
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 201X 1

ScatterNet: A Deep Subjective Similarity Model
for Visual Analysis of Scatterplots

Yuxin Ma, Anthony K. H. Tung, Wei Wang, Xiang Gao, Zhigeng Pan, Wei Chen

Abstract—Similarity measuring methods are widely adopted in a broad range of visualization applications. In this work, we address
the challenge of representing human perception in the visual analysis of scatterplots by introducing a novel deep-learning-based
approach, ScatterNet, captures perception-driven similarities of such plots. The approach exploits deep neural networks to extract
semantic features of scatterplot images for similarity calculation. We create a large labeled dataset consisting of similar and dissimilar
images of scatterplots to train the deep neural network. We conduct a set of evaluations including performance experiments and a user
study to demonstrate the effectiveness and efficiency of our approach. The evaluations confirm that the learned features capture the
human perception of scatterplot similarity effectively. We describe two scenarios to show how ScatterNet can be applied in visual
analysis applications.

Index Terms—Scatterplot, similarity measuring, deep learning, visualization, visual exploration.
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1 INTRODUCTION

S CATTERPLOTS [1] and scatterplot matrices (SPLOM) are
widely used representations for depicting high-dimensional

data in 2D or 3D space. When the dimension number increases,
the usability of SPLOM decreases drastically [2], [3]. A variety
of automated approaches [4], [5], [6] have been designed to
retrieve informative views from huge amounts of plots to reduce
the number of scatterplots being shown. The key for a successful
retrieval is a well-defined similarity measure, which computes how
similar two distinct views are by means of quantitative similarity
values. An appropriate measuring method can not only allow for
automatic retrieval of scatterplots, but also support visual query-
ing, investigation and exploration of scatterplots with specific data
distributions or potentially interesting patterns contained in the
underlying dataset.

Existing solutions of similarity computing methods [6], [7]
usually summarize a set of feature descriptors based on the
input data or the rendered image of a scatterplot. For example,
Scagnostics [7] defines nine hand-crafted feature descriptors to
characterize scatterplots quantitatively from multiple interpretable
perspectives such as data distributions, density, geometry, etc.
The feature vectors of scatterplots computed with the descriptors
above span a nine-dimensional feature space, and similarities
of scatterplots can be defined based on metric distances among
corresponding feature vectors. One of the issues in hand-crafted
feature descriptors is that the descriptors and the derived similarity
measure can sometimes fail to capture some patterns, especially
for those related to human visual perception [8]. Table 1 illustrates
an example in which the Scagnostics feature vectors of five
scatterplots are shown. In the table, a query and four other plots
(SC1 to SC4) that are ranked in ascending order of their distance
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TABLE 1
An example of Scagnostics with feature values of five scatterplots. SC1,

SC2, SC3 and SC4 are ranked in ascending order of the Euclidean
distance to the query. Based on the distances, SC1 and SC2 are close
to the query in terms of Scagnostics features, however SC3 and SC4
are more similar to the query scatterplot than SC1 and SC2 from the
perspective of visual perception, which indicates that in this case the
distances of Scagnostics features fail to reflect the visual similarity.

Features Query SC1 SC2 SC3 SC4
Outlying 0.382 0.471 0.236 0.000 0.441
Skewed 0.572 0.805 0.781 0.686 0.780
Clumpy 0.154 0.038 0.012 0.179 0.260
Sparse 0.195 0.036 0.022 0.243 0.336
Striated 0.100 0.034 0.044 0.048 0.083
Convex 0.249 0.321 0.343 0.106 0.022
Skinny 0.581 0.476 0.604 0.673 0.265
Stringy 0.266 0.266 0.301 0.422 0.244
Monotonic 0.004 0.001 0.016 0.049 0.051
Euclidean
Distances
to Query

0.348 0.358 0.469 0.482

to the query are shown. Contrary to the ranking, SC3 and SC4 are
perceived to be closer to the query based on visual perception.

In this paper, we investigate the design and usage of an effec-
tive approach for measuring similarities of scatterplots to support
effective and efficient visual querying and exploration of scatter-
plots. Our approach is motivated by the successful applications
of similarity measures and recent studies on applying knowledge
of perception in visual analytics [9], [10], [11]. We believe that
capturing human perception on similarities of scatterplots can be
significantly important in many applications such as searching,
exploration, and temporal trend analysis of large numbers of plots.

To this end, we propose a novel approach, ScatterNet, for mod-
eling subjective similarity by utilizing human visual perception
information. The core idea is to employ human-labeled judgment
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on scatterplot similarities as training data, and utilize state-of-the-
art deep neural networks to construct features from the plot images
automatically. The Convolutional Neural Networks (CNNs) are
able to learn rich semantic features from large scale data by
tuning its internal parameters. The learned features are then used
for computing similarities by utilizing the Euclidean distances.
Consequently, ScatterNet is able to effectively characterize sim-
ilarities between scatterplots by considering human perception
information. To the best of our knowledge, this paper is the first
one that leverages deep-learning-based image recognition methods
to enhance the understanding and exploration of scatterplots.

In summary, our work presents two contributions:
• A novel approach for characterizing perception-based similar-

ity between scatterplots quantitatively;
• A deep-learning-based method, ScatterNet, to generate a set

of neural network layers in order to transform scatterplots into
feature vectors for similarity computation.
The remaining sections are organized as follows. Related work

is covered in Section 2. Section 3 introduces the model and
its building process. We evaluate ScatterNet withcases and user
studies in Section 4. Section 5 presents discussions and limitations,
followed by conclusions in Section 6.

2 RELATED WORK

Our work is related to two broad topics: 1) visual quality and
similarity metrics, and 2) perception-based quality metrics.

