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ViDX: Visual Diagnostics of Assembly Line Performance
in Smart Factories

Category: Application
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Fig. 1. A screenshot of the ViDX system for the historical analysis and real-time tracking of assembly line performance. The historical
data analysis panel consists of an extended Marey’s graph (A), for trouble-shooting inefficiencies and faults occurring on the assembly
lines. It is combined with a set of interconnected views including a calendar based visualization (B) and a timeline (C) for multi-scale
temporal exploration. Auxiliary views include small multiples of histograms (D) showing the distribution of the cycle time on each station
with a quantile range selector, and a station map denoting the assembly line schema (E). The real-time monitoring panel includes a
radial graph (F) and an explorable 3D station model visualization (G). (H) shows the color codes of the faults and their total occurrences.

Abstract— Visual analytics plays a key role in the era of connected industry (or industry 4.0, industrial internet) as modern machines
and production (assembly) lines can generate large amount of data, and effective visual exploration techniques are needed for
troubleshooting, process optimization and decision making. However, developing effective visual analytics solutions for this application
domain is a challenging task due to the sheer volume and the complexity of the data generated in the sophisticated manufacturing
processes. In this paper, we report the design and implementation of a comprehensive visual analytics system, ViDX. It supports
both real-time tracking of the assembly line performance, and exploration of historical data to identify the inefficiencies, locate the
abnormalities, and form hypotheses about their causes and effects in assembly lines. The system is designed based on a set
of requirements gathered through discussions with the managers and operators from manufacturing sites. It features interlinked
views displaying data at different level-of-details. In particular, we apply and extend Marey’s graph by introducing a time-aware
outlier-preserving visual aggregation technique to support effective troubleshooting in manufacturing processes. We also introduce
two novel interaction techniques, namely quantiles brush and samples brush, for the users to interactively steer the outlier detection
algorithms. We evaluate the system with example use cases and an in-depth user interview, both conducted together with the managers
and operators from manufacturing plants. The result demonstrates its effectiveness and usability, and reports a successful pilot
application of visual analytics for manufacturing in smart factories.

Index Terms—Temporal Data, Marey’s Graph, Visual Analytics, Manufacturing, Smart Factory, Connected Industry, Industry 4.0
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1 INTRODUCTION

Connected industry (or industry 4.0, industrial internet) is an factories, in comparison to traditional manufacturing environments,
increasingly important topic of worldwide significance [3,10,11,17].  are equipped with machines that are highly digitalized and connected.
It facilitates the vision and execution of “Smart Factories”. The smart ~ Every status and condition change, or occurrence of abnormal events
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can be continuously recorded and stored. The investigation of such
data has the potential to bring important insights to the managers and
operators to perform troubleshooting and further optimize the processes
to reduce operation cost and increase profit. Recently, a number
of successful use cases have already been reported, ranging from
pharmaceutical to mine industries [4], where, for example, statistical
methods have been applied to track the production process and analyze
factors related to the yield. However, to the best of our knowledge,
few examples have been reported to apply visual analytics to the
investigation of manufacturing data, despite that it has been identified
as an important component in connected industry, where it can play
an crucial role in making sense of the increasingly complex and large
data collected [27]. We believe that it would be very valuable, for both
the industry stakeholders, and the visualization research community,
to explore the possibility of applying visual analytics in this domain.

We work closely with managers and operators in manufacturing
sites which produce automotive parts, to develop a visual analytics
system to support real-time tracking of assembly line performance, and
historical data analysis. The data include both real-time and historical
records of the status and operational information from the shop floor,
where the assembly lines are located.

Assembly lines on the shop floor consist of sequences of work
stations (machines). Each station corresponds to a stage of production
where specific procedures are carried out on the products. The products
(automotive parts in the study) are moved through the stations, tested,
and shipped out in the end (to car manufacturers). During the operation
of the assembly line, data are recorded about when the product is moved
from one machine to the next, and also about any fault that occurred
during the process. This kind of setting is becoming increasingly
common in the modern assembly lines where almost every operation
is trackable. The collected manufacturing process data is valuable
for monitoring real-time assembly line performance to facilitate rapid
response of operators and managers. Furthermore, by analyzing
historical records, they can gain insight about when, where, and how the
production efficiency decreases, and identify if there is any systematic
problem with the assembly lines and the manufacturing environment.

‘We summarize the main contributions of this work as follows:

¢ We formulate the design requirements for interactive visual di-
agnostics of assembly line performance, together with the tar-
get users, i.e., operators and managers from manufacturing sites
[22,28].

* We design and implement a prototype system based on the re-
quirements. We perform case studies and conduct user interviews
to assess its effectiveness and usability.

* We apply and extend Marey’s graph by introducing a novel time-
aware outlier-preserving visual aggregation technique, to facilitate
the identification of abnormalities and support troubleshooting in
a large number of manufacturing process data.

* We propose two novel interaction techniques for user steerable
outlier detection and aggregation of manufacturing processes
data in the extended Marey’s graph. One method is based on
brushing quantiles and the other is built on a label propagation
algorithm. We believe the methods are also generally applicable
to the analysis of multivariate data in other domains.

The paper is organized as follows. First, related work is discussed in
Section 2. The background and the design requirements are introduced
in Section 3. The design of the extended Marey’s graph is presented
in Section 4 and the system is described in Section 5. In Section 6 we
describe the implementation. In Section 7 we apply our approach to
real-world data. We present discussion in Section 8 and conclude in
Section 9.

2 RELATED WORK
2.1 Manufacturing Data Visualization

Today’s manufacturing industry has started using big data analytics to
support its research and operational activities as discussed in a recent
report [4]. With the launch of connected industry and industry 4.0
programs in the private and public domains [3, 10, 11, 17], it could only
be anticipated that the amount and the complexity of data collected in

the industry will continue to grow in the future. Visual analytics, as an
important component for gaining insight from large and complex data,
can thus play a crucial role in this application domain [27].

