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Abstract—Many cities and countries are now striving to create 

intelligent transportation systems that utilize the current 

abundance of multisource and multiform data related to the 

functionality and use of transportation infrastructure to better 

support human mobility, interests, and lifestyles. Such intelligent 

transportation systems aim to provide novel services that can 

enable transportation consumers and managers to be better 

informed and make safer and more efficient use of the 

infrastructure. However, the transportation domain is 

characterized by both complex data and complex problems, which 

calls for visual analytics approaches.  The science of visual 

analytics is continuing to develop principles, methods, and tools to 

enable synergistic work between humans and computers through 

interactive visual interfaces. Such interfaces support the unique 

capabilities of humans (such as the flexible application of prior 

knowledge and experiences, creative thinking, and insight) and 

couple these abilities with machines’ computational strengths, 

enabling the generation of new knowledge from large and 

complex data. To date, visualization and visual analytics has 

played a critical role in enabling domain experts to synthesize, 

explore and understand their data.  In this paper, we describe 

recent developments in visual analytics that are related to 

transportation systems and discuss how visual analytics can 

enable and improve the intelligent transportation systems of the 

future. 

 
Index Terms—Data visualization, graphical user interfaces, 

interactive systems 

 

I. INTRODUCTION 

ISUAL ANALYTICS is “the science of analytical reasoning 

facilitated by interactive visual interfaces” [61] (p.4), 

which focuses on developing human-computer methods and 

procedures for data analysis, knowledge building, and problem 

solving [37]. The methods and procedures are designed for 

synergistic work between humans and computers where each 

side effectively employs its intrinsic capabilities. Specifically, 

humans employ their unique capabilities for creative thinking, 
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making associations, and generating insights while computers 

process, aggregate and mine data that would be too large for a 

human to effectively tackle alone. Interactive visual interfaces 

play a key role in these human-computer approaches, and 

visual representations are often the most effective way of 

conveying information to the human mind. By coupling these 

visual representations with interactions, users are enabled to 

explore information from different perspectives and levels of 

abstraction, thus associating distinct information pieces, and 

developing insights as information is perceived and interpreted. 

A need for visual analytics approaches arises in situations 

that can be categorized as (1) new problems or (2) new 

opportunities. “New problems” can be subdivided into two 

sub-categories. The first sub-category includes problems for 

which no algorithmic solutions exist (yet). Here, the term 

“algorithmic” denotes not only computer-oriented algorithms 

but also established workflows with well-defined steps. The 

second sub-category includes problems for which some 

algorithmic solutions exist but have become ineffective or 

unsatisfactory because the problems have changed. A 

human-computer approach to a problem is necessary when the 

problem is insufficiently understood and/or ill-defined, and 

when it is not immediately clear how to tackle it. This calls for 

humans to engage in creative thinking, insight generation, and 

knowledge building. 

“New opportunities” include the emergence of new types 

and sources of data or new technologies that may or may not be 

useful for solving existing problems in better ways. It is 

necessary to explore these new opportunities and find possible 

ways to benefit from them. This exploratory work is, obviously, 

a job for humans, who need appropriate support from 

computers. Transportation research is a well-established 

discipline in which numerous algorithmic solutions of 

transportation problems have been developed. However, the 

ongoing development of mobile devices, low cost sensors, 

driverless cars, as well as others, has led to information 

overload in the transportation sector. This data deluge presents 

transportation research with both new problems and new 

opportunities that call for human-computer approaches and 

makes visual analytics potentially helpful. 

Here, transportation systems are seeing traditional problems 

transform due to substantial changes in the population structure 

(e.g., aging), spatial distribution (e.g., urbanization, urban 

sprawl, migration), people’s habits and lifestyles, and others. 

There is a need for gaining better understanding of the new or 

changed problems, which is leading to new opportunities 
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arising due to the availability of large amounts of data that did 

not exist or were scarce in the past [16].  This includes not only 

data describing the movement of people (measurements from 

traffic sensors, tracks of vehicles, records of smart card 

transactions in public transport, etc.) but also data referring to 

the population mobility, activities, and lifestyles (such as 

records of mobile phone uses and georeferenced posts in social 

media) [17]. The potential of these data types and sources for 

solving transportation problems needs to be explored. 

Currently, most of the research in visual analytics has not 

directly addressed new and evolving problems in the 

transportation domain. At the same time, much research has 

been devoted to the currently available types and sources of 

data. Such research has developed systems that have enabled 

analysts to explore mobility patterns and identify novel ways to 

utilize data for transportation applications. A recent paper [23] 

surveys the state of the art in the visualization of traffic data, 

but visual analytics has also explored other kinds of data related 

to transportation or potentially useful for transportation 

applications. Visual analytics has also developed methods and 

procedures for transport-related analyses including transport 

modeling, forecasting, and planning. In this paper, we provide 

an overview of such transportation-related research in visual 

analytics. We divide the relevant works into four categories and 

present them in the following four sections.  

Section II “Understanding data” presents a typology of 

movement data that inventories data properties and possible 

issues, and describes data transformations relevant to analysis.  

Data issues were elicited from the experiences of the visual 

analytics researchers with numerous examples from the visual 

analysis of movement data, particularly related to 

transportation.  

Section III “Understanding traffic” discusses visual analytics 

approaches to analyzing traffic data. The term “traffic” denotes 

movements of vehicles and pedestrians along transportation 

routes and movements of passengers within transportation 

systems. The data are considered from different perspectives 

and scales for exploring diverse aspects and features of traffic 

behavior in space and time.  

Section IV “Understanding users” refers to data concerning 

people who use or can potentially use transportation systems. 

Apart from data characterizing the use of transport by people, 

we also include data that do not refer to transportation directly 

but instead characterizes people’s general mobility behaviors, 

activities, and interests, which may be useful to take into 

account during transportation analysis and planning. 

Section V “Modeling and planning” presents visual analytics 

works that go beyond the exploration and analysis of existing 

data to traffic modeling, forecasting, and planning. 

After presenting the state of the art, we discuss, in section VI, 

the further tasks and directions for the visual analytics research 

for intelligent transportation systems. 

The illustrations throughout the paper have been produced 

using the same example dataset consisting of GPS tracks of cars 

in Milan (Italy) collected during one week in April 2007, which 

were kindly provided for educational and research uses by 

company Octo Telematics (www.octotelematics.com). 

II. UNDERSTANDING DATA  

A. Data typology 

Most kinds of data related to transportation, in particular, 

traffic data, involve spatial (geographic) and temporal 

components. Traffic data characterize the movements of 

individual objects (vehicles or people), aggregated movements 

of multiple objects, or various traffic events (congestions, 

incidents, etc.). There are three fundamental types of 

spatio-temporal data [2] associated with traffic data: spatial 

event data, trajectories of moving objects, and spatial time 

series. Spatial events are entities that emerge at certain spatial 

locations and exist for a limited time. Spatial event data 

describe the spatial positions, existence times, and thematic 

attributes of spatial events. Trajectories are chronologically 

ordered sequences of records describing the spatial positions of 

moving objects at different times. Additionally, the records 

may include values of thematic attributes that change as the 

objects move. Spatial time series are chronologically ordered 

sequences of values of time-variant thematic attributes 

associated with different spatial locations or spatial objects, for 

example, segments of streets or public transport stops. 