2.1 Visual Quality and Similarity Metrics

Visual quality and similarity metrics of plots have been intensively
studied for many years. Bertini et al. [2] performed a comprehen-
sive study and presented a systematic taxonomy on existing visual
quality metrics. Generally, they can be divided into two categories:
1) data-based approaches, and 2) image-based approaches.

Data-based Approaches compute feature vectors from the
input data. Inspired by the Cognostics [12], [13] which utilizes
computers to guide diagnostics of plots, Wilkinson et al. [7] pro-
posed a set of feature descriptors named Scagnostics (Scatterplot
Diagnostics) which presents the data distribution in a 2D plot
based on graph theory. The two-dimensional Scagnostics can be
extended to three-dimensional counterparts [14]. In addition to
applying Scagnostics for plot retrieval of large-scale SPLOMs,
the Scagnostics feature descriptors can be utilized in many other
applications. For instance, ScagExplorer [15] supported visual
exploration of patterns appearing in the plots based on Scagnostics
features. TimeSeer [16] revealed hidden temporal patterns and
dynamics of data distributions from scatterplot time-series. Dang
et al. [17] addressed the issue of scaling-variant characteristics in
Scagnostics and presented a method to overcome scaling transfor-
mation of specific patterns. By combining human visual feedback
with data-based diagnostics, Behrisch et al. [18] introduced a
“feedback-driven view space exploration framework” as a guide
of querying and exploration in large-scale scatterplot datasets.
Anand et al. [19] used some specific Scagnostics features such as
Skewed and Monotonic patterns to partition multivariate datasets
and detect interesting patterns within multiple views.

Besides Cognostics for scatterplots, many works focused on
designing data-based quality and similarity metrics for effective
visual understanding. The rank-by-feature framework in [20] was
designed to provide an interactive visual interface for exploring

multiple kinds of plots and ranking them with various feature
detection criteria. Sips et al. [21] presented two quality measures
to quantify class consistency with class center gravity and en-
tropies of spatial distributions. DimScanner [22] addressed the
challenge of high workload to analyze a multitude of statistical
charts derived from high-dimensional datasets and contributed a
data structuring scheme for modeling the relations and disclosing
redundant information among different charts.

Image-based Approaches are designed to analyze patterns
by regarding plots as images, benefitting from the progress of
image processing approaches in computer vision [23], [24], [25],
[26]. There were some studies that employed image-density-based
methods [4], [6], [27] to recognize and rank desired linear or
non-linear patterns in scatterplots. Shao et al. [5] proposed a
motif-based matching and ranking scheme to facilitate querying
of specific patterns with a set of basic image patches extracted
from existing scatterplots.

For other visualization forms, Pargnostics [28] extended the
concept of Cognostics to parallel coordinate plots (PCPs) by using
pixel-space features to assess the visual quality of PCPs. Behrisch
et al. [29] proposed a methodology of discovering feature descrip-
tors for adjacency matrices and concluded a suite of operational
descriptors such as blocks, local binary patterns and edges. As a
generalized method, Pixnostics [30] analyzed pixels in plot images
and estimated their values for specific visualization tasks.

In recent years, some works tended to perform classification
analysis and visual feature augmentation by extracting image
features with machine-learning-based techniques. Reda et al. [31]
proposed a technique to automate the visual detection process in
large amounts of views. For statistical charts, ReVision [32] uti-
lized support vector machines to recognize chart types presented
in images. Similar works were presented in [33] and [34] where
higher classification accuracy was achieved with deep neural
networks.

Our approach is inspired by the successful application of deep
neural networks in [33] and [34]. The scatterplots are converted
into images, upon which a similarity measure is constructed.
Without hand-crafted image features, we utilize the power of
deep neural networks to extract subjective features automatically
from large amounts of labeled data. The learned features are more
specific and precise than hand-crafted feature descriptors from the
perspective of representing hard-to-quantify human perception.

2.2 Perception-based Quality Metrics

While data-based approaches have been widely applied, in re-
cent years visual perception was brought into the limelight as
an alternative direction to study quality and similarity metrics.
Sedlmair et al. [11] summarized a taxonomy of visual cluster
separation factors in scatterplots and evaluated two quantitative
measures [6], [21] anchored in the proposed factors. The approach
in [35] was intended to specify task-dependent quality metrics and
performed interactive dimensionality reduction to reveal patterns
from subjective perspectives. Rensink et al. [36] performed a user
study to evaluate how visual perception is related to estimating
the correlations within scatterplots. In the meantime, Harrison et
al. [9] conducted a large-scale experiment to investigate whether
Weber’s Law can model the precision of visual perception in
judging data correlation in nine different visualization forms. The
model was later improved in [10] by using a modified version
derived from Weber’s Law. In a more recent work in [37], Rensink
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indicated that Fechner’s Law also holds in judging correlations.
Additionally, the experiment showed that observers are likely to
“perceive the information entropy in an image”.

The “label-and-model” strategy was shared among a variety of
existing works on visualization and human-computer interaction
in order to capture perceptual information from human-defined
labels. Albuquerque et al. [38] used the labeling strategy to capture
users’ annotations on task relatedness of scatterplots. A similar
user study was carried out in [8] to evaluate the difference between
Scagnostics and perceptual similarity. A number of suggestions on
designing perceptually-balanced quality and similarity measures
were given. Similar to kernel functions in machine learning,
Perceptual Kernels were introduced in [39] to estimate percep-
tual differences among visual variables based on multiple visual
channels such as color, shape, size, and their combinations with
crowd-sourcing experiments. In this paper, we leverage users’
labels for modeling similarities among different scatterplots with
deep metric learning models.