So far only a few visual analytics solutions target at the data analysis
tasks in manufacturing scenarios. Matkovi¢ et al. [20] visualize sensor
measurements for process monitoring. Jo et al. [16] extend the basic
Gantt chart for the exploration of large schedules. They introduce novel
interactions and algorithms to improve its scalability, explorability, and
reschedulability. Worner and Ertl [34] propose a novel visual analytic
system for simulated manufacturing processes.

These studies visualize the data related to the planning and simula-
tion stages in manufacturing. In this work, we describe the design of a
visual analytic system for manufacturing process data collected during
the operation of the assembly lines in modern factories. The analytic
tasks, therefore, are fundamentally different from those for planning
and simulation purposes as described above.

2.2 Temporal Data Visualization

Time oriented data visualization has been extensively studied in the past
years. Temporal dimension can be found in many applications [29]
There are several surveys reporting the state of art of temporal data
visualization techniques. Aigner et al. [1,2] categorize the visualization
techniques based on the nature of the temporal dimension, i.e. whether
it is cyclic, linear, or branching, and whether it is discrete time
points or time intervals. Bach et al. [5] review a range of techniques
and categorize them through a new perspective, by describing each
technique as series of operations performed on a conceptual space-time
cube, including extraction, flattening, filling, geometry transformation
and content transformation.

Among the vast amount of temporal data visualization techniques,
those visualizing event sequences are the most relevant to our study. In
particular, the event sequence visualization techniques can be classified
into two categories: the first category visualizes sequences with
variant orderings and occurrences of events, and the second category
visualizes sequences containing a set of prescheduled events. For
the first category, examples include LifeLines [26,31] for visualizing
patient medical records, Sankey diagram based visualizations for the
analysis of electronic health records [12,21,25,33] and website visiting
patterns [35], and most recently, matrix based visualizations [36], also
for the analysis of website visiting patterns. Recently, a few interactive
visualization systems have also been proposed for selecting a subset of
the event sequences for focused study [13, 18]. For the second category,
examples include Marey’s travel graph [30], which was first introduced
in the 1880s for visualizing train schedules. Since then it has been used
extensively to study public transportation schedules [8, 15, 19]. Inspired
by the design, Palolm et al. [24] propose a visual analytic system
for exploring transportation schedules. They apply kernel density
estimation on the graph to improve the scalability of the visualization.

In this paper, we extend Marey’s graph with a time-aware outlier-
preserving visual aggregation technique, to support effective identifica-
tion of abnormalities and inefficiencies in the manufacturing processes
and facilitate troubleshooting. Novel interaction techniques are also in-
troduced, with which the users can interactively identify the abnormali-
ties/outliers by specifying sample normal records or brushing quantiles.

3 DATA ABSTRACTION AND REQUIREMENT ANALYSIS
3.1 Data Abstraction

A typical assembly line in a manufacturing environment consists of a
set of work stations. The parts are moved from one station to another
to be processed and assembled to form the final product. In recent
years, there has been a widespread move to adopt general-purpose
computing devices to control and monitor the industry processes. Pro-
grammable Logic Controllers (PLCs), for example, are widely deployed
to control the machinery on the assembly lines for manufacturing
automation [14]. The PLCs on the assembly line send the status infor-
mation of the parts to a central database when they arrive at each station.
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Fig. 2. The schematic view of an assembly line as a DAG (directed acyclic
graph). The parts are moved among the stations following predefined
paths. At stations s; and s; two different types of parts enter different sub-
processes. At stations s¢ the two types of parts are assembled. Station
s3 and s perform the same procedures in parallel on the incoming parts.
Sometimes the part undergoes additional procedures on station s4 5.

Assembly lines can be considered as DAGs (directed acyclic
graphs), with nodes being the work stations, which we denote as
S = {si|i € [1,n]}, and the edges (s;,5;) € S x § in the graph indicate
that the operation on s; takes place immediately after s;. Fig. 2 shows
the schematic view of an assembly line as a DAG. In this assembly line,
the parts can choose either station s3 or s and undergo the same proce-
dure in parallel after finishing at s,. At station s, two parts from differ-
ent sub-processes are brought together and assembled into a single prod-
uct. On some occasions the part (or product) undergoes additional pro-
cedures on s4 5 before being moved onto the next station. All of these
structures can be modeled by describing the assembly lines as DAGs.

The PLCs record when each part p is moved onto a station s; and
starts being processed on it. We denote the time as #(p, s;). As a part
is being moved along a path P = (s, ...,s;) on the assembly line, a
sequence of timestamps is created, based on which we can calculate
the time it takes for the part to finish its procedures on one station and
be moved onto the next as dt(p,s;) =t(p,s;) —t(p,s;). This is referred
as the cycle time of the part on station s;. Besides the timestamps, the
PLCs also record fault codes if any error has occurred when a part is be-
ing processed on a station. The timestamps and fault codes together are
referred to as the trace or process data of the corresponding part. The
process data of all the parts composing a product can be combined. Pro-
cesses with comparatively longer cycle times on one or more stations,
or with faults, are referred to as outliers or abnormal processes.

To summarize, the invariants in the data collected from the man-
ufacturing processes are the predefined sequences of work stations and
procedures described by the DAGs, and the variants are the timings
when the parts (or product) reach a station (with the cycle times derived
from it) and the occurrences of faults. The target users have informed
us that these are the most important variables amongst many measure-
ments they have recorded. One underlying reason is that the assembly
lines employ pipelining to concurrently process multiple parts on differ-
ent stations. Due to the inherent sequential dependency in a pipelined
process, the delay on even a single station may stall and affect the
throughput of an entire assembly line, thus having impact on the ability
to meet targets of production, and eventually the profit. Therefore it is
very desirable for the operators and the managers to be able to access
real-time line performance and be notified of any potential problems.
Moreover, the data provide an extremely accurate and complete descrip-
tion of the assembly line operations. By analyzing the data, the users
can identify the abnormal processes, understand when, where, and why
the efficiency decreases, and perform troubleshooting, with the ultimate
goal of identifying opportunities to reduce losses and increase profit.