 Of the three data types, trajectories are among the most 

complex and frequently explored data in traffic analysis. 

Trajectories describe positions of moving objects at sampled 

time moments. When the temporal and spatial gaps between 

these moments are small enough, the intermediate positions of 

the objects can be plausibly estimated by means of interpolation 

and/or map matching. Such data can be called quasi-continuous. 

Trajectories where recorded positions are separated by large 

time gaps, such that the intermediate positions cannot be 

reliably reconstructed, are called episodic. Quasi-continuous 

and episodic trajectories require different approaches for 

analysis [2]. An extreme case of episodic trajectories is data 

describing only trip starts and ends but not intermediate 

positions. Such data are usually referred to as 

origin-destination (OD) data, and well-known examples 

include data describing migration patterns or worker 

commutes. 

While trajectories provide information on the movements of 

individual objects, aggregated traffic data are spatial time series 

describing how many moving objects were present in different 

spatial locations and/or how many objects moved from one 

location to another during different time intervals. The time 

series may also include aggregate characteristics of the 

movement, such as the average speed and travel time. Time 

series describing the presence of objects are associated with 

distinct locations, and time series describing aggregated moves, 

often called fluxes or flows, are associated with pairs of 

locations. 

The spatial aspect of the different types of spatio-temporal 

data can be represented visually on maps. Spatial events are 

often represented by dot symbols drawn at the event locations 

(Fig. 1A), when the spatial extents and shapes are negligible, 

irrelevant for analysis, or unknown; otherwise, events can be 

represented by polygons. Trajectories are typically represented 

by lines connecting the object positions (Fig. 1B).  



A visualization method called the space-time cube (STC) can 

simultaneously represent the spatial and temporal aspects of 

spatial events and trajectories (Fig. 1C). Two dimensions of the 

STC represent the geographic space, and one dimension 

represents the time. The base of the STC usually contains a map 

providing the spatial reference. In Fig. 1C, time is represented 

by the vertical dimension of the STC. The time axis is directed 

from bottom to top. Spatial events and points of trajectories are 

placed in the STC according to their spatial positions and times. 

The points of trajectories are connected by line segments in 

chronological order. A space-time cube display is usually 

interactive, allowing rotation of the scene as well as panning 

and zooming to adjust the viewpoint.  These interactions are 

used to improve the perception of spatio-temporal patterns. Still, 

the STC display often suffers from visual clutter and 

over-plotting of visual symbols. To be effective, the STC is 

often used in combination with interactive filtering and 

clustering applied to events or trajectories as a means of clutter 

reduction and aggregation.  

For spatial time series, there is no convenient visualization 

method to represent both the spatial and temporal aspects. A 

map can show the spatial distribution of the presence of moving 

objects and/or their flows between locations corresponding to 

one time step (interval). Multiple time intervals need to be 

represented by a sequence of maps. When the time series are 

short, the maps can be put side by side; otherwise, map 

animation is used. 

For one time step of a time series, the spatial distribution of 

the presence of moving objects can be represented on a map by 

symbols or diagrams positioned at different locations over the 

territory or in different territory compartments (Fig. 1D) with 

the sizes proportional to the counts of the objects or other 

characteristics of the presence, such as the average duration of 

staying. Flows between locations or territory compartments are 

typically represented by linear flow symbols connecting the 

locations or compartments. The flow directionality is signified 

by arrows at the line ends (Fig. 1E) or by variation of the line 

curvature (Fig. 1F). The widths of the lines are proportional to 

the flow magnitudes, that is, the counts of the objects that 

moved, or the volumes of transported goods, or other numeric 

characteristics of the flows. Such maps are commonly called 

flow maps [38][62]. Animated maps of presence and flows are 

often combined with temporal displays, such as a time graph, 

showing the variation of the presence/flow magnitudes for 

different locations or links between locations, respectively. 

Traffic data are sometimes represented in an aggregated way 

by a continuous density map (Fig. 1G) where the variation of 

colors or shades encodes the variation of traffic density across a 

territory. A density map effectively reveals existing traffic 

channels and their relative importance. An animated density 

map can represent the variation of the traffic density over time. 

Each image in the animation shows the density in one time 

 

Fig. 1.  The types of spatio-temporal data and their typical visual representations. A: Spatial events (e.g., car stops) represented on a map by dot symbols.  
B: Trajectories of cars represented on a map by lines. One selected example trajectory is marked in black. C: Spatial events and trajectories represented in a 

space-time cube by dot symbols and lines, respectively. The same trajectory as in image B is marked in black. D: Counts of moving objects (cars) in different spatial 

compartments in one time interval are represented by proportional circle sizes. E: Flows of cars between spatial compartments in one time interval are represented 
by half-arrow symbols with the widths proportional to the flow magnitudes. F: The same flows are represented by curved lines; the curvature is higher at the end 

(destination) of a flow. G: A continuous density map represents the variation of traffic density across a territory. 

 



interval. 

B. Data transformations 

The different types of spatio-temporal data do not exist in 

isolation. There are techniques for transforming one data type 

to another [2]. Data transformations may be needed to prepare 

data for analysis methods and/or to align the spatio-temporal 

phenomenon reflected in the data at varying scales. 

A summary of possible transformations between the 

spatio-temporal data types is presented in Fig. 2. The left part of 

the diagram shows the tight relationships between spatial 

events and trajectories. In fact, trajectories consist of spatial 

events: each record in a trajectory of an object represents a 

spatial event of the presence of this object at a specific location 

at some moment in time. Trajectories are obtained by 

integrating spatial event data: for each object, all its position 

records are linked in a chronological sequence. Reciprocally, 

trajectories can be transformed to spatial events either by full 

disintegration back into the constituent events or by extraction 

of particular events of interest ([2], sections 3.5, 5.2), such as 

stops, sharp turns, or encounters of two or more objects. 

Multiple spatial events that are close in space and time can be 

united into more complex spatial events. For example, a 

spatio-temporal concentration of many vehicles reducing their 

speed during a small time window may be treated as a single 

event of traffic congestion. Such composite spatial events can 

be detected and extracted by means of density-based clustering 

([2], section 6.1). To represent a composite event as a single 

entity, a spatio-temporal envelope may be built around the 

constituent events [8]. 

Often, trajectories of moving objects are available as unitary 

sequences of recorded positions extending throughout the 

whole period of observation, including the time intervals when 

the objects did not move. For certain analysis tasks, it may be 

reasonable to separate movements from stops and divide full 

trajectories into smaller trajectories that represent the 

movements (trips) between the stops. There may also be other 

reasons and criteria for dividing trajectories ([2], section 3.2). 

Spatial time series can be obtained from spatial events or 

trajectories through spatio-temporal aggregation. For discrete 

spatial aggregation, the underlying regions in which the events 

or trajectories take place can be divided into compartments, and 

time is divided into intervals. For each compartment and time 

interval, the spatial events or moving objects that appeared in 

the compartment during the associated time interval are binned 

together and counted. Other aggregate statistics can also be 

computed. The result is a place-based time series in which 

temporal sequences of aggregate values are associated with the 

places (i.e., spatial compartments). From such spatial time 

series, in turn, it is possible to extract spatial events ([2], section 

7.2.5), for example, events of high traffic density or events of 

extremely low average speed. 

