
3).

Figure 2. 2D shape and its interior graph.

To build the interior graph, one can generate a triangu-
lated mesh inside the boundary polygon like [6]. We in-
stead adopt an easier approach similar to the volumetric
graph construction in [19]. It consists of four steps (see
Figure 6 in [19]). Firstly, construct an inner polygon for
the boundary polygon by offsetting each vertex a distance
in the direction opposite its normal; Secondly, embed the
two polygons in a lattice, remove lattice nodes outside the
inner polygon; Thirdly, build edge connections among the
two polygons and lattice nodes; Finally, simplify the graph
using edge collapse and smooth the graph.

Now we have a 2D graph (V,E), where V is the set of n
vertices in the graph, and E is the set of edges. V includes
two subsets: Vp, which contains m vertices of polygon, and
Vg, which contains (n−m) interior points. Similarly, The
edge set E can be divided into two sets: Ep, which contains
polygon edges, and Eg which represents the rest edges in
graph.

The remainder of this paper is organized as follows. The
following section explains the three local properties in de-
tail. In Section 4, we combine all the local properties to-



gether and present an iterative solver to compute the defor-
mation results efficiently. Section 5 describes how to pre-
serve the global area in our algorithm, which is useful for
deforming incompressible objects. Experimental results are
shown in Section 6, and the paper concludes with some dis-
cussion of future work in Section 7.

3. Local Properties Preserving

This section describes the three local properties: Lapla-
cian coordinates, mean-valued coordinates and edge length.
Laplacian coordinates represents the local details of the
boundary polygon. Mean-valued coordinates and edge
length are used to achieve local area preserving.

3.1. Curve Laplacian Coordinates

Curve Laplacian is defined for each point in Vp and it is
analogous to the Laplacian on 3D meshes. Specifically, the
curve Laplacian coordinate δi of point vi is computed as the
difference between vi and the average of its neighbors on
the curve:

δi = Lp(vi) = vi− (vi−1 + vi+1)/2,

where vi−1 and vi+1 are the adjacent points to vi on the
curve; Lp is called the Laplace operator of the curve.

To preserve the Laplacian coordinates during deforma-
tion, we try to minimize the following energy function:

∑
vi∈Vp

‖Lp(vi)−δi‖2,

which is equivalent to the matrix form:

‖LpVp−δ (Vp)‖2, (1)

where Vp is the point positions of the boundary polygon
and Lp is a m×m matrix, called Laplace matrix; δ is the
vector of Laplacian coordinates. Note that we view δ as a
general function of the point positions Vp instead of a linear
function of Vp like [17].

To make the description clear in the following, we ex-
pand Lp to a m×n matrix L by adding zero elements. Then
Equation (1) can be rewritten as:

‖LV−δ (V)‖2. (2)

3.2. Mean Value Coordinates

For each point vi in Vg, we want to maintain its relative
position with respect to its neighboring points during defor-
mation. To do this, we first compute its mean value coordi-
nates [3] in the polygon formed by its neighboring points:

wi, j =
tan(α j/2)+ tan(α j+1/2)

|vi− v j| ,

where α j is the angle formed by the vector v j − vi and
v j+1−vi. Normalizing each weight function wi, j by the sum
of all weight functions yields the mean value coordinates of
vi with respect to its neighboring points.

According to the the property of the mean value coordi-
nate, We have:

vi− ∑
(i, j)∈E

wi, j ∗ v j = 0, for vi ∈Vg,

which can also be represented as a matrix form:

MgVg = 0,

where Mg is a (n−m)× (n−m) matrix. Similar to Lp, Mg
can be expanded to a (n−m)×n matrix M by adding zero
elements.

To preserve the mean value coordinates during deforma-
tion, we minimize the following energy function:

‖MV‖2. (3)

3.3. Edge Lengths

Note that mean value coordinates are invariant to scal-
ing. Preserving mean value coordinates is not enough to
preserve the local areas inside the shape. Therefore, we fur-
ther try to preserve edge length during deformation.

We penalize the edge length changes for all edges in Eg
using the following energy:

∑
(i, j)∈Eg

‖(vi− v j)− e(vi,v j)‖2, (4)

where e(vi,v j) = l̃i, j
li, j

(vi − v j); li, j is the current length of

edge (i, j) and l̃i, j is the rest length before deformation.
Note that the energy associated with each edge is com-

puted in vector form such that the whole energy in Equation
(4) can be represented in a matrix form:

‖HV− e(V)‖2, (5)

where H is a |Eg|×n matrix.