Therefore, our focus in this study is to design an informative
and intuitive visualization interface for both real-time monitoring of
assembly line performance and historical data analysis.

3.2 Design Process and Requirement Analysis

Based on discussions with the managers and operators, we formulate a
set of requirements to guide the design of the system.

Overall the project took about six months. In the beginning the col-
laborators gave us the access right to their production databases. They

pointed us to the data that they interest most, i.e., the cycle times and

the faults in the manufacturing processes, and presented us some initial

visual design ideas (e.g., the radial display in Fig. 5(a)). During the
following six months we had frequent (approx. biweekly) video confer-
ences and in-person meetings as well as email discussions, mostly about
the semantics of the data attributes when we started building the system,
and more about the feedback on the prototypes at a later stage. The
meetings usually involved a person at a managerial position responsible
for the “big data in industry 4.0” program in the plant and technical
staffs responsible for the design/maintenance of the databases. The de-
sign requirements are formulated iteratively throughout the six months.

For historical data analysis, we identify the following design require-
ments:

R1 Facilitate the detection of abnormal processes. The visual encod-
ing should highlight the abnormal process and show when and on
which stations the delay or faults has occurred. Detecting outliers
is the essential first step to more in-depth analysis.

R2 Facilitate the detection of inefficiencies and support trou-
bleshooting. The system should allow users to identify time
periods with low production efficiency, and to form hypothesis
about their causes.

R3 Engage users to detect outlier processes interactively. Many au-
tomatic outlier detection algorithms can be applied to support effi-
cient identification of abnormal processes [9]. Although it is possi-
ble to directly apply those algorithms and encode the end results in
the visualization, we believe that it would be extremely beneficial
to engage the users with domain knowledge and experience in
operating the assembly lines in this process. To this end, we should
provide interactive outlier detection functionalities that are easy to
use and do not require the users to understand the technical details.

R4 Support predictive analysis by associating the abnormal
processes and inefficiencies with the surrounding context of
assembly line operation. The occurrences of the delays and faults
may have certain causes and effects. The causal relations identified
can provide insights for building predictive models. Based on
the predictions, the operators and managers can take preventive
measures to reduce losses.

For tracking real-time assembly line performance, we identify the
following design requirements:

R5 Highlight abnormalities in real-time data. Similar as in historical
data analysis, abnormalities such as delays and faults should be
highlighted such that the operators and managers can respond
immediately and prevent losses.

R6 Associate data with the physical context; visually indicate
problematic components in 3D models. Besides showing the
abstract status information, it is also important for the users to
be able to quickly locate the corresponding stations in physical
environments. Since the fault codes are related to specific
components in the stations, we can highlight those components
in 3D model to support troubleshooting.

Besides the requirements described above, the following items are
also equally important:

R7 Support smooth, interactive exploration of large amount of
process data. In manufacturing industry, it is typical that
thousands of products are made every day and millions of products
are made every year on a single assembly line. To support
interactive exploratory analysis of the large dataset, the system
should be scalable, both visually and algorithmically.

R8 Use familiar visual metaphors and respect users’ mental models
about assembly line operation. Since few of our target users
have experience with advanced visual analytics applications, it
is particularly important to keep the visual designs intuitive and
easy to understand. Therefore, we make careful design choices
considering these aspects.

4 EXTENDED MAREY’S GRAPH

In this section, we present the main visual component in the system,
the extended Marey’s graph, for historical data analysis. Because a
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Fig. 3. Marey’s graph [30] and the relevant visual patterns when applied to the manufacturing process data. It uses the path (s1,s2,53(s5), 55,56, 59,510)
in the DAG in Fig. 2 for illustration. (a) the original Marey’s graph shows the bus/train schedules; (b) Marey’s graph showing when a product starts
being processed on each work station on an assembly line, the visual pattern shows that no abnormal delay has occurred and the assembly line
works smoothly; (c) the assembly line is completely stopped during a time interval, which can be caused by faults or prescheduled maintenance; (d)

the assembly line is partially stopped to handle unprocessed products.

direct application of the Marey’s graph would result in visual clutter,
affecting the visibility of the outliers, we introduce a time-aware, outlier-
preserving visual aggregation technique to enhance it. To support this
technique, we include computational outlier detection methods in the
system, and design interactions for the users to steer those algorithms.
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Marey’s graph is a traditional method for depicting bus or train sched-
ules [30]. It employs a parallel layout of time axes. Each time axis
corresponds to a train or bus stop. Polylines connecting the time points
on the axes show when the buses/trains are expected to arrive at a stop
(Fig. 3 (a)) based on the schedule.

This visual encoding can be directly applied to manufacturing pro-
cesses data if we consider each work station on the assembly line as a
bus/train stop, and the time when the parts are moved onto each work
station as the time in bus/train schedules. The polylines would trace
the complete history of a product on the production lines, and the angle
of the line segments between the axes would indicate its cycle time on
each station.

Similar as in parallel coordinate plots (PCPs), we have to decide on
a linear ordering of the axes (stations) before drawing the polylines in
Marey’s graph. The ordering we use is a topological sort of the stations
derived from the DAG. Manual adjustments are made to reduce the
total lengths of the polylines. As illustrated in Fig. 1 (A), subprocesses
({070, 080, ... , 170] and [010, ... , 170]) and parallel processes
([105, 115, 120] and [105, 110, 120]) are overlaid on the same graph.
This is helpful for tracing the complete history of a product which
consists of multiple parts. However it might introduce undesirable line
overlaps and intersections. To solve this problem, we include filtering
interactions for the users to focus on particular paths on the DAG.