 Trajectories can also be aggregated into link-based time 

series: for each pair of compartments and time interval, the 

objects that moved from the first to the second compartment 

during this time interval are counted and aggregate 

characteristics of their movements (e.g., the average speed) are 

calculated. 

Discrete place-based and link-based spatial time series can 

be viewed in two complementary ways. On the one hand, they 

consist of temporally ordered sequences of values associated 

with individual places or links, i.e., local time series. On the 

other hand, a spatial time series is a temporally ordered 

sequence of the distribution of spatial events, moving objects, 

or collective moves (flows) of moving objects over the whole 

territory and the spatial variation of various aggregate 

characteristics. These distributions are called “spatial situations” 

[2].  

Continuous spatial aggregation (as in Fig. 1G) is done using 

a raster, i.e., a regular grid dividing the territory into small cells. 

As in discrete aggregation, counts or other aggregates are 

obtained for the cells. Then, spatial smoothing is applied, which 

combines the value in each cell with the values in the 

surrounding cells using a special weighting function (kernel 

function). The function defines the manner in which the 

weights of the surrounding cells decrease as the distance to the 

central cell increases. The result is a smooth density field. 

Continuous spatial aggregation can be combined with discrete 

temporal aggregation based on time division into intervals. A 

density field is generated for each time interval and represents 

the distribution of spatial events or movements during that 

interval. Hence, the result of this aggregation is a time series of 

spatial situations. Unlike the case of discrete spatial 

aggregation, such spatial time series cannot be viewed as a set 

of local time series. 

 Apart from these standard transformations between or 

within the different types of spatio-temporal data, it is possible 

to transform data to a completely different representation, 

which may be beneficial for particular tasks. For example, Chu 

et al. [24] transform trajectories of taxis into sequences of the 

names of the traversed streets and apply text mining methods 

for discovery of “taxi topics”, i.e., combinations of streets that 

have a high probability of co-occurrence in one taxi trip. The 

extraction of “taxi topics” is done for different time intervals. 

By investigating the temporal evolution of the topics, it is 

possible to understand where people travel in different times of 

the day and days of the week. Al-Dohuki et al. [1] transform 

taxi trajectories into texts consisting of street names and text 

labels denoting taxi speeds (low, medium, and high). This 

representation is used for supporting queries to a trajectory 

database where users can formulate queries by specifying street 

names and/or speed characteristics. The queries are performed 

by means of a text search engine. Furthermore, a discrete 

 

Fig. 2.  Possible transformations between the types of spatio-temporal data. 

 

Spatial time series 
(place-based)

Trajectories

Spatial time series 
(link-based)

Local time series

Spatial situations

aggregate
projections (views)

Spatial events

integrate

disintegrate, 
extract

aggregate extract

divide

integrate



representation of aggregated movements of flows between 

places can be treated as a graph, to which graph analysis 

methods can be applied [31][43]. 

As such, these various transformations enable the 

comprehensive analysis of traffic data from multiple 

complementary perspectives [11]. 

C. Exploration of data properties and quality issues 

To assess the suitability of data for analysis, it is necessary to 

investigate the data quality, attributes and distribution.  Data 

quality issues, structure and feature relationships can often be 

revealed by appropriate visualizations ([2], section 9.2). In 

spatiotemporal data this may refer to misaligned temporal 

resolution, temporal regularity or irregularity, presence of 

temporal gaps, varying spatial resolutions and the presence of 

spatial gaps, issues concerning identities of moving objects, 

properties related to the method of data collection, positioning 

errors, and others. A typology of possible quality problems that 

can be encountered in movement data is introduced by 

Andrienko et al. [6], which also demonstrates how 

visualizations can reveal such problems. 

D. Dealing with large data volumes 

Data collected in transportation systems are characterized by 

large volumes, and such data volumes pose serious challenges 

to visual analytics methods and software tools. To enable 

interactive querying and analysis, data need to be quickly 

accessed, extracted, transformed, and visualized (ideally at 

interactive rates, ~10ms). This requires an effective data 

management system. Existing systems for transportation data 

analysis do not always provide the required responsiveness, 

which has lead visual analytics researchers to develop tailored 

approaches including specialized data indexes [26][46] and 

hash structures [64]. 

Apart from effective data management, also visual and 

interactive techniques and analysis methods need to be 

appropriately designed for dealing with very large amounts of 

data. Data aggregation is a common technique, in particular, 

adaptive aggregation depending on the spatial and/or temporal 

scale of the current view. Initially, large amounts of data are 

visually presented in an aggregated way for an overview. As the 

user zooms in and focuses on particular areas and/or time 

periods, more details are shown [26][46]. A related problem is 

to reduce display clutter when many moving objects need to be 

shown. This can be solved by grouping (clustering) spatially 

close objects and showing aggregated data for the clusters [56]. 

A strategy to extend the capacity of analysis methods such as 

clustering beyond the limitations of computer RAM is to 

perform an initial analysis on a subset of the data and use the 

results to interactively build a model (such as a classifier) that 

can be automatically applied to the remaining data [9]. 

Other applications require dynamic processing, analysis, and 

visualization of real time streaming data. This necessitates the 

development of methods for incremental analysis and 

visualization, in which previous analysis results and 

visualizations are continuously updated using new data. An 

example is the real-time detection of complex events, such as 

traffic jams, composed of multiple elementary events [13]. An 

incremental algorithm for clustering spatial events detects 

spatio-temporal concentrations (clusters) of events in real time 

and tracks the evolution of the clusters. A dynamic visual 

display updates to show the current states of the clusters and 

their continuing evolution. 

III. UNDERSTANDING TRAFFIC 

In this section, we discuss visual analytics research analyzing 

traffic movements. Most often, the original data have the form 

of trajectories. Depending on the analysis task, the data can be 

analyzed at different spatial scales, from a detailed view of all 

individual movements in a small area (microscopic view) to an 

overall view of traffic on a large territory. Analysts may be 

interested in understanding how the origins and destinations of 

trips are distributed in space, what routes are taken for getting 

from the origins to the destinations, and how all these vary over 

time. The focus of analysis may be particular spatial events 

occurring in traffic, such as congestions and incidents, or it may 

be to understand the impact of the environment on the traffic 

and, reciprocally, the impact of the traffic on the environment. 

The following subsections briefly present recent research 

devoted to these different aspects of traffic. 

A. Microscopic view 

Synopsis. Here we present the visual and interactive 

techniques designed for a detailed exploration of traffic 

situations, usually at a small spatial scale. The techniques 

enable the analyst to see the movements and characteristics of 

individual objects and select particular objects of interest for a 

close inspection. 

TripVista [30] represents individual movements of vehicle 

and pedestrians at a road intersection by polylines colored 

according to the types of the moving objects or the movement 

speed. By interacting with the display, the user can select 

trajectories with particular shapes. Pu et al. [50] represent 

movement characteristics of individual vehicles by specially 

designed glyphs. 

Unique interactive techniques of FromDaDy [33] are applied 

to a large number of individual aircraft trajectories for flexible 

selection and extraction of subsets and parts of trajectories for 

separate exploration. An interesting feature of the system is the 

representation of 3D trajectories in 2D projection views. This 

enables the interactive selection of trajectories based on altitude 

or the speed of the accent/descent. 