3 MODEL AND CONSTRUCTION

Figure 1 presents the pipeline for model construction. It consists
of three main stages:
1) Sample Collection and Generation First, multiple public

datasets are collected to generate scatterplot images. We
propose a generation and sampling strategy to create effective
unlabeled sets of scatterplots.

2) Scatterplot Image Triplets Labeling In this stage, we ask
annotators to select similar scatterplot images and dissimilar
ones for a set of anchor images. The results are converted
into a set of triplets with each triplet consisting of an anchor
scatterplot image, a similar image and a dissimilar image. Ad-
ditionally, we perform a preliminary label analysis to explore
the human-annotated labels and gain insights for the model
design.

3) Model Building With the labeled triplets, we build a deep
neural network to model the similarity among scatterplot
images. A set of convolutional neural network (CNN) layers is
trained as a feature extraction module to transform scatterplot
images into feature vectors.

Sample
Collection

Triplet
Labeling

Model
Building

Triplets

Deep Neural Network

Fig. 1. The modeling pipeline consists of three main stages: 1) sample
collection, 2) triplet labeling, and 3) model building.

3.1 Collecting and Generating Samples
Preparing effective samples requires 1) collecting datasets that
maximize coverage over different types of scatterplots; 2) gen-
erating unlabeled sets for labeling.

3.1.1 Preparation of Scatterplot Images
Motivated by the data selection strategy in [8], we use the datasets
from PyDataset library1 that contains 757 datasets selected from

1. https://github.com/iamaziz/PyDataset

Rdatasets2. The reason for not synthesizing datasets is that those
synthetic patterns that rarely appear in real-world datasets may
bias the results when human annotators identify the data distribu-
tions. For each dataset, we combine all possible pairs of columns
to form a scatterplot, yielding C2

n = n(n−1)
2 scatterplots for a data

table with n columns. Before plotting the scatterplots, we perform
a data cleaning procedure to remove columns with invalid values
and duplicated columns.

In plotting the column pairs, the canvas size is set to 200×200
pixels with a white background and an inner margin of 10 pixels.
The dots are rendered in RGB(0,0,255) with a radius of 2 pixels
and opacity of 0.4. It should be noted that this setting is used only
for the images that are labeled by human annotators. For the steps
concerning building deep learning models, the scatterplots are re-
plotted into gray-scale images. The point color is set to black, and
the size and opacity are not changed.

We collect 50677 scatterplot images in total from the datasets.
The corresponding Scagnostics features are computed and stored.

3.1.2 Generation of Unlabeled Sets
Before introducing the generation process, the terms used in the
following sections are provided in Table 2:

TABLE 2
Definitions of terms used in describing our model building procedure.

Anchor Scatterplot/Image The referred standard scatterplot

Candidate Scatterplot/Image A set of images that are employed for
comparisons with an anchor

Positive/Negative Image The identified candidates that are simi-
lar/dissimilar to the anchor image

Triplet A combination of an anchor image, a
positive image, and a negative image

Unlabeled Set
The basic unit of the labeling task that
consists of an anchor image and associ-
ated candidate images

Annotators The ones who perform the labeling task

Query Scatterplot/Image A selected scatterplot as a reference in
the context of k-NN search

For each unlabeled set, the annotator is required to mark
several most similar and dissimilar scatterplots as positive and
negative examples. To limit labeling time and ensure annotators’
concentration, 30 candidate scatterplots are provided for each
unlabeled set. To ensure the effectiveness and efficiency of the
labeling stage, we adopt the following principles:
1) Maximizing Diversity of Anchors: The diversity of anchor

scatterplots should be as high as possible to cover a wide
range of patterns;

2) Reducing Uncertainty: Some scatterplots may be too complex
to be easily distinguished from others. These “hard exam-
ples” [40] can significantly improve the training effectiveness,
efficiency, and stability of deep metric models to capture as
much information as possible from the labels, i.e. reduce the
prediction uncertainty of the model.

3) Improving Effectiveness of Candidates: For the anchor scat-
terplot in an unlabeled set, the possibility of containing similar
and dissimilar scatterplots should be relatively high. This
principle is intended to avoid the situation that in an unlabeled
set all candidates are visually significantly different from or
the same as the anchor scatterplot, making it hard to select
positive or negative scatterplots for annotators.

2. https://vincentarelbundock.github.io/Rdatasets/

https://github.com/iamaziz/PyDataset
https://vincentarelbundock.github.io/Rdatasets/
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Scatterplots

(a) Selecting Anchor Scatterplots

(c) Sampling of Candidates

(b) Detecting Hard Examples

Scagnostics
Feature Vectors

Uniform Sampling 
in the Feature Space

Anchor
Scatterplots

Scatterplots

Database of
Unlabeled Sets

Class1 Class14

...

Hand-crafted 14 Classes Prediction of
Classification Uncertainty

The Trained CNN Classifier

...
Training of

a CNN Classifier
Preparation of a Classifier

...
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High Uncertainty
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Only with CNN Layers

The Trained CNN Classifier

...

Scagnostics
Feature Vectors
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...
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...

1024-dimensional
CNN Features

(1) k-NN Sampling in CNN Feature Space (2) k-NN Sampling in
Scagnostics Feature Space

(3) Random Sampling 

An Unlabeled Set

The Anchor
Scatterplot

Candidate
Scatterplots

x30

Selection of
10-NN

Selection of
10-NN

Randomly-selected
10 Scatterplots

Fig. 2. The task generation procedure. (a) A set of anchor scatterplots is selected by uniform sampling in the feature space of Scagnostics. (b) A
number of hard examples are filtered out as additional anchor scatterplots based on uncertainty sampling strategy. (c) Candidates are sampled by
adopting three different sampling strategies.