Marey’s graph allows us to use the familiar metaphor of trans-
portation schedules to explain the visual encoding (R8). It shows
multivariate information that allows the detection of when and on
which station the delay occurs (R1). More importantly, a set of
recurring visual patterns emerge from the visualization, based on which
the operators can form hypothesis of the causes of the inefficiency
(R2). Here we summarize the visual patterns for the users to quickly
read off some high-level semantic information from the visualization.

It should be noted that although both Marey’s graph and PCPs use
parallel layout of axes and polylines as the primary visual primitives to
display data, they are fundamentally different on which visual patterns
bear semantic meanings.

In the Marey’s graph, the users can identify out-of-order processes,
as visually indicated by line segments crossing each other between
the time axes, and abnormal delays, indicated by line segments that
stretch much longer than the others between two time axes.

Visual patterns can also be formed collectively by a number of
visual elements. Their are listed as below. Fig. 3 illustrates the different

Visual Encoding

types of visual patterns. It uses the path (s1,s2,53(s%5),55,56,59,510)

in the DAG in Fig. 2 for illustration.

- Streak of efficient processes. In Fig. 3 (b), the line segments between
the axes run parallel to each other and have equal-sized displacement.
This visual pattern indicates a rhythmic and smooth processing of
the products on the assembly line where no delays or interruption of
operations occur.

- Halt of the entire assembly line. In Fig. 3 (c), each process has
experienced some delay around a certain time as indicated by the
lengths and the slopes of the line segments. What actually happens is
that the entire assembly line halts, and no part is being moved from
one station to another. This can be caused by scheduled maintenance,
breaks, or other unexpected factors.

- Partial halt of the assembly line to wait for continuing tasks. In
Fig. 3 (d), station s and s, stopped processing to wait for s3 finishing
handling the parts whose processing have been delayed. These type
of events are also sources of inefficiency.

Occurrences of faults are displayed as color coded circles on the
time axes of the corresponding stations. The overlay of information
allows the operators and managers to quickly locate faults (R1) and
identify the effect of the fault occurrences on the operation of the
assembly line (R4). Besides that, we redundantly code the cycle times
in Marey’s graph with a green-yellow-red color scale.

411

We have considered several alternative visual encodings before finally
deciding on using the Marey’s graph. Gantt chart, which is often used
for visualizing schedules, including bus/train schedules, is one possible
way to display the manufacturing process data. However, it is difficult
to compare the cycle times of different processes, as they start at
different times on the Gantt chart. Although interactively aligning the
processes at their starting times on each station may help [16,31], only
the cycle times on one station can be compared at a time. Moreover,
the temporal context is lost. In Marey’s graph, the length and angle
of the line segments are strong visual cues for the comparison of cycle
times even without alignment of the starting time. The design invokes
the Gestalt rule of similarity: line segments with similar slopes are per-
ceived as a group by the reader [32] and the outliers will stand out (R1).
Sankey diagram [33] and MatrixWave [36] are other possible ways
to visualize event sequence data, although they emphasize the variation
of the relative ordering of the events (which is fixed in manufacturing
schedules) rather than the timings and the cycle times [16].

Alternative Visual Designs

4.1.2 Time-Aware Outlier-Preserving Visual Aggregation

While a direct application of Marey’s graph could reveal many
interesting visual patterns, it suffers from severe visual clutter with the
overplotting of lines even with a moderate amount of data. The outliers
can be obscured in the display. Kernel density estimation (KDE) [24]
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is one possible approach to address the overplotting issue. Instead of
drawing individual lines, the method estimates the density of the lines
and draws a heat map of it. However, it can blur out the abnormalities

(or outliers), as they usually reside in low density regions of the display.

In this study, we introduce a method to reduce visual clutter while
highlighting the outliers, inspired by an approach originally proposed
by Novotny and Hauser to reduce the visual clutter in PCPs [23].

Fig. 4 illustrates the method. First, the processes are classified as
normal ones and outliers. Then the normal processes are aggregated
based on their temporal proximity, and each aggregated group is
displayed as a thick band instead of individual polylines. The outliers
are overlaid on top of the aggregated normal processes, displayed as
individual polylines.

The aggregation of the normal processes is implemented with a
greedy algorithm. It scans the processes sorted by their starting time
on the assembly line. For each process scanned, it will decide whether
to merge it into the current group or create a new one. If the process
scanned is temporally close to the last process in the current group
(i.e., the difference of their starting times at the first station is smaller
than a threshold), it will be merged into the group, otherwise a new
one is created. The threshold for merging the processes is determined
based on the average time it takes for a new product to enter the
assembly line. The aggregated processes are rendered as thick bands
composed of trapezoids connecting adjacent time axes. The vertices
of the trapezoids are placed at the minimum and maximum timestamps
of the aggregated processes.

In this way, we are able to visualize a larger number of process
and still highlight the anomalies. The aggregated processes show the
surrounding context for these abnormal processes for troubleshooting
(R4). Note that the visual patterns we identified in the last section are
still visible as the related abnormal processes are displayed individually
and not hidden from the viewers.

temporal gap too large,
start a new group.
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Fig. 4. Time-aware outlier-preserving visual aggregation: @ the outliers
with faults or abnormal delays are identified; @ the normal processes in
close temporal proximity to each other are aggregated and represented
as thick bands instead of individual polylines.

However, one problem remains: which processes should be regarded
as outliers and which should be considered as normal?

4.1.3 Interactive Identification of Outliers

We introduce two interactive techniques for identifying abnormal
processes. We engage user input in ways that allow them to flexibly
incorporate their experience with assembly line operation (R3). Both
methods detect outlier processes based on their cycle times on the
work stations.