B. Traffic routes 

Synopsis. Techniques in this subsection focus on the visual 

representation of travel routes of moving objects in geographic 

space. Interactive techniques and clustering allow the analyst to 

assess the diversity and repeatability of the routes, find 

frequently taken routes, reveal the possible ways for getting 

from an origin to a destination, and explore the differences 

between alternative routes connecting the same locations. 

With TrajectoryLenses [40], routes are explored in a purely 

visual and interactive way. The user can select and see the 

trajectories going from a selected area of origin or coming to a 



selected destination area, or all routes from a selected origin to 

a selected destination. More sophisticated queries specifying 

intermediate waypoints are also possible. Interactive selections 

are also enabled in a system designed by Liu et al. [45], and 

work by Liu et al. also visualizes aggregated information about 

route diversity over the entire territory under analysis. The 

aggregation groups elementary locations into larger areas, for 

which incoming and outgoing diversity scores (i.e., the 

numbers of distinct routes followed by the incoming and 

outgoing the trajectories) are computed and visually 

represented. The user can select an origin-destination pair and 

investigate the respective trajectories using a detailed view. It is 

also possible to select a road segment and explore the diversity 

of the routes going through this segment.  

Rinzivillo et al. [52] use density-based clustering for 

grouping trajectories according to the closeness of their origins 

and/or destinations or according to the similarity of the routes 

they follow. Particularly, clustering according to route 

similarity finds frequently re-occurring routes, which can be 

visualized using aggregate flow symbols (Fig. 3). Later work 

by Andrienko et al. [9] proposes a scalable variant of the 

method, in which clustering is applied to a subset of trajectories 

loaded in RAM. Based on the clustering results, a classifier for 

identifying the cluster membership of an arbitrary trajectory is 

interactively built. It is then applied to the whole set of 

trajectories stored in a database. 

Zheng et al. [73] propose a set of techniques supporting 

analysis of routes of passengers in a public transportation 

system. This includes specific computations, such as the travel 

efficiency of a route, which accounts for the riding, waiting, 

and transfer times. A tree-like visualization, called isotime flow 

map, shows efficient journeys (by travel time) starting from a 

selected area. A map-based isochrone view shows, for a 

selected origin, the reachability regions corresponding to a 

given time budget. 

As mentioned earlier (section II.B), trajectories can be 

transformed to a text-based representation so that a trip is 

represented as a sequence of street names. Then, the routes 

followed in the trips can be analyzed using techniques for text 

analysis, such as topic modeling [24], and visualized using 

text-oriented visual displays, such as text cloud [1][24]. A 

“topic”, which consists of names of streets that frequently 

co-occur in one trip, may evolve over time. Topic evolution is 

reconstructed by means of computational techniques that match 

topics extracted from different time periods. The evolution is 

visually represented on temporal displays. 

C. Traffic behavior along a route 

Synopsis. Here we focus on techniques designed for 

analyzing dynamic attributes of movements (speed etc.) along a 

particular travel route or channel, which is typically considered 

to be a line segment, for example, along a street, ship lane, or 

metro line. The analyst can see and explore the variation of the 

attributes over time and across multiple trips. 

To show the variation of movement characteristics, such as 

speed or tortuosity, within multiple trajectories following 

similar routes or going through the same street, Tominski et al. 

[63] designed a 3D view (Fig. 4) in which the trajectories are 

put on a base map in a stack. Each trajectory is represented by a 

colored ribbon where colors encode attribute values. 

Additionally, the variation of the attribute values over time in 

the entire trajectories or at a selected position is represented on 

a circular display (Fig. 4, bottom right). Case studies focused on 

the detection of traffic congestion on streets and anomalies in 

vessel traffic. A similar 3D representation is used by Itoh et al. 

[34] to show the variation of passenger flows along the lines of 

a metro network. The ribbon widths are proportional to the 

numbers of the passengers, and colors represent the level of 

crowdedness. In addition to the map-based 3D view, there is a 

tabular temporal display with the rows corresponding to the 

metro lines and columns to time intervals. The variation of 

passenger flow characteristics is represented by color coding. 

Similar encoding is applied in Trips Explorer and Stops 

Explorer [49] for visualization of the public transport 

performance along a selected route. In the displays with two 

dimensions representing the time and the sequence of stations, 

color variation is used to show various characteristics such as 

trip frequency, waiting times, speed of the movement, 

deviations from the schedule, delays, etc. To reduce visual 

clutter, the displays are smoothed by means of kernel density 

estimation techniques. 

Wang et al. [64] provide a map-based interface for selecting 

 

Fig. 4.  Trajectories following the same route are put in a stack on top of a 
background map. The variation of speeds is represented by color coding. 

 

 

Fig. 3.  Major routes taken by cars in a city have been revealed through 

density-based clustering of trajectories according to similarity of the routes. 
The clusters are represented in a summarized form using flow symbols. 

 



subsets of trips going through a street segment. Movement 

characteristics in the selected trips are shown in separate 

displays, such as scatter plots and histograms. Wörner and Ertl 

[71] show the dynamics of speed or other attributes on a graph 

where the horizontal axis represents the route or street length 

and the vertical dimension represents the attribute values. Apart 

from lines corresponding to different trips, a line connecting the 

mean values and a standard deviation envelope are shown.  

Qiang et al. [51] propose an original technique for 

simultaneously representing movement characteristics in full 

detail and at different levels of aggregation. In a 2D display, the 

horizontal dimension represents time or the street extent, and 

the vertical dimension corresponds to different levels of 

aggregation, from maximal detail at the bottom to maximal 

aggregation (i.e., a single value) at the top. The display appears 

as a continuously colored triangle where colors encode attribute 

values at different levels of aggregation. 

Sun et al. [60] show the weekly variation of traffic amounts 

on street segments directly on a map by drawing time series 

graphs along the segments. Traffic flow magnitudes in two 

opposite directions are shown on two sides of the time axis and 

in two distinct colors. For journeys by public transport, Zeng et 

al. [73] show the travel times by segments of alternative routes 

connecting a selected pair of origin and destination locations. 

The routes are shown in a tree-like display where the horizontal 

dimension represents the cumulative travel time and the tree 

branches represent different routes. The variation of the travel 

times over a day is shown on circular diagrams. 

D. Overall traffic behavior over space 

Synopsis. We present the approaches to supporting an 

overall view of the traffic behavior over a large territory based 

on aggregation of individual movements. Different methods of 

spatial aggregation produce continuous fields of traffic density 

or discrete representations of the presence of moving objects by 

space compartments and collective movements (flows) 

between the compartments. The aggregation is also applied to 

subsets of data, which can be selected by interactively setting 

spatial, temporal, and/or attribute constraints. 

To support an overall view of traffic over a territory, 

information from multiple trajectories needs to be aggregated 

over space. As mentioned in section II.B, there are two 

approaches to spatial aggregation, continuous and discrete. In 

continuous aggregation, a smooth density surface is generated 

using kernel density estimation techniques. For aggregation of 

trajectories, two specialized kernel functions have been 

proposed [41][67]. On top of a density map, animated particles 

can represent the movement directions [53]. The user can 

interactively select particular flows for viewing and comparing 

their variations over time, which are represented on linear and 

circular histograms [53]. Comparison of two density maps, e.g., 

corresponding to different time intervals or different types of 

moving objects, can be supported by subtracting one map from 

another and encoding positive and negative differences by 

shades of two color hues [42]. 