Based on these principles, we have designed a generation
procedure illustrated in Figure 2:

Selecting Anchor Scatterplots (Figure 2 (a)) To observe
the principle of diversity, a uniform sampling was performed
on the 50677 scatterplots by considering the distributions of 9
Scagnostics features.

Detecting Hard Examples (Figure 2 (b)) This step aims
to address the second principle of uncertainty minimization.
Motivated by the widely-used uncertainty sampling strategy in
active learning [41], we design a classification-based strategy
(Figure 2 (b)) for a preliminary coarse-grained uncertainty analysis
as below:
1) First, we define fourteen classes of scatterplots according to

the supplemental material of the user study in [8], where scat-
terplots are categorized into nearly non-overlapping classes
based on visual perception.

2) Then, all the 50677 scatterplot images are manually classified
into the fourteen classes and handled by a CNN classifier
(Figure 2 (b)) with their class tags as a training dataset. The
network structure (Figure 5 (a)) contains four convolution
layers and two fully-connected layers.

3) Finally, the images are re-sent into the classifier to verify if
their tags can be correctly predicted, and those that cannot be
predicted as their assigned class tags are identified as hard
examples and regarded as anchor scatterplots. The trained
neural network layers in the blue box (Figure 5 (a)) with
convolution layers can be considered as a feature extraction
model and re-used in the next steps.
It should be pointed out that in this step the set of classes were

derived from the controlled user study in [8] without any formal
mathematical definition, which is still too difficult to cover all
possible patterns in scatterplots. Using these summarized classes
can effectively transform the hard example detection task into
an uncertainty sampling problem, and to find as many easy-to-
be-confused anchor scatterplots as possible. Indeed, the triplet

labels tagged by annotators in the next stage play the key role
of conveying visual recognition of similarities. As a result, the
relatively general classes are sufficient for us to perform the
detection task.

Sampling of Candidates (Figure 2 (c)) For each selected
anchor image in the last two steps, we sample thirty candidates by
accessing: 1) ten nearest neighbors from 1024-dimensional fea-
tures extracted by the neural network layers mentioned above, 2)
ten nearest neighbors from nine-dimensional Scagnostics features,
and 3) ten randomly-selected ones from the rest of the scatterplots.

3.2 Judgment of Similarity

3.2.1 Labeling
The task in this stage is to judge similar scatterplot images and dis-
similar images. We build a customized web system for collecting
triplet labels. Figure 3 shows four panels in the interface: A) the
anchor image, B) all thirty candidate images, C) the highlighted
candidate image, and D) two lists of similar (blue stack) and
dissimilar images (red stack). The annotator can drag an image
from the candidate region to one of the lists, and a blue or red
border will be added to the selected image to mark the selection.
Additionally, the annotator can also browse the candidate images
in the highlighted candidate region. Once all identifications are
confirmed, the annotator submits the result and moves to the next
set. If the annotator can not find similar or dissimilar images in
an unlabeled set, the set can be skipped and replaced with another
set.

For the labeling task, we recruited twenty-two annotators with
undergraduate knowledge of statistics and mathematics. Each of
them was paid $0.05 (or gift cards with the same value) per valid
labeled set. In order to assure labeling quality and avoid sloppy
work, the following strategies are employed:
• No Prior Knowledge Based on the study in [8], annotators

were not told what the criteria are for judging similarities. This
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A

B

C D

Fig. 3. The interface consists of four panels: (a) The anchor image, (b) 30 Candidate images, (c) Highlighted candidate, and (d) Lists of selected
similar and dissimilar images.

strategy is to prevent subjective perception from being affected
by pre-defined patterns or unrelated domain knowledge.

• Task Redundancy Each unlabeled set was distributed to three
annotators. For the positive images, they are selected as training
data in the model building stage only if it appears in all three
annotators’ positive lists.

• Pre-labeled Test Sets To test the labeling confidence of the
annotators, we carefully designed ten unlabeled sets that were
labeled by authors with obvious positive and negative candi-
dates. Each annotator receives at least three test sets. If an
annotator fails to identify those explicitly-arranged candidates,
the labels from the annotator are manually investigated by us
after the entire task.

3.2.2 Preliminary Analysis of Labeling Results
In the labeling stage, 5135 labeled sets were harvested. We
perform a preliminary analysis between the labels and the origins
of candidates. For each labeled set, we summarize:
• The number of positive scatterplots that are originally sampled

based on the CNN features, Scagnostics features and random
selection (i.e. method (1), (2) and (3) in Figure 2 (c)), respec-
tively;

• The number of negative scatterplots that are not sampled based
on the three methods.

These statistics are used for computing the intersections of
human-assigned positive scatterplots and those which are close to
the target scatterplot in the CNN and Scagnostics feature space,
and vice versa for negative ones. Figure 4 shows the distributions
of two measures on all labeled sets. In the two histograms, the
distributions of CNN features and Scagnostics features are approx-
imately correlated. Furthermore, the randomly-selected candidates
rarely appear in the positive-scatterplot sets and always in negative
ones. Specifically, in the histogram (a), more than 80% of the
labeled sets have two or more scatterplots that do not come from
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Fig. 4. Distribution of intersections between positive (a) / negative (b)
scatterplots and candidates sampled based on the three candidate
selection methods.

the “Scagnostic-al” samples, which indicates that the human an-
notators’ choices were not consistent with the distances computed
from the Scagnostics feature.