Quantiles Brush Quantiles are descriptive statistics of a variable
which splits a set of observations into equally sized bins. The p-quantile
of a variable given a set of n samples is a value g(p), for which there
are at least np samples smaller than or equal to it and at least n(1 — p)
samples larger than or equal to it. It is a generalization of the quartiles
(q(1/4),4q(1/2),4(3/4)) that appear in a box plot. Frequently, quantiles
(mostly quartiles) are integrated in visualizations (e.g., as box plots)
to give an succinct summary of the distribution of a single variable.

We introduce a brushing technique for the users to specify outliers
among the processes based on quantiles. The user can select a pair

of values (pg, p1) (po < p1) from the range [0, 1]. The corresponding
quantiles (¢(po),q(p1)) for the cycle times on each station will then
be calculated. Processes with cycle times lying outside the range
[9(po),q(p1)] on any stations are identified as outliers. The users can
also fine tune the range for individual stations.

Fig. 1 (D) shows the quantile range selector implemented in the
prototype, together with small multiples of histograms showing the
distribution of the cycle times on each station. Outlier processes are
displayed as individual polylines in the aggregated graph, and the
graph interactively updates to show a new set of outliers detected.
The quantile-based brushing widget provides a simple interface for
specifying statistically meaningful parameters as the lower and upper
bounds of normal cycle times.

Samples Brush We also introduce a sample-based approach to
engage user input for the identification of abnormal processes. In this
approach, the users label a set of normal processes, based on which
the system can detect the outliers in the remaining data. We integrate
the label propagation algorithm [37] for this purpose. This method
can infer the class of a large number of data points even with a few
labeled ones, with the prior assumption that data belonging to the same
class (normal processes in this case) form densely populated regions in
the high dimensional space. We find it suitable for this usage scenario,
as it requires a minimum amount of user input.

Label propagation is a graph-based semi-supervised learning algo-
rithm. It works by first constructing a neighborhood graph (e.g., k-
nearest neighbor graph) containing both the labeled and unlabeled data
points, then iteratively propagating the labels along the graph edges,
starting from the labeled points. The iteration stops when the labels
of the data points no longer change. The algorithm can be expressed
formally as:

Propagate labels:L}, = AL\"! (1)
Normalize rows in Ly 2)
Reset originally labeled datain Ly  (3)

Where A is the adjacency matrix of the neighborhood graph and
Lyx codes the labels of the data points (please refer to [37] for more
details). The matrix multiplication can be parallelized on modern
GPUs to support interactive performance [6].

We apply the method to identify abnormal processes based on the
samples specified by the users (Fig. 9(@ and Q))). First, we construct
a k-nn graph of the processes, based on their cycle times on the stations,
using a Euclidean distance metric. Additionally, we set a threshold
on the maximum neighborhood distances in the k-nn graph to stop
labels from propagating to very dissimilar processes. Second, the
system propagates the normal label through the k-nn graph, gradually
covering the dense regions in the data set containing the sample normal
processes. The remaining unlabeled processes are outliers, which will
be displayed in the extended Marey’s graph as individual polylines
(Fig. 9 @), and the normal processes are aggregated (Fig. 9 Q).

The two approaches, including quantiles brush and samples brush,
both engage users in the computational extensive process of outlier
identification (R3).The system will give immediate visual feedback
about the results after the users change their inputs.

5 THE VIDX SYSTEM
5.1 Historical Data Analysis

To support the exploration and analysis of historical data, we have
designed a multi-scale hierarchical display, following the visual data
analysis mantra, “overview first, zoom and filter, then details-on-
demand” [29]. The display consists of a calendar based visualization,
a timeline, and the extended Marey’s graph, showing data at different
temporal scales with different level of details to support the exploration
of year long data (R7). Fig. 1 shows an overview of the system.
Calendar View The calendar based overview shows the summary
statistics including the number of productions and the faults occurred
on each day over a year (Fig. 1 (B)). We choose the calendar chart
as it aligns the weekdays and weekends for better cross comparison.



The user can select a continuous set of days on the calendar view. The
timeline (Fig. 1 (C)) will then update its range to the selected days, and
display the number of productions in a finer resolution. By brushing
the corresponding range on the timeline, the user can investigate the
manufacturing process information in more detail with the extended
Marey’s graph.

Other Contextual Views A schematic diagram (Fig. 1(E)) shows
the assembly line structure. The user can select stations on the diagram
to focus on a particular route related to a subprocess or one of the
parallel processes. A legend (Fig. 1(H)) shows the color codes of the
faults along with their total number of occurrences.

5.2 Real-Time Monitoring

For real-time monitoring, we combine a 2D radial display and a 3D
visualization of the station models (Fig. 1 (F)(G)).

Radial Graph The radial graph shows the statuses of all the cur-
rently on-going processes on the assembly line. It is the redesign of a vi-
sualization proposed by our target users for monitoring real-time assem-
bly line status. Any delay or faults currently occurring on the assembly
line can be observed from the graph (RS). Fig. 5 (a) is the original de-
sign. It consists of three layers of concentric rotating circles. The inner
circle completes one cycle when a product finishes its procedures on one
machine. The circle in the middle completes one cycle when the product
finishes its procedures on the assembly line. The outer circle completes
one cycle for an eight hour work shift. A slower rotation speed of the
inner circle means longer cycle time on a station. However, in general it
is not considered effective to use the speed of movement to encode data.
Furthermore, multiple circles would be needed to display all the prod-
ucts currently on the assembly line, which will be hard to keep track
of simultaneously. Hence, we propose a redesign of the visualization.

work station work stations

Fig. 5. (a) The original radial design proposed by the target users with
three concentric rotating wheels. (b) The redesign we proposed: @®
each concentric circle represents a product, the highlighted product
is currently being processed on station s,. light blue color represents
ongoing processes on a station; @ lengths of the bars represent how
long it took for a part to finish its process on a station; @ fault occurs.