The concept of density maps can be extended to representing 

not only densities but also other attributes, such as traffic 

velocities [57] or the number of taxi customers [46]. Several 

density images built with different parameter settings or 

representing different attributes can be combined in a single 

composite density map using special operators [57]. Examples 

show that such a map can effectively differentiate moving and 

anchoring vessels or highlight anomalous movements. 

Discrete aggregation, as explained in section II.B, produces 

 

Fig. 5.  Flows between spatial compartments have been clustered according to 
the similarity of the local time series of the flow magnitudes and speeds. Left: 

the flows on a map are colored according to the cluster membership. Right: the 
temporal variations of the flow magnitudes (top) and mean speeds (bottom) by 

the clusters are represented on time graphs. 

 

Fig. 6.  Hourly time intervals over a week have been clustered by the similarity 
of the spatial situations in terms of the flow magnitudes and average speeds. In 

a time matrix at the top, the rows correspond to the days from Sunday to 

Saturday and columns to the day hours. The time intervals are represented by 
rectangles colored according to the cluster membership; the sizes show the 

closeness to the cluster centers. Below, representative spatial situations for the 

clusters are shown by flow maps. In the upper set of 8 maps, the widths of the 

flow symbols are proportional to the mean flow magnitudes. The lower set of 8 

maps represents how the mean speeds in the clusters differ from the median 

mean speed attained on the links. Positive and negative differences are encoded 
by proportional widths of flow symbols colored in brown and blue, 

respectively. 



place-based and link-based spatial time series, which can be 

viewed and analyzed in two complementary ways: as a set of 

spatially distributed local time series and as a chronological 

sequence of spatial situations. In order to provide a 

comprehensive understanding of the traffic behavior over space 

and time, both views may need to be considered. Andrienko et 

al. [2][5] propose an approach involving two-way clustering, 

where a partition-based clustering algorithm is applied to the 

local time series and the spatial situations. The application to 

the local time series results in clusters of places or links 

characterized by similar value variations (Fig. 5). The 

application to the spatial situations results in clusters of time 

intervals characterized by similar spatial situations (Fig. 6). In 

this way, spatial and temporal simplification and abstraction are 

achieved, which facilitates comprehending the overall traffic 

behavior over space and time. 

Local place-based time series can be visually represented by 

diagrams drawn on top of a background map, for example, by 

circular diagrams representing the variation of movement 

characteristics over a time cycle. Diagrams may consist of 

concentric rings corresponding to different days while each 

ring represents the daily time cycle [46][50]. 

Wang et al. [66] spatially aggregate trajectories by traffic 

monitoring cells, which are distributed over the street network 

but do not cover the whole network. Each cell corresponds to a 

single movement direction. The result of the aggregation is 

treated as a graph with the nodes corresponding to the cells and 

the edges to the links between the cells. The cells are 

represented on a map by glyphs showing the movement 

directions, flow volumes, and speeds. The links are represented 

by lines with the widths proportional to the flow volumes. The 

temporal variation of traffic characteristics for selected cells or 

links can be explored using additional displays. Huang et al. [31] 

exploit a graph-based representation to an even a greater extent. 

In Huang et al.’s work, street segments are represented by 

graph nodes where the links and their weights are defined based 

on the existing taxi trajectories. Calculation of graph centrality 

metrics, in particular, pagerank and betweenness, is applied to 

the street segments. The results, which are visualized on maps, 

characterize the time-varying importance of the street 

segments. 

E. Origin-destination trips and flows 

Synopsis. This subsection focuses on methods for supporting 

the analysis of origin-destination (OD) travel data, i.e., data 

specifying the locations and times of trip starts and ends. The 

full trajectories are either not available or not relevant to the 

analysis. OD data pose a great challenge to visualization as it is 

very hard to represent multiple intersecting flows (aggregated 

trips) across a territory in a legible and easily understandable 

way. Researchers apply clustering techniques to simplify OD 

flow maps [62] or invent alternative techniques for representing 

connections between origins and destinations [69]. 

Spatial simplification can be achieved by grouping the origin 

and destination locations into larger regions and aggregating 

the trips into flows between the regions. Regions can be defined 

by means of spatial clustering of neighboring locations [29], 

possibly, taking into account the strengths of the flows between 

them [43]. Flow data can also be simplified by grouping and 

aggregating spatially close OD flows using hierarchical 

clustering [75]. Another approach is visual simplification by 

edge bundling (e.g., [25]), i.e., merging of spatially close flows 

and representing them by branching lines. On a geographic map, 

this works well only for showing flows from one or two 

locations or in special cases, e.g., when radial flows from/to one 

location prevail over all others, as the flights between Paris and 

other cities in France [25]. 

To represent time series of flow variations while reducing 

map clutter, Boyandin et al. [20] propose a visualization 

consisting of two maps and a table display with the rows 

showing time series of flow magnitudes. The rows are 

connected by lines with the flow origins in one map and 

destinations in the other map. This technique is suitable for 

tracing individual links and viewing their local time series, but 

it does not show the spatial patterns of the flows. 

To avoid showing flows by intersecting lines, OD maps have 

been proposed [69]. They are based on space transformation in 

which the locations are arranged in a matrix so as to minimize 

the distortions of their relative spatial positions with respect to 

each other. Each location is represented by a matrix cell, which 

is filled with a small matrix of the same structure as the overall 

matrix. The inner matrix represents the flows from/to this 

location to/from all other locations. Such display is free from 

occlusion, but the space distortion complicates the perception, 

and the overall spatial pattern of flows is broken into multiple 

location-specific patterns. Recently, it has been proposed to 

aggregate OD data in a way that not only reduces the data 

dimensionality for efficient interactive analysis but also enables 

visual representation by means of diagrams rather than 

intersecting flow lines [7]. The diagrams are positioned at the 

places of trip origins (Fig. 7, left) or destinations (Fig.7, right) 

and show the counts of trips to/from different directions and 

distance ranges. The temporal variation of the trip distribution 

is studied using temporal clustering of spatial situations. 

Rather than trying to present OD trips over the whole 

territory in a synoptic way, Ferreira et al. [26] focus on 

supporting interactive queries to a database of OD data (taxi 

trips). The user can specify a time interval, origin and/or 

 

Fig. 7.  Aggregated outgoing (left) and incoming (right) car trips to/from 

different directions and distance ranges are represented by diagrams with 

segment widths proportional to the flow magnitudes. 

 



destination regions, or trip direction. The system selects the 

trips satisfying the query and shows statistics of their 

characteristics on graphical displays. The origins and 

destinations of the trips are represented on a map by dots of two 

distinct colors. Jiang et al. [36] represent the spatial 

distributions of the trip origins and destinations by density 

maps. For a user-selected region, characteristics of the 

incoming and/or outgoing trips are visually represented on 

multiple graphical displays. 

F. Traffic events 

Synopsis. Traffic includes many events, some of which may 

require special attention and analysis, in particular, negative 

events such as incidents, failures, dangerous movements, and 

congestions. Events requiring analysis may not be explicitly 

specified in data. There are interactive techniques for the 

extraction of events of interest from movement data and 

methods for analyzing the temporal patterns and trends in the 

event occurrences over space. 