3.3 Building the Subjective Similarity Model
With the labeled triplets, our goal is to learn a non-linear embed-
ding which represents human annotators’ perception on similarity.
Given two images I1 and I2, their Euclidean distance reflects how
dissimilar I1 and I2 are. Because the features are extracted auto-
matically, we choose triplet-based deep metric learning methods
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Fig. 5. The network structure of (a) the coarse-grained CNN classifier and (b) the triplet-based deep metric model. It should be noted that the weights
of the convolution layers in the deep metric model are initialized with corresponding layers pre-trained in the step of detecting hard examples.

with CNN layers to transform the scatterplot images into the target
feature space. This triplet network structure is widely used in
the field of computer vision for constructing similarities among
images [40], [42], [43]. Furthermore, the multi-layer CNN struc-
ture has been proven to gain significant performance on natural
image classification [44] and object detection [45]. Specifically,
the combination of convolution-pooling layers is a very typical
network structure [44] with excellent performance in terms of
feature extraction. In our method, the scatterplot images are used
for training. Thus, the CNN structure is designed for extracting
visual perception information hidden in the similarity labels.

The structure of ScatterNet is illustrated in Figure 5(b) where
the convolution layers are initialized with the pre-trained CNN
classifier described in Section 3.1.2. First, as each anchor scatter-
plot is associated with five positive and five negative scatterplots,
the labeled sets are further transformed into triplets by combining
the anchor scatterplot with one positive and one negative scatter-
plot. Thus, a single labeled set can be extended to 5× 5 = 25
triplets. Three images in a training triplet are then fed into
corresponding input layers. The input images pass an identical
set of convolution layers in order to be transformed into embedded
feature vectors, noted as vanchor, vpos and vneg. It should be pointed
out that the feature vectors are normalized to prevent results being
affected by scaling. Finally we use the triplet loss function [46]
defined in Equation 1:

Losstriplet(vanchor,vpos,vneg) =

max(0,‖vanchor−vpos‖2
2 +α−‖vanchor−vneg‖2

2)
(1)

where the hyper-parameter α controls the smallest margin in the
embedded feature space.

This loss function constrains the distance relations among
three images by giving penalty to the wrongly-embedded triplets
where the distance between the anchor image and the positive one
with margin α is still smaller than the distance from the anchor
image to the negative one. The non-zero loss is back-propagated
to all the CNN layers to update the corresponding parameters.

After the deep metric model is trained, the CNN part is sepa-
rated for feature transformation. We pass an unlabeled scatterplot
image through the CNN layers to get its embedding. The distance
between two unlabeled images is defined as the Euclidean distance
of the two corresponding embeddings.

3.4 Implementation Details

For the scatterplot images, we used Matplotlib3 to generate the
plots. To facilitate annotators’ remote access of the labeling
system, we chose server-browser architecture with MongoDB as
the database management system, Python Flask for the server
backend, and jQuery in the web browser. In the two deep-learning-
related steps described in Section 3.1.1 and Section 3.3, the
models can be easily implemented with most of the modern deep
learning frameworks such as Tensorflow, Keras and PyTorch. In
this work, Keras4 with Theano backend was employed for the
basic framework of the deep learning models.

4 EVALUATION

We perform quantitative and qualitative experiments as well as
two user studies to demonstrate effectiveness and efficiency of the
trained model.

4.1 Test Dataset and Environment

The test dataset is collected from [8] for both experiments and the
user study. It contains 247 different scatterplots carefully selected
from a broad range of real-world datasets that contain various
unique patterns. The variety of scatterplot patterns in the test
dataset is essential for evaluating the efficacy of the proposed
model for representing perceptual-oriented similarities. To avoid
overfitting and affecting subsequent evaluations, all triplets that

3. http://matplotlib.org
4. https://keras.io

http://matplotlib.org
https://keras.io
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Fig. 6. The 2-D t-SNE projection result [47] of transformed feature vectors. The scatterplot images are aligned to grid. Six regions (from A to F)
present several clusters that contain visually similar scatterplots.

contain scatterplots from the test dataset are excluded from train-
ing deep learning models. Because all duplicated data columns
were removed (see Section 3.1.1), it can be guaranteed that there
are no other scatterplots which are the same as the ones in the test
dataset.

The training of deep neural networks was performed on a
workstation with an Intel Xeon E3-1270v2 CPU and NVIDIA
Quadro M4000 GPUs. For a single model it spent about 32 hours
on a single GPU to finish 500 epochs. Each epoch consisted of
about 80,000 triplets with the mini-batch size of 50.

4.2 Experiments
The goal of these quantitative experiments is to verify the training
and testing performance of ScatterNet. In addition, a comparison
with existing methods is conducted to evaluate how perceptual
information is involved in different methods. Besides Scagnostics

which is mentioned throughout the paper, we apply Histogram of
Oriented Gradients (HOG) as another comparative method.

4.2.1 Visualizing Embedding and k-NN Queries
Figure 6 depicts a 2-D t-SNE (t-distributed stochastic neighbor
embedding) projection [47] of transformed feature vectors from
the trained model. To reduce visual clutter in the detail views,
the scatterplot images are arranged in a grid form. From the
perspective of visual perception, the following characteristics can
be achieved from the result:
• Globally, the transitions of patterns in scatterplots are smooth

and do not show very significant leaping, which is different
from the Scagnostics method.