4. Shape Deformation Using Nonlinear Least
Squares Optimization

4.1. Deformation Energy

To control a deformation, the user inputs the deformed
positions for a subset S of the graph points. This informa-
tion is used to compute the deformed positions of all graph



Figure 3. Deformation results with and with-
out local area preservation. Left: original
shape; Middle: deformation result which pre-
serves Laplacian coordinates only; Right:
deformation result which preserves both
Laplacian coordinates and local area.

points by minimizing the following energy which sums up
all energy terms:

‖LV−δ (V)‖2 +‖MV‖2 +‖HV− e(V)‖2 +‖CV−U‖2,
(6)

where ‖CV−U‖2 represents the position constraints spec-
ified by the user; C is a |S|× n matrix and U is a vector of
dimension |S| representing the target positions specified by
the user.

The above energy minimization problem can be refor-
mulated as the following:

min
V
‖AV−b(V)‖2 (7)

where:

A =




L
M
H
C


 ,b(V) =




δ (V)
0

e(V)
U


 .

Note that the matrix A is dependent only on the graph be-
fore deformation while b is dependent on the current point
positions V. This is a nonlinear least squares problem. Pre-
vious methods try to make this a linear least squares prob-
lem solvable either by removing the dependency of b on
V or by using a linear approximation for b. In the follow-
ing, we introduce an iterative Gauss-Newton method [11] to
solve this nonlinear problem directly.

4.2. Nonlinear Least Squares Optimization

The iterative Gauss-Newton method solve the problem
in the following way:

min
Vk+1

‖AVk+1−b(Vk)‖2, (8)

where Vk is the point positions solved from the k-th iteration
and Vk+1 is the point positions we want to solve at iteration
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Figure 4. Convergence of our iterative solver.
The red curve indicates energy.

k + 1. Since b(Vk) is known at the current iteration, Equa-
tion (8) can be solved through a linear least squares system:

Vk+1 = (AT A)−1AT b(Vk) = Gb(Vk). (9)

Let G = (AT A)−1AT . Since A is dependent only on the
graph before deformation, G can be precomputed before de-
formation and is fixed during deformation. Therefore, only
a back substitution is executed for each iteration. In this
way, the deformation algorithm is able to run interactively.

During each iteration, b is computed according to the
point positions Vk from last iteration. In other words, we
need to compute δ (Vk) and e(Vk).

e(Vk) is computed as follows:

e(vk
i ,v

k
j) =

l̃i, j

|vk
i − vk

j|
(vk

i − vk
j), for (i, j) ∈ Eg.

Computing the new Laplacian coordinates δ (Vk) is a lit-
tle bit complicated. Specifically, we compute a transform
matrix T k

i for each point vi ∈Vp:

δ (vk
i ) = T k

i δ (v0
i ),

where δ (v0
i ) is the curve Laplacian coordinate before defor-

mation.
By taking v0

i and vk
i as the rotation centers, the transform

matrix T k
i can be computed by minimizing the following

energy [14]:

∑
(i, j)∈Ep

‖T k
i (v0

j − v0
i )− (vk

j− vk
i )‖2

Taking the derivatives to all coefficients of T k
i to be zero,

we can get:

T k
i = ∑

(i, j)∈Ep

(vk
j−vk

i )(v
0
j−v0

i )
T ( ∑

(i, j)∈Ep

(v0
j − v0

i )(v
0
j − v0

i )
T )
−1



Note that (∑(i, j)∈Ep(v
0
j − v0

i )(v
0
j − v0

i )
T )−1 depends on

the original shape only. It can also be precomputed to ac-
celerate the algorithm.

5. Global Area Preserving

In this section, we introduce how to preserve the global
area of the shape to simulate incompressible 2D object. As
you will see in the following, global area preserving is han-
dled as a hard constraint of the nonlinear least squares prob-
lem (Equation (7)) and the iterative solver described above
can be adapted to solve this constrained problem efficiently.