Fredrikson et al. [27] described a system for the visual 

exploration of traffic incidents using spatial, temporal, and 

categorical (by incident type or other attributes) aggregation of 

data reflecting individual incidents. A web-based system with 

similar functionality was developed more recently [68]. In 

these works, the events were explicitly specified in the data. 

There may be a need to detect abnormal events by analyzing 

other kinds of data, such as trajectories of moving objects. 

T-Watcher [50] supports the visual detection of various 

anomalies in traffic using aggregated and detailed views. 

Furthermore, it may be necessary not only to detect traffic 

events of interest but also to extract them (i.e., separate from the 

remaining data) for further analysis. This can be done using 

interactive filtering techniques. A general procedure [2][8] 

consists of four steps: (1) compute relevant dynamic attributes; 

(2) define thresholds separating abnormal values from normal; 

(3) use these thresholds in constructing a filter, which may also 

be based on several attributes; (4) extract the points or segments 

of the trajectories that satisfy the filter. An example is the 

extraction of points with low speed values from vehicle 

trajectories for the detection and analysis of traffic jams 

[8][65]. 

Points or segments extracted from trajectories are elementary 

events representing particular states of individual moving 

objects, such as stop, slowing down, or approaching other 

objects. These elementary events may not be of interest per se, 

but they may be parts or indications of important complex 

events. For example, a spatio-temporal concentration (cluster) 

of vehicles decreasing in speed may signify a traffic jam. To 

identify the locations and spatio-temporal boundaries of such 

complex events, spatio-temporal density-based clustering can 

be utilized [2][8]. A special incremental event clustering 

algorithm capable of working in streaming settings for 

detecting event clusters in real time and tracing their further 

evolution has been proposed [13]. One of the use cases is the 

online detection and tracking of traffic jams. To represent a 

complex event as a single object, a spatio-temporal envelope 

(such as a convex hull) is built around the elementary events 

included in the complex event. 

Wang et al. (2013) have developed specific techniques for 

analyzing traffic congestions. Taking into account the spatial 

connections between street segments and the times of traffic 

slowing down and assuming backward propagation of traffic 

jams (i.e., in the direction opposite to the movement direction), 

they build a jam propagation graph. The graph shows how an 

emergence of a traffic jam on a street segment affects other 

street segments over time. 

G. Impacts of context on traffic 

Synopsis. Here we touch upon the visual analytics 

approaches for analyzing how traffic is affected by external 

factors (context), such as weather or emergency events. The 

approaches involve joint analysis of movement data and data 

concerning the spatial and/or temporal context of the 

movement. Links to relevant contextual data are established 

based on the spatial and temporal references present in 

movement data. 

Lundblad et al. [47] attach weather data to positions in vessel 

trajectories. The user may select some ships and see the weather 

attributes along their routes in a time graph. The user may also 

select a time moment and see the weather attributes for all ships 

in a parallel coordinates plot. Buchmüller et al. [21] have 

developed a system that allows users to explore the 

relationships between the directions of aircraft landings at an 

airport and the weather parameters to evaluate the noise impact 

of airplane landings on the surrounding areas. Users can choose 

time intervals of interest and see the aircraft trajectories and 

weather information. Furthermore, the system includes a model 

that predicts the expected distribution of the arrival directions 

for user-specified weather conditions. 

Weather conditions, in particular, the direction and speed of 

the wind, not only determine the directions of aircraft takeoffs 

and landings but also affect the ground speeds of airplanes as 

they fly. The wind impact is clearly seen in a visualization of 

the aircraft ground speeds against the headings; moreover, wind 

parameters can be extracted from dynamic attributes of several 

airplanes flying over the same region in different directions 

[32].  

For detecting and exploring the impacts of extraordinary 

events, such as disasters, accidents, and public gatherings, on 

the use of public transport (metro), Itoh et al. [34] visualize 

deviations from the average passenger flows on different metro 

lines by time intervals. Upon detecting an anomaly, the user can 

obtain related information from social media (Twitter).  For 

user-specified time intervals and metro stations or lines, the 

system finds related tweets and shows the frequent keywords, 

which may explain the reasons for the anomaly.  

H. Impacts of traffic 

Synopsis. Unfortunately, transport systems bring not only 

various benefits but also numerous negative impacts on the 

environment, society, and economy. In addition to the issues 

pertinent to normal transportation activities, illegal activities 

and unruly behaviors pose further dangers. Several works in 

visual analytics deal with assessing the impact of traffic or 



revealing potential dangers. 

The work of Buchmüller et al. [21] focuses on the problem of 

noise from aircraft landings at Zurich airport, which affects 

people living in Germany close to the Swiss border and causes 

an ongoing conflict between the German and Swiss sides. 

Buchmüller et al. developed a system for the visual exploration 

of aircraft landing data and, in particular, checking whether the 

pilots adhere to the existing rules, detecting rule violations, and 

examining the context (time and weather conditions) in which 

they occurred.  

Scheepens et al. [54] focus on the problems of safety and 

security in maritime transport. They developed an interactive 

visual interface to an automated inference engine that detects 

dangerous or suspicious behaviors of vessels and raises alarms. 

The purpose is to present the rationale for the alarms in an 

easily perceivable and understandable way. An explanation 

graph shows the reasoning structure and the probabilities of 

different hypotheses according to the available evidence 

(observations). The observations are represented in a matrix 

showing also the confidence levels and agreement or 

disagreements between the observations. The matrix rows are 

connected to graph nodes showing which observations 

contribute to which hypotheses. Scheepens et al. also presents 

several use cases involving the detection of possible 

environmental hazards, reckless behavior of a vessel, and 

suspected smuggling. 

IV. UNDERSTANDING USERS  

While the previous section focused on transportation means, 

this section focuses on people as actual or potential users of 

transportation means and services. 

A. Use of transport 

Synopsis. This subsection considers the visual analytics 

approaches to analyzing the use of transportation means by 

people. The existing techniques analyze the spatial and 

temporal patterns and trends, reveal behavioral differences 

between user groups, and relate the use of transport to the 

spatial and temporal context and people’s activities. 

Human mobility behaviors over public transit systems are 

commonly explored to identify commute patterns and reveal 

behavioral differences. For example, Wood et al. [70] visualize 

the dynamic patterns of a bicycle hire scheme in London. Flow 

maps with symbols provide overviews of bicycle traffic flow 

structures, and an origin-destination map is used to show details 

on demand. The status of docking stations over space and time 

is further visualized in a grid view, and patterns of the bicycle 

hire program revealed insight into how different populations 

use the bicycle hires. The spatio-temporal patterns of bicycle 

trips over a long time period were also investigated using 

aggregation of OD data by trip directions and distance ranges 

and clustering of spatial situations from different time intervals 

[7].  

Recent work by Beecham and Wood [18] further explores 

the bicycle hire scheme to analyze gendered cycle behaviors 

related to spatial, temporal and customer-related variables. 

They draw curves of traffic flows between OD pairs and use a 

weighting factor to emphasize flow magnitude. They found that 

female customers' usage characteristics seem to be related to 

weekend usage and parks, where men appear to utilize bike 

hires for commuting.  