• Scatterplots that share similar patterns are noticeably grouped
into small clusters. The red and dashed regions from A to
F show similar scatterplots in Figure 6, such as group B
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Query 1

1.349 1.356

ScatterNet

Scagnostics

HOG

1.106 1.182 1.244 1.302 1.337 1.348 1.389 1.415

0.307 0.3170.247 0.281 0.283 0.295 0.301 0.305 0.322 0.339

8.443 8.4588.055 8.055 8.201 8.346 8.346 8.346 8.830 8.867

Query 2

0.635 0.636

ScatterNet

Scagnostics

HOG

0.432 0.484 0.524 0.577 0.627 0.634 0.638 0.639

0.224 0.2250.165 0.186 0.211 0.213 0.215 0.221 0.231 0.235

9.672 9.8199.322 9.322 9.331 9.331 9.331 9.448 9.835 10.028

Query 3

3.236 3.334

ScatterNet

Scagnostics

HOG

1.639 2.388 2.612 2.971 3.196 3.232 3.392 3.428

0.168 0.1750.112 0.115 0.135 0.153 0.155 0.157 0.178 0.180

12.629 12.74012.312 12.331 12.344 12.394 12.483 12.596 12.846 12.896

Query 4

0.161 0.173

ScatterNet

Scagnostics

HOG

0.097 0.102 0.112 0.113 0.122 0.158 0.218 0.265

0.832 0.8340.317 0.368 0.762 0.797 0.824 0.827 0.834 0.839

5.518 5.5184.914 5.067 5.067 5.296 5.411 5.518 5.579 5.607

Query 5

9.347 9.412

ScatterNet

Scagnostics

HOG

5.750 5.972 7.006 8.480 8.907 9.077 9.598 10.804

0.584 0.6000.296 0.376 0.389 0.389 0.430 0.439 0.629 0.635

5.906 6.1694.226 4.803 4.976 5.405 5.726 5.872 6.277 6.296

Query 6

0.173 0.191

ScatterNet

Scagnostics

HOG

0.060 0.136 0.143 0.144 0.154 0.160 0.201 0.315

0.661 0.6640.600 0.628 0.637 0.647 0.654 0.655 0.664 0.687

7.897 7.8976.404 6.621 7.449 7.573 7.896 7.896 7.897 7.920

Query 7

11.395 11.533

ScatterNet

Scagnostics

HOG

10.556 10.823 10.840 10.872 11.319 11.341 11.549 11.684

0.225 0.2310.116 0.117 0.140 0.187 0.191 0.208 0.240 0.240

14.108 14.12513.770 13.770 13.770 13.942 13.942 14.027 14.193 14.193

Query 8

1.484 1.587

ScatterNet

Scagnostics

HOG

1.050 1.375 1.402 1.456 1.475 1.482 1.637 1.641

0.249 0.2590.185 0.193 0.227 0.229 0.235 0.248 0.263 0.267

10.663 10.70510.185 10.296 10.308 10.319 10.573 10.633 10.812 10.822

Fig. 7. Ten nearest neighbors of eight scatterplot queries based on ScatterNet, Scagnostics features and HOG features. The queries and k-NN
results are all from the test dataset.

with long-tail distributions, group D with 45-degree linear
correlation patterns, and group F with dense clusters.

• There are several outlying scatterplots marked in small orange
frames that do not belong to nearby groups, e.g., (a), (b), and
(c) in Figure 6.
To evaluate the capability of embedding visually similar scat-

terplots, we compare ScatterNet with Scagnostics and HOG on
eight representative categories of scatterplots from [8], as shown
in Figure 7. The ranked list of ten nearest neighbors in ScatterNet
and the corresponding ten most similar scatterplots in Scagnos-
tics and HOG are placed upwards and downwards. The actual
distance values from neighbors to the query are shown under
the corresponding scatterplots and mapped to bars at the right
side. Note that the heights of bars are scaled into [0,MaxValue]
respectively in the three methods; thus the distances from the same
method can be compared. In Query 1, 2, 4, and 6~8, ScatterNet
outperforms the other two methods regarding point distributions,
geometric shapes, and density, while in Query 3 three methods are
comparable. In the result sequence in Query 5, ScatterNet tends

to return less-optimal results earlier than Scagnostics and HOG.
This issue is also described in the first user study and further
investigated in Section 5.2. From the perspective of distance
distributions, it can be found that in all the three methods the
distances increase drastically for dissimilar scatterplots, while
for similar ones the distributions remain low and constant. This
phenomenon may indicate that the methods tend to compress
similar scatterplots into condensed clusters and expel the clusters
from each other.

4.2.2 Performance Analysis
We compared the running performance of ScatterNet with
Scagnostics on scatterplots with data points of different numbers
in Figure 8. A Java implementation of Scagnostics5 and Keras
with Theano backend (both CPU and GPU) for ScatterNet is
applied in this comparison. By using images as training sets,
the transformation time from a scatterplot image to its feature

5. https://github.com/cran/scagnostics

https://github.com/cran/scagnostics
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10 Points 50 Points 100 Points 500 Points 1000 Points

Scagnostics 2ms 4.6ms 7.2ms 24.4ms 56.5ms
Our Model (CPU) 7ms 7.7ms 7.2ms 7.3ms 7.5ms
Our Model (GPU) 0.1ms 0.14ms 0.14ms 0.14ms 0.14ms
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Fig. 8. Performance comparison between Scagnostics and ScatterNet
for scatterplots with different number of data points.

(a) Task 1

(b) Task 2

Fig. 9. The interface of the system used for the two tasks. Task 1:
(Left) The query scatterplot, (Right) Two lists of k-NN query results
by employing ScatterNet and Scagnostics respectively. Task 2: (Left)
The query scatterplot, (Right) A list containing randomized 7-NN query
results from ScatterNet and Scagnostics.

vector is constant once the neural network structure and model
parameters are ready. However, the computational complexity of
Scagnostics features is proportional to the number of data points
in the scatterplot [7]. The comparison indicates that Scagnostics
takes a longer time than ScatterNet when the number of points is
larger than a threshold. Note that the deep neural network can be
accelerated with GPUs that parallelize the convolution operations.