Fig. 5 (b) shows the new radial visualization we propose. Each
of the concentric circles corresponds to a part that is currently being
processed on the line. The circles are divided into sectors, each
corresponding to a station. The stations are linearly arranged around the
circle based on their order within the assembly line. The lengths of the
dark blue arcs on the circles reflect the time it takes for the part to finish
on the corresponding stations. The light blue arc indicates that the
product is currently on the corresponding station, and its length reflect
how long the product has been on the station. The lengths increases
as time goes by. The faults are color coded, and the color mapping is
consistent with that of the extended Marey’s graph. The visualization
is updated through animated transition, showing real-time information.

Overall, the redesign applies a more principled usage of visual
variables to display the key attributes, while still reflecting the mental
model that the manufacturing process is cyclic (R8). Therefore it is
easier for the users to understand.

3D Station Visualization We further show the physical models of
the stations in the assembly line in an explorable 3D visualization (R6).

The exteriors of the stations are displayed transparently and components
within the stations associated with the occurrences of the faults are
highlighted. The operators can quickly locate the problematic areas by
viewing the 3D visualization (R1). Fig. 1 (G) shows the 3D view of a
station. The 2D radial display serves as a mini-map to support flexible
exploration of the 3D scene. The user can select any station for a close-
up view by clicking on the corresponding sector on the radial display.
The camera will move smoothly and the station at focus will fill the
view port, showing more details of it, and highlighting the component
causing the fault. This will help the users associate the abstract process
data with the physical context where actual operations are carried out.

5.3 User Interaction

The prototype features a rich set of user interactions for exploratory
data analysis.

Detail-on-demand The calendar view, the timeline, and the ex-
tended Marey’s graph form a hierarchical structure for the exploration
of temporal data at different levels of detail (R7). Users can also zoom
in and zoom out on the time scale of the extended Marey’s graph by
scrolling up and down the mouse wheel. Zooming in shows higher
temporal resolution and enables more precise reading of the time when
the parts are being processed on each station. Zooming out shows the
process data over a longer time span for overview. When the mouse
hovers over the visualizations, detailed information will be displayed
in tooltips: in the extended Marey’s graph it is the serial numbers of
the products and the fault codes; in the calendar view it is the statistics
of the day in focus.

Brushing and comparative analysis of cycle times Users can
select a set of records from the extended Marey’s graph by drawing
a line on the visualization and all the traces intersecting with it will be
selected. The cycle times of the selected set of records are compared
to the baseline distributions by overlaying histograms in the small
multiples. The baseline distributions are computed from the entire
dataset. A significant deviation from the baseline distribution on any
of the stations would indicate potential problems worth looking into.
Besides that, users can also use this method to verify the results of the
outlier detection algorithms.

Brushing and labeling A set of records selected by brushing can
be labeled by users as normal records, as input to the outlier detection
algorithm based on label propagation. Users can add or remove the
labels in a pop up menu opened by right click.

6 SYSTEM ARCHITECTURE & IMPLEMENTATION

Fig. 7 illustrates the architecture of the system. We use a relational
database to store the manufacturing process data, and indexed the
data by timestamps to support the efficient retrieval of data that falls
within a specified time interval. The data analysis module performs
three tasks: 1) compute summary statistics used in the visualizations in
advance and cache the results for faster response time, 2) detect outlier
processes, and 3) aggregate the normal processes based on temporal
proximity. The user can interact with the historical data visualizations
to specify quantile ranges or label normal processes to guide the outlier
detection algorithm.

Cache Summary o
statistics Historical
Ind data analysis
Database | "° Outlier =Q
detection Real-time mg
3D Station Data tracking
models aggregation
(L M A4

= Flow of information

Fig. 7. System architecture.
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Fig. 6. Detect inefficiencies and perform troubleshooting with the extended Marey’s graph: (a) After a scheduled break @, the assembly line stopped
and restarted for a few times before operating smoothly @; (b) The processing of several products were postponed on station 150 @ and when
those products continued, the other products had to wait on the assembly line @. In both figures, the outliers are detected and the records are

aggregated with quantiles brush set to the range [0, 0.97].

We implement a web application so the target users can access the
visualizations more easily on different types of devices and platforms
without any native software package installation. The front-end
visualization is implemented with a combination of HTMLS, CSS,
JavaScript, the JavaScript Data-Driven Documents (D3) library [7],
the Three.js | WebGL library (for 3D model rendering and faster
2D rendering), and several JavaScript framework & utility libraries
including Underscore.js 2, Backbone.js> and JQuery®.

The back-end of the prototypes runs on a Python web server built
with Flask > and Sqlite. We use the label propagation algorithm
implemented in scikit-learn ©, a Python machine learning library, for
interactive outlier detection. Statistics such as the daily number of pro-
ductions and faults, and the quantiles of the cycle time at each station
are precomputed and cached in advance. Our prototype works at an
interactive rate for real world manufacturing data with millions of prod-
ucts per year when running locally on a main stream desktop machine.

7 SYSTEM EVALUATION

We performed two assessments on the system. First, we conducted
case studies that illustrate the effectiveness of the system for visual
diagnostics of assembly line performance based on historical and real-
time data. Then, we conducted a pilot study and had in-depth interviews
with managers and operators from manufacturing sites. The data used in
the case studies and the user interviews are provided by our target users.

7.1 Case Studies

7.1.1 Detect Inefficiencies and Perform Troubleshooting with
Extended Marey’s Graph

Several patterns were identified by the users when they use the extended
Marey’s graph to explore the manufacturing process data.

Fig. 6 (a) shows that between 21:00 and 22:00, the entire assembly
line stopped for approximately one hour. This one hour was the
scheduled time for break as noted by the users. After the scheduled time
for break, the production line didn’t come up to speed immediately, and

Thttp://threejs.org/
Zhttp://underscorejs.org/
3http://backbonejs.org/
“http://jquery.com/
Shttp://flask.pocoo.org
Shttp://scikit-learn.org/stable

experienced several glitches. It stopped completely and restarted for a
few times before operating smoothly from 00:00. This kind of pattern
occurred frequently in the assembly line as observed by the users.