To further support the analysis of the use of transportation 

means, Kruger et al. [40] develop an interaction technique, 

TrajectoryLenses. Complex filter expressions are supported by 

the metaphor of an exploration lens, which can be placed on an 

interactive map to analyze geospatial regions for the number of 

trajectories, covered time, or vehicle performance. Case studies 

explored usage behavior of people that employ electric scooters 

for daily travelling. Another work by Krueger et al. [39] 

enriches the trajectories of the scooter users with semantic 

information concerning the visited places to infer users’ 

activities and travel purposes. Semantic insights of points of 

interest are discovered from social media services. The 

uncertainties in time and space, which result from noisy, 

unprecise, and missing data, are visually analyzed by the 

geographic map view and a temporal view of OD patterns. In 

this way, people’s activities can be related to nearby locations 

and semantically tied to the point of interest data. 

Other work has focused on transforming the geographic 

coordinates of taxi trajectories into street names. In this way, 

the movement of each taxi becomes a document consisting of 

the traversed street names [24]. The patterns and trends of taxi 

use in a city are then identified and visually studied as taxi 

topics (clusters), thus relating street names and group behavior.  

B. Mass mobility 

Synopsis. The works described in this subsection deal with 

analyzing people’s collective mobility behavior, i.e., mass 

movements. This includes routine daily and weekly patterns as 

well as anomalies due to extraordinary events. 

Von Landesberger et al. [43] present an approach to explore 

daily and weekly temporal patterns of collective mobility, 

where the source data are episodic trajectories of people 

reconstructed from georeferenced tweets or mobile phone use 

records. The trajectories are aggregated into flows between 

territory compartments by hourly intervals within the weekly 

time cycle. To reduce the complexity of the resulting set of 

flows, strongly connected neighboring compartments are 

aggregated into larger regions by means of density-based 

clustering. Then, similarly to Fig. 6, partition-based clustering 

of the time intervals according to the similarity of the spatial 

situations is used for revealing the periodic patterns of mass 

mobility. The situations corresponding to the time clusters are 

represented as graphs, i.e., node-link diagrams. Comparisons 

between clusters are supported by explicit visual encoding of 

the differences. 

Beecham and Wood [19] present a technique for 

automatically identifying commuting behavior based on a 

spatial analysis of cyclists’ journeys. They use visual analytics 

to compare the output of various workplace identification 

methods to explore data transformations and present insights to 

analysts in order to develop origin-destination theories of 

commute patterns.  Ma et al. [48] also develop methods for 

studying urban flow. This work uses cell phone location 



records to approximate trajectories across a city, and flow 

volumes, links and communities of users are visualized to help 

analysts identify typical patterns of movement within the city.  

Similarly, work by Yang et al. [72] focuses on identifying 

human mobility hotspots based on mobile phone location data 

from Shenzhen, China. Yang et al. applies kernel density 

estimation and clusters identified hotspots based on the 

temporal signatures to identify spatial locations with high travel 

demand.   

Work by Chae et al. [22] develops a visual analytics 

framework for exploring public behavior before, during, and 

after disaster events. This work utilizes geographically 

referenced Tweets to create movement trajectories during 

disasters to identify evacuation flows. Interactions allow users 

to drill down into the data to also look at the underlying 

discourse occurring around the movements. Infrastructure data, 

disaster data (such as hurricane tracks), and Twitter data are all 

provided as map overlays in order to enable decision support 

and analysis. 

C. People’s activities and interests 

Synopsis. In order to understand the current use of 

transportation systems and plan for expansion and development, 

it is helpful to understand the reasons that people travel, i.e., the 

activities and interests related to traveling. This subsection 

reviews visual analytics works on transport-relevant knowledge 

discovery centered on people’s use of space and reasons for 

traveling from population surveys and data obtained from 

social media. 

Zhao et al. [74] visualize survey data concerning people’s 

activities in space and time. Circular temporal histograms show 

the dependency of the activities on temporal cycles. A 

visualization technique called the ringmap is a variant of a 

circular histogram where aggregate values are shown by 

coloring and shading of ring segments. This allows aggregated 

data for different activities to be shown using multiple 

concentric rings. 

Conducting population surveys is a costly and error-prone 

endeavor. Currently, due to the popularity of social media, 

researchers seek to obtain information about people’s interests, 

activities, and purposes for traveling using social media mining. 

Photo sharing services, such as Flickr, have large numbers of 

georeferenced photos posted by people during their travels. 

Some of the photo posts have descriptive titles or tags 

indicating what attracted the photographers’ attention. Other 

social media sites, such as Twitter, may have geo-coordinates 

embedded in the data, and recent works [4] [35] demonstrate 

the possibility of using these data for extracting information 

about people’s interests in terms of places and events they like 

to visit. 

To obtain semantic information related to people’s mobility, 

researchers also explore other social media. For example, 

Krüger et al. [39] use data from Foursquare to attach semantic 

information to trips made with electric scooters. Specifically, 

they refer the trip origins and destinations to the categories of 

the places of interest located nearby, which may be indicative 

of the trip purposes. Andrienko et al. [4] explored the potential 

of georeferenced Tweets as a source of semantic information 

concerning people’s activities and movements. They classified 

tweets according to the topics of the messages, such as ‘food’, 

‘coffee’, ‘education’, ‘sports’, ‘transportation’, etc., and found 

that the topics corresponding to some activities tend to occur at 

the typical times of these activities. Thus, ‘coffee’ occurs 

mostly in mornings, ‘food’ at the lunch and dinner times, and 

‘sports’ in the evenings and on the weekend. The authors also 

characterized different places regarding the topics that occur in 

the tweets posted in these places. 

More recent work by Andrienko et al. [12] presents a 

procedure for obtaining data similar to personal daily mobility 

diaries. Such a diary reports what places were visited by a 

person during a day, at what times, and for what purposes. 

Mobility diaries from a large sample of population are a 

valuable source of information for transportation planning and 

simulation of various development scenarios. The presented 

procedure aims at extracting similar information from 

long-term sequences of spatio-temporal positions of people, 

which may come from georeferenced tweets or from mobile 

phone use records. From these sequences, the proposed 

procedure extracts repeatedly visited personal and public places 

along with the times these places were visited within the daily 

and weekly cycles. An interactive interface involving 

techniques for multi-criteria evaluation and ranking supports 

assignment of probable meanings (‘home’, ‘work’, ‘eating’, 

‘shopping’, etc.) to subsets of places based on visit times and 

information about the land use or point of interest categories at 

these places. The analysis is done in a privacy-respectful 

manner without accessing individual data. 

V. MODELING AND PLANNING 

Synopsis. This section reviews research in visual analytics 

concerned with traffic modeling and transportation planning. 

This includes the derivation of models from data, applications 

of traffic forecasting and simulation models, transportation 

scheduling, and the exploration of decision options. 

Scheepens et al. [55] describe two types of models that can 

be used for the prediction of individual movements of vessels. 

The first one is based on finding similar trajectories in a large 

historical database. The second model simulates the expected 

movement of a vessel based on its kinematic properties. Both 

models produce a prediction of the vessel positions over time as 

a temporal probability density field. The prediction is 

represented visually by contours showing the zones where the 

vessel is expected to be located at different times. 