4.3 User Studies
In this section, we describe a user study that was designed to
test if our trained scatterplot similarity model can preserve visual
perception. The purpose of the first user study is intended to reflect
a general comparison among Scagnostics, HOG, and ScatterNet.
Additionally, we designed a ranking task in the second user study
to investigate k-NN query quality.

4.3.1 Task 1: Overview of Query Results
Setup and Procedure The participants were 24 graduate students
(8 females and 16 males, ages ranging from 22 to 30 years
old) from the college of computer science and the school of

TABLE 3
The two contingency tables for two groups. The count of selection is

listed for each method.

(a) ScatterNet vs. Scagnostics
Conditions Good Bad Total
ScatterNet 314 152 466
Scagnostics 122 344 466
Total 436 496 932

(b) ScatterNet vs. HOG
Conditions Good Bad Total
ScatterNet 340 150 490
HOG 156 334 490
Total 496 484 980

mathematical sciences in our university. To ensure the participants
had knowledge of statistics and statistical charts, we selected
the ones who have taken courses including probability theory,
mathematical statistics, or information visualization. A desktop
computer was used with a 24-inch LCD monitor at the resolution
of 1920×1080 and Google Chrome web browser. The average
distance from the participants to the monitor is about 70 cm, and
the derived visual angle is 4.5297. It should be noted that none of
the participants has ever enrolled in the similarity labeling process
described in Section 3.2. After the user study, each participant was
offered a $3 voucher for use in the university retail store.

We implemented a web-based user study system as shown
in Figure 9 (a) which contains a query scatterplot and two lists of
k-NN query results. One of the lists is computed with ScatterNet
while another one comes from Scagnostics or HOG. Queries are
randomly selected for each participant from the dataset described
in Section 4.1, and the corresponding query results are from
the dataset as well. The scatterplots in a single list are ranked
accordingly in decreasing order of similarities to the query. The
order of two lists were randomized to anonymize the association
between lists and methods. The participants were asked to evaluate
the quality of two results and choose the description that best
represents the quality of two query results from four options: “List
1 is better”, “List 2 is better”, “Both are good”, and “Both are bad”.

The task was performed by each participant individually. The
entire process included two steps which take about 20 minutes:
1) Instruction: A description page was given to the participant to

illustrate the task and interaction in the interface.
2) Evaluation: The participant was asked to perform 40 sets

of the comparison tasks. Their choices were stored and then
counted.
Analysis From the evaluation we obtained 960 responses for

all scatterplots in the dataset where each scatterplot was covered at
least twice by Scagnostics and HOG. We transformed the answers
into selection frequencies with the following method:
• The questions were divided into two groups based on whether

Scagnostics or HOG results were contained, i.e., questions of
“ScatterNet vs. Scagnostics” and “ScatterNet vs. HOG”.

• In each group, for questions where “List 1 is better” or “List
2 is better” is selected, the count of the corresponding method
will be increased by 1. For “Both are good” and “Both are
bad”, the counts for both (or neither of the) methods will be
increased.
The frequencies of selections are summarized in Table 3.

Two chi-square tests of independence were performed on the two
tables, respectively:
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Case 1 Our Metric

Scagnostics

Case 2 Our Metric

Scagnostics

Case 3 Our Metric

Scagnostics

Case 4 Our Metric

Scagnostics

Fig. 10. Cases in task 1 with low ratings to ScatterNet where the query
scatterplots share a common pattern of horizontal or vertical lines.

(a) ScatterNet vs. Scagnostics: χ2(1,N = 932) = 162.06, p <
0.001

(b) ScatterNet vs. HOG: χ2(1,N = 980) = 140.08, p < 0.001

which indicate significant differences in proportions.
To identify low-quality query results, we further explore query

scatterplots which received no positive ratings in ScatterNet.
In Figure 10, four representative cases are listed in which Scat-
terNet is not selected as the best results. We discover that the
cases share a common characteristic of high “striated” value in
their Scagnostics features, which presents a phenomenon that, for
such type of scatterplots with many horizontal or vertical lines,
Scagnostics features perform well or even better than ScatterNet.
This issue may be due to the high efficacy of striated descriptor
specially-defined to detect line patterns in Scagnostics. A sim-
ilar issue was also reported in [8] where strong correlation is
shown between similarities on the “striated” feature and visually-
perceived similarities. This issue is further discussed in Section 5.2
from the perspective of attention mechanism of CNN layers.

4.3.2 Task 2: Ranking Scatterplots from Two Query Results

Setup and Procedure Another 16 participants were recruited in
this task with the same requirement and reward as the first task.
The test environment was the same.

In this task, we designed another web system as shown in
Figure 9, where fourteen scatterplots are listed as query results
with a specific query scatterplot placed on the left side. The
scatterplot list consists of two 7-NN query results computed
with ScatterNet, and another 7-NN results from Scagnostics or
HOG. The initial orders and sources of the query results are
anonymized and randomized. Each participant was asked to order
these fourteen scatterplots. In the interface, participants can use

mouse to drag a scatterplot images to the desired place in the
list. For some query results, the similarity may be too small to
be accepted as “similar scatterplots”. Thus, we put an input field
of “the first irrelevant position” in the interface for each ranking
task. Participants can identify the first position where the results
became insignificant to the corresponding query.

The entire task was performed individually within 40 minutes:
1) Instruction: A description page was given to the participant to

illustrate the task and interaction in the interface.
2) Evaluation: The participant was asked to perform 30 sets of

the ranking task. The ranking results were saved and uploaded.
Analysis By excluding the cases where the first irrelevant

positions were set to 1, i.e., none of the scatterplots in the query
result list was considered as a similar one, 421 ranking results
were collected with 212 of “ScatterNet vs. Scagnostics” questions
and 209 of “ScatterNet vs. HOG” ones. Similar to the grouping
method used in Task 1, the questions were further divided into two
groups, and results in the two groups were analyzed respectively.