Fig. 6 (b) shows that around 00:00, the processing of many products
were postponed on station 150. When they continued to be processed
on station 150, the other products already on the line had to wait, and
could no longer proceed down the assembly line. It thus appeared that
part of the assembly line was stopped for five to ten minutes between
00:00 and 01:00. From both (a) and (b), and the data from other time
intervals, the users observed that station 150 had triggered many delays
and inefficiencies in the manufacturing process. It would be beneficial
for the operators and managers to investigate further about the root
causes, and come up with solutions to reduce the delays and improve
the overall throughput of the assembly line.

To highlight the abnormal records for troubleshooting the inefficien-
cies, in both of the two figures (a) and (b), a quantile range [0,0.97]
was selected. The quantile range defined the normal cycle times on
each station. Processes with longer than normal cycle time on any
of the stations were classified as outliers and displayed as individual
polylines. The others were aggregated and displayed as thick bands.

Overall, we find that the visualization has great potential to uncover
the inefficiencies in the manufacturing process and can point to
important opportunities about when, where and how the efficiency can
be improved.

7.1.2 Access the Effect of Faults

Since the occurrences of faults are plotted on the time axes in the
extended Marey’s graph, it is relatively easy for users to associate
them with the manufacturing records in close temporal proximity, and
assess the causes and effects of those faults. As illustrated in Fig. 8, the
users observed that when faults like “weld position 6 velocity upper
limit exceeded” occurred on station 050, the affected products were
no longer processed on the assembly line. After frequent occurrences
of this fault, the entire assembly line would stop for approximately
ten minutes before continuing operation.

The frequent sequential co-occurrences of the two events, i.e., the
fault and the pause of the entire assembly line, pointed to potential
causal relations. Predictive analysis thus became possible based on
such observations, as users could anticipate what would follow after
the occurrence of a particular fault. The managers and operators could
then take preventive measures to prevent losses based on the prediction.
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Fig. 8. Occurrences of faults and their effects on the operation of the
assembly line. The affected products are no longer processed and the
entire assembly line stopped for around ten minutes after frequent faults.

7.1.3

Fig. 9 shows how users interactively identified the outliers by
specifying a set of sample normal processes. The user brushed a set
of records on the unaggregated graph, and labeled those as normal
processes (Fig. 9 (a)). The system inferred and aggregated the normal
processes, and drew the outliers as individual polylines (Fig. 9 (b)). It
could be more clearly observed that the occurrence of a fault (colored
red, code unknown) had stopped a product from further proceeding
down on the assembly line.
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Fig. 9. Identify outliers by specifying sample normal processes: @ brush
a set of records; @ label them as normal; @ a group of normal processes
detected by the label propagation algorithm; @ outlier processes.

7.1.4 Explore Historical Data in Different Temporal Scales
The calendar based visualization shows that in the second half of the

year (Fig. 1 (B)) there were more work shifts scheduled on weekends.

The user selected a few days and more information about the rate of

production was displayed at a finer temporal resolution (Fig. 1 (C)).

During certain hours the throughput of the assembly line was lower
compared to others, and any abnormalities like this could be further
investigated in the extended Marey’s graph (Fig. 6).

7.1.5 Track Real-Time Performance with the Radial Graph

When the radial graph was demonstrated to the users, they immediately
identified that sometimes two or more products stayed at the same
station (Fig. 10) on the assembly line. They commented that the extra

products were not moved to the next station in a timely manner, which
would affect the performance of the assembly line.

Jan 22013
11:46:28

2 Product Number: 23

% Error Number: |

Multiple products on the same station
not moved timely. b

S

Fig. 10. Radial graph shows D multiple products stayed at the same
station and were not moved in a timely manner to the next station on the
assembly line, and @ a fault occurred on station 050.

7.2 User Interview

We interviewed the target users of the system to validate the design
decisions, and assessed the effectiveness and learnability of the system.

Before presenting the prototype to a larger group of users, we
conducted a pilot study with our target users from manufacturing sites.
Two users from two different manufacturing plants were involved in
the pilot study. The purpose was to identify potential usability issues
to refine the system accordingly, and to gather initial feedback on the
system features. We introduced the visual designs and the interactions
in the system. After that, they further explored the system on their own.
We encouraged them to think aloud during the process.

They were impressed by the system, commenting that the
radial design and the extended Marey’s graph were very intuitive
representations of the manufacturing process data, and were very
easy to understand. They liked the functionalities to interactively
explore year long data by selecting on the calendar visualizations and
brushing the timeline. One of the users also noted that the schematic
diagram (Fig. 1 (E)) shows very clearly the structure of the assembly
line. After we demonstrated the interactive functionalities for detecting
outlier processes and visualized them in the extended Marey’s graph,
he commented that these features are very helpful to identify the
abnormalities. They regarded the visual analytics functionalities as
a form of data mining to some extent (they were also collaborating
with a data mining team on this project). For the next step, they would
like to see it deployed in real manufacturing environments.

We also identified several usability issues throughout the pilot
study. For example, initially, the real-time tracking panel and historical
analysis panel were displayed simultaneously on a single screen, thus
the screen space assigned to the radial graph was very small. We later
added the options to maximize the radial graph, and eventually made
both panels full screen size with switches for changing between them.

After the pilot study, we further interviewed a larger group of users
consisting of 11 operators and managers from manufacturing sites,
to have detailed assessments of individual components in the system.
The users are familiar with basic visualization techniques such as bar
charts and line charts. We installed the server locally on one of the
machines in the plant and introduced the system. Then we conducted
a semi-structured interview guided by a set of questions. The questions
covered various aspects including the learnability of the visual designs
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and the interactive features, the informativeness and intuitiveness of
the system, and the improvements to be made.