The area of a polygon is computed using the coordinates
of the polygon points: g(Vp) = 1

2 ∑m
i=0(xiyi+1 − xi+1yi),

where (xi,yi) is the coordinate of point vi. Then the global
area constraint can be formulated as following:

g(V)− g̃ = 0

where g̃ is the area of the original shape before deformation.
Since the global area constraint is a nonlinear function of

the coordinates of the polygon points, it can not be written
into a matrix form. Thus we treat this constraint as a hard
constraint and extend Equation (7) to:

min
V
‖AV−b(V)‖2, subject to g(V)− g̃ = 0 (10)

This constrained non-linear least squares problem can
also be solved by extending the iterative solver (Equation
(8)) to the following formula:

min
Vk+1

‖AVk+1−b(Vk)‖2, subject to g(Vk+1)− g̃ = 0 (11)

Let
h = Vk+1−Vk,

AVk+1−b(Vk) can be reformulated as a new function l(h)
which only depends on h:

l(h) = AVk+1−b(Vk)
= A(Vk +h)−b(Vk)
= Ah+AVk−b(Vk). (12)

The problem (11) is converted to:

min
h

1
2
‖l(h)‖2, subject to g(Vk +h)− g̃ = 0 (13)

By locally linearizing

g(Vk +h)≈ g(Vk)+Jg(Vk)h,

and applying Lagrange multipliers [12] with Newton’s
method, the solution to (13) is:

h = −(AT A)−1(AT S+JT
g λ )

λ = −(Jg(AT A)−1JT
g )−1(t−Jg(AT A)−1AT S)

where Jg is the Jacobian of g, S = b(Vk)−AVk, and t =
g̃−g(Vk).

 area = 1.0 area = 1.0 area = 0.8629

area = 1.0 area = 0.6996area = 1.0

Figure 5. Deformation with (middle) global
area constraint and without (right) global
area constraint. The original 2D shapes are
on the left.

6. Experimental Results

We have implemented the described deformation algo-
rithm on a 3.2GHz Pentium 4 workstation with 1GB mem-
ory. Table 1 shows the data statistics and timings for several
models presented in this paper. The solving time means the
per-iteration cost. The number of the iterations need for
convergence of the solver varies significantly depending on
many factors such as the shape itself and the magnitude of
the deformation. For models used in this paper, the average
number is 10. Therefore, the performance of our deforma-
tion system is comparable to previous linear methods [6].
As shown in the accompanying video, our system runs in
real-time.

In Figure 4, we show an example to demonstrate the con-
vergence of our iterative solver. The curve is generated by
setting the constraint points to the target position and let the
solver iterate until convergence. In this example, the solver
converges after about 10 iterations. Consider the solving
time of our solver(see Table 1), it is very fast.

Figure 3 compares the deformation results with and
without local area preserving. If we only preserve Lapla-
cian coordinate, the deformation result looks unnatural with
obvious self-intersection. By adding graph mean-value co-
ordinates and edge length constraints to control the local
area inside the 2D shape, the result looks much more pleas-
ing.

For most examples presented in this paper, our results are
as good as those results generated by the linear method [6].



In some case, our nonlinear least squares optimization leads
to more physically plausible result than [6] does. Figure 6
shows the deforming results of a stick.

We have tested our deformation algorithm on various
kinds of 2D shapes. Figure 7 shows the deformation of a
flower. the stem of the flower is deformed naturally, and
the shape of the flower is preserved well. Our system can
also be used to deform cartoon character (Figure 8). Figure
8 shows that large scale deformation of the legs of the car-
toon man. Figure 9 illustrates the deformation result of a
horse. The details at the tail and back of the horse are well
preserved even in large deformation.

Figure 5 demonstrates the effect of global area con-
straint. The rest shape is compressed to show the effect.
The deformation result with the global area constraint is
fatter than the result without global area constraint. This
is useful to simulate incompressible objects.

2D Shape flower horse man
# Boundary Vertices 114 247 143
# Interior Vertices 256 189 163
Precomputing time 22ms 22.7ms 18.3ms

Solving time 0.589ms 0.593ms 0.470ms

Table 1. Statistics and timing.

7. Conclusion and Future Work

We have described a real-time 2D shape deformation al-
gorithm based on nonlinear least squares optimization. Our
algorithm is able to preserve both local and global proper-
ties of the input shape. The nonlinear nature of our algo-
rithm makes it outperforms previous linear methods.

For future work, we are planning to add more useful con-
straints, such as skeleton constraint, into the deformation
energy. Our algorithm can also be applied to 2D cartoon
animation retargeting by defining a set of corresponding
points between 2D shapes.
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(a) rest shape (b) our algorithm (c) [T. Igarashi et al. 2005]

Figure 6. Comparison between our algorithm and Igarashi et al.

Figure 7. Deformation of a flower (left to right). Left is the rest shape.

Figure 8. Deformation of a cartoon character (left to right). Left is the rest shape.

Figure 9. Deformation of a horse. Left is the rest shape. Right is the deformation result.