In each group, the scores of two corresponding methods were
assigned by performing the following processes:
• For ranked query results before the irrelevant position in each

task, the scores were assigned as their order numbers.
• For query results at and after the irrelevant position, the scores

were set as their average number of orders.
• Scores were summed up based on their corresponding sources

of methods (ScatterNet, Scagnostics, or HOG). The lower
score a method achieves, the better query results the method
provides.
Among all 212 results in the group of “ScatterNet vs. Scagnos-

tics”, there were 156 results (73.58%) that ScatterNet receives a
lower score than Scagnostics. The corresponding ratio in “Scatter-
Net vs. HOG” was 63.16% (132 out of 209). We further performed
the Wilcoxon signed-rank test on the two lists of summed scores
in each group. The results are listed below:
(a) ScatterNet vs. Scagnostics: median(ScatterNet) = 46.0,

median(Scagnostics) = 56.0, Z = 7044.0, p < 0.001
(b) ScatterNet vs. HOG: median(ScatterNet) = 48.5,

median(HOG) = 52.5, Z = 7367.5, p < 0.001
According to the results, in both of the groups the scores

were significantly less for ScatterNet than for another one, which
indicates that ScatterNet received better rankings.

5 DISCUSSIONS

5.1 Adaptability Issue
As presented in Section 3.3, converting the input data into images
is identical to visually representing the dots. To test whether the
predictability of the model is stable when the visual encoding is
changed, we applied the trained model as a baseline model (2px in
radius and 0.4 for opacity) for evaluating scatterplots with different
sizes (1px and 5px) and opacity values (0.2 and 0.6). In each set
we computed the Jaccard indices of 10-NN query results between
the baseline visual encoding and other visual encodings. Figure 11
reports the distribution of Jaccard indices. It can be seen that large
numbers of the Jaccard index values are distributed in the range of
0 to 0.5, indicating that the visual encoding has an influence on the
k-NN query results of ScatterNet. A feasible solution for reducing
the influence is to adopt transfer learning strategy [48] in adapting
ScatterNet to various visual attributes with a small quantity of new
training data.
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Fig. 11. Distributions of Jaccard indices for 10-NN query results between
the baseline visual encoding and four others.
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Fig. 12. Attention maps of eight different types of scatterplots. Attention
value are visualized as heatmaps.

Another related issue is to build task-dependent similarity
models. Because the standards for deciding similar and dissimilar
scatterplots vary from task to task, re-labeled training data is
necessary to be collected from domain experts. By using the
baseline model as a pre-trained initialization, the training cost may
be significantly reduced.

5.2 Inspection of the Trained Model
Unlike other interpretable models such as decision trees and linear
regression, deep neural networks are commonly regarded as black-
box models with low interpretability. In this section, we tend to
investigate the internal mechanism of how ScatterNet recognizes
scatterplots. Here we employ the Grad-CAM method [49] to
generate attention maps of the input scatterplots. The attention
map is utilized for depicting local regions that the convolution
layers focus on when performing feature transformations, which
implies the salience among different regions. Figure 12 shows a set
of scatterplots in the test dataset blended with their corresponding
attention maps. The attention maps are generated by using the
last convolution layer in ScatterNet. From the results, we discover
some interesting insights revealed by the attention maps and the
scatterplots.
• Global Patterns vs. Details: The distribution of high-

attention areas is related to the density of dots in the scat-

terplot. This indicates that the model prefers regions with high
information density when judging similarities. Meanwhile, the
regions with sparse points may be ignored by the model,
meaning that the model tends to capture global patterns in
the entire scatterplot image but not only local details.

• Confusion on line patterns: In the first task of the user
study, it is discovered that the performance on scatterplots
with multiple line patterns is not as good as those on other
patterns. The situation can be partly presented in Figure 12
(a) where the high-value attention regions are not evenly
distributed along the line patterns. A similar distribution can
be achieved in Figure 12 (b) as well. This may be caused by
the preference of global patterns mentioned above, i.e., the
model regards multiple separated lines as a single pattern. A
possible solution for this is to combine specifically-designed
line pattern detectors into the deep neural network model.

5.3 Potential Use Cases
5.3.1 Visual Querying by Scatterplot Images
Similar to the example introduced in Section 1, it is a common
task to retrieve desired patterns from a large collection of scatter-
plots for many applications such as Online Analysis Processing
(OLAP). We develop an image search prototype to enable active
querying of scatterplots. The interface (Figure 13) consists of
two main components: a.1) a query field, and a.2) a result view.
The query image is transformed into a feature vector by the
trained similarity model, whose similarities to feature vectors in
the database are measured with the Euclidean distance. Thereafter
a list of similar scatterplot images is ranked in the result view.
As an extension of querying specification, a query-by-sketching
method [27], [50], [51], [52] can be employed to support freestyle
drawing of target patterns on a canvas, which is then converted
into images for searching.

5.3.2 Visual Exploration of Subspaces in High-dimensional
Data
Visual exploration of massive scatterplots [15], [16], [53], [54] is
an effective way for studying high-dimensional data. Subspace
analysis is a common task to discover patterns in informative
or task-related dimensions. One representative for visual sub-
space analysis is multi-dimensional projection that embeds data
instances in a subspace into a 2-D scatterplot. When a dataset
contains hundreds or thousands of dimensions, the pairwise com-
bination of dimensions results in vast quantities of scatterplots.
Thus, an automated pattern extraction method can be advanta-
geous in detecting interesting patterns.

Usually, similarity measuring methods are deeply rooted in
the foundations of such pattern detection algorithms, for instance,
cluster analysis [22], [55