For the overall system, the users commented that “it’s very effective
in the system’s ability to show real-time data and highlight abnormali-
ties”, and “it will be useful to see it in action in the active environment” .

They liked the extended Marey’s graph a lot, and one person com-
mented that more process related data can be encoded in the graph:

“Marey’s graph would be good to be able to further manipulate other
process data for the specific parts, or to link to additional process
information. ”

Between the two interactive outlier detection methods, the samples
brush is slightly better received by the users, probably because it can
be interpreted more intuitively compared to the quantile brush.

For the multi-scale temporal exploration features, they commented
that “it’s very intuitive to navigate between items in different time
frames”.

Many users commented that the 3D station visualization can be
further improved. One user suggested that we can add a top down
overview of the entire assembly line in the 3D visualization.

They also saw a lot of potential in the current prototype :

“It is interesting, I can see where more uses could continue to be
generated from this platform.” “This is a good interface for gaining
an intuitive picture of how the line is running. These same methods
could be applied to process parameters during the manufacture of parts
giving engineers the intuitive picture of process stability”

Overall, the results are encouraging. Although we are unable to
conduct a controlled user study due to the lack of comparable systems,
we plan to conduct long term studies, and record the users’ experience
with the system as the deployment of the system is under discussion.

8 DiscussION

Lessons Learned When reflecting on the design choices, we think
that familiarity of the visual metaphor and intuitiveness of the visual
encodings play crucial roles for the users to quickly familiarize them-
selves with the visualizations. Moreover, advanced analytic methods
incorporated in the system should be explained in an intuitive manner
to the users. For example, the label propagation algorithm can be ex-
plained as polylines with similar shapes to the specified examples are
considered as normal records, and the user can immediately understand
it in this way. Besides that, in the system, we decide to include both
the extended Marey’s graph and the radial graph to encode similar
information (i.e., cycle times and faults) for different purposes: one
for analyzing a large amount of historical data, and one for monitoring
real-time conditions. Such scenario arises in many application domains
with streaming data. In these scenarios, the visualizations need to be
tailored for different uses even for data with same attributes.

As we later reflect upon the design process, we consider that a
crucial step is identifying the variants and the invariants in the data as
described in Section 3. Usually the domain experts are quite familiar
with the invariants (i.e. the production process as described by the
DAG), and it is not necessarily helpful developing visualizations for
such information. To distinguish between the variants and invariants, it
is helpful to have a quick analysis of the data attributes or consult with
the domain experts first.

General Applicability Although many visualization and interactive
techniques presented in the system are tailored to the specific applica-
tion domain, we believe that some components can be easily adapted
and be applied to other use cases. For example, it is not difficult to
image that the two interactive outlier detection techniques, based on
brushing quantiles and the label propagation algorithm, can be easily
adapted for boarder application domains that use high dimensional data.
More importantly, we found that the manufacturing process data as
described in Section 3 is being collected in many assembly lines. The
prototype system can thus be applied to visualize and analyze data from
many manufacturing plants, not limited to the ones we are currently
working with.

Limitations There are several limitations of the current system. First,
although both outlier detection algorithms including brushing quantiles
and label propagation can return the results in real-time for the data

displayed in the extended Marey’s Graph, they cannot be easily scaled
to year long data which could contain millions of product records. Im-
proving the scalability of the two algorithms is very much desirable, as
the site managers would like to immediately know how many abnormal
records there are on each day in the calendar visualization when they
update the quantile ranges and specify sample normal records. Second,
the extended Marey’ graph can not effectively depict the data over
relatively longer time span in a display with limited width, as the traces
will all become vertical lines. This is the reason that we introduced
the calendar and the timeline for multi-scale temporal data browsing.
In the future, we would like to improve the visual encoding such that
it can show rich information about the delays and faults in long term
data. Third, the current system is fine-tuned to fit a screen with 1920
x 1080 resolution. However more adaptive layout mechanisms of the
visual components should be incorporated in the system such that the
users can access it from devices with different screens. Last but not
least, in the current prototype the subprocesses and parallel processes
are overlaid on the same graph, and this can introduce undesirable
visual clutter. This problem is alleviated to a certain extent by introduc-
ing user interactions for selecting and filtering the routes the products
take on the assembly line. If the complexity of the manufacturing
processes increase further, the current prototype needs to incorporate
more advanced filtering and aggregation functions for scalability.

Future Work There are several directions for future work. First,
as the deployment of the system in real production lines is in plan, it
becomes possible to study the long-term usage of the system. Methods
such as automated logging of user activities and observational study can
be applied, to gather usage data about how visualization is received in
real working environments. Second, we plan to improve the scalability
of the system as discussed in the limitations. Third, the occurrence of
individual outlier records are atomic events, based on which we can
define composite events. For example, the occurrence of a fault and
the delays following it together can be considered as a composite event.
We plan to further our investigation to develop techniques facilitating
the identification of such events, in order to support predictive analysis
on the data.

9 CONCLUSION

In this paper, we present a novel visual analytics solution targeted at
the application domain of big data analytics in manufacturing industry.
We propose a comprehensive system for the real-time tracking and
historical analysis of assembly line performance. It consists of multiple
linked views showing data at different levels of detail. In particular,
we present the application of the Marey’s graph in this domain and
extend it to improve its visual scalability. Moreover, we propose two
novel interactive techniques for user-steerable outlier detection, which
can be potentially applied to more general usage scenarios. The initial
feedback from the target users is very encouraging and the deployment
of the system in manufacturing sites is being planned. Last but not least,
the system is designed and developed for a pilot use case to demon-
strate the importance of visual analytics in the application domain of
connected industry (industry 4.0). To the best of our knowledge, there
is no prior visual analytics research addressing this application domain.
We believe that the successful showcase and deployment of the system
is a very promising starting point, and will open the door to many
challenging research problems.
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