Sewall et al. [58][59] developed algorithms for simulation of 

movements of multiple vehicles in a street network. The 

outputs are visualized as photorealistic 3D animations of the 

simulated traffic on selected junctions. One of the algorithms 

[59] involves a hybrid approach in which a detailed agent-based 

simulation of individual vehicle movements is done for 

user-selected areas of interest while a faster macroscopic model 

is used in the remainder of the network. There is an interactive 

interface for selecting regions to view in detail. In these works, 

the traffic forecasting is not based on previous analysis of 

historical data. 



There is a series of works showing how predictive models of 

vehicle traffic can be derived from historical data consisting of 

a large number of vehicle trajectories [10][14][15]. The 

approach is based on spatial abstraction and aggregation of the 

trajectory data into collective movements (flows) of the 

vehicles between territory compartments, as shown in Fig. 1 (E, 

F). The authors discovered that the dependencies between the 

traffic intensities and mean velocities in an abstracted 

transportation network at different levels of abstraction (Fig. 8) 

have the same shapes as in the fundamental diagram of the 

traffic flow described in traffic theory [28]. While the 

fundamental diagram refers to links of a physical street network, 

it turns out that similar relationships also exist in abstracted 

networks. These dependencies can be represented by formal 

models (Fig. 9), which can be exploited to obtain fast 

predictions and simulations in cases when fine details are not 

necessary (Fig. 10). 

Historical traffic data can be used not only for predicting 

future movements under various conditions but also for spatial 

planning applications. For example, the system SmartAdP [44] 

finds suitable locations for billboard placement using taxi 

trajectories. SmartAdP allows the user to select subsets of 

trajectories and areas of interest depending on the target 

audience and applies special algorithms for selecting optimal 

locations based on the traffic volumes and velocities. The 

system provides interactive visual tools for viewing, assessing, 

and comparing proposed candidate solutions. 

 

Fig. 8.  Dependencies between the traffic flow intensities (hourly volumes) and 

mean velocities on the links of an abstracted transportation network at different 

levels of abstraction. A: Abstracted networks with the cell radii of about 1250 
m (left) and 4000 m (right). The links are clustered and colored according to the 

similarity of the volume-speed dependencies. B: The dependencies of the mean 

velocity (vertical dimension) on the traffic flows (horizontal dimension): the 
velocities decrease as the flows increase. C: The dependencies of the flows 

(vertical dimensions) on the velocities (horizontal dimension): maximal flows 

can be achieved for certain velocities and decrease for both lower and higher 
velocities. 

 

Fig. 9.  For one of the clusters of links of an abstracted transportation network 

(see Fig. 8), the dependencies flow  velocity (top) and velocity  flow 

(bottom) are being represented by polynomial regression models. 

 

 

Fig. 10.  Traffic flow – velocity dependency models extracted from historical 

traffic data (Figs. 8, 9) have been used for simulation of a scenario with 5,000 

cars leaving the neighborhood of a stadium after a sport event. Top: The 
simulated trajectories of the individual cars are shown in a space-time cube. 

Bottom: the expected loads on the links of the abstracted traffic network are 

represented on the map by proportional widths of curved flow lines. 

 



The task of transportation scheduling is addressed by 

Andrienko et al. [3]. The general problem is to create a schedule 

for transporting a given set of items from their current locations 

to suitable destination places within a given time budget using 

an available fleet of transportation means. The items to 

transport may be of different categories requiring different 

kinds of transportation means. An example application is 

planning of evacuation of different groups of people, such as 

general population, schoolchildren, and hospital patients, from 

a disaster-affected area. The proposed system consists of a 

scheduling algorithm and a set of visual displays and interactive 

tools for exploring scheduling outcomes. The displays allow 

the user to detect problems, such as delays, understand their 

reasons, and find appropriate corrective measures. 

VI. TASKS AND DIRECTIONS FOR FURTHER RESEARCH 

So far, most of the transportation-oriented research in visual 

analytics has been mostly focusing on exploring the 

opportunities created by the availability of huge amounts of 

mobility-related data, such as trajectories of vehicles, electronic 

records of the use of public transport, and digital traces of 

people using mobile devices. The visual analytics community 

has developed a solid knowledge base of the properties of these 

kinds of transportation-oriented data based on years of 

experience. Given that a large number of visual analytics 

methods, tools, and procedures have been developed, the 

exploratory mission of visual analytics for 

transportation-oriented data can thus be judged as quite 

successful. 

As we noted in the introduction, visual analytics also has 

another mission: to find solutions to new problems or better 

solutions to old problems by using new opportunities. This 

mission of visual analytics is far from being fulfilled in the 

transportation domain. Only a few visual analytics works 

addressed specific transportation problems. Much of the 

transportation-related visual analytics research has been 

developed separately from transportation domain specialists 

and, hence, without proper knowledge of the domain problems. 

There is a clear need in closer cooperation between the 

communities and conducting interdisciplinary researches. 

Future research should be mindful of emerging trends and 

continue seeking new opportunities. One possible direction is 

social transportation, which is a new concept that incorporates 

information from social space and cyber space into data 

acquired in physical space. Social media and mobile devices 

have recently experienced a rapid growth with the fast 

development of sensing, computing, and networking 

techniques. These social signals, from drivers’ GPS coordinates, 

mobile phones’ billing records to messages post on social 

media, record spatial, temporal and emotional information and 

establish the data foundation for social transportation research. 

Furthermore, integrating analytics, interaction and novel 

visualizations with navigation systems can also be explored.  

As data on places of interest and personal preferences become 

available, navigation systems can incorporate such aspects to 

better inform drivers. For example, rerouting based on 

upcoming traffic situations can utilize metrics such as a driver’s 

familiarity with a region. Data analyses should also work on 

incorporating more information about a city.  While many 

works have looked at point of interest data and land parcel use, 

models and simulations of urban microclimate could also be 

incorporated to develop personal comfort routes during 

walking.   

Along with developing visual analytics methods to support 

individuals in their travels, visual analytics should also focus on 

enabling modelers to interact with their simulations.  As 

simulations get larger and more complex, new tools for 

exploring such high-dimensional data spaces are needed. This 

can be useful for simulating the future of mixed modality traffic 

(manned and driverless cars sharing the road), or for exploring 

how existing infrastructure can be efficiently updated. 

Finally, many of the tasks in transportation analysis require 

policy level decision making.  As such, developing visual 

analytics tools that enable collaborative stakeholder 

engagement is critical.  In this way, users can explore models 

and simulations, discuss the underlying assumptions, and inject 

real-world policy decisions into the models to explore potential 

future scenarios.  Such collaborative visual analysis requires 

new tools, interactions and data management systems. 

VII. CONCLUSION 

Visual analytics has produced a large body of exploratory 

research work in analyzing transportation-related data. The 

knowledge acquired and methods developed can be deployed in 

the transportation domain. This overview and the special issue 

as a whole aim at raising the awareness of transportation 

researchers and practitioners about the achievements in visual 

analytics, the essence of visual analytics approaches, and the 

high potential for solving complex problems that emerges from 

combining the power of computers with the unique capabilities 

of humans supported by interactive visual interfaces. We wish 

to build bridges between the visual analytics and transportation 

communities and promote their joint work for addressing 

various transportation problems. 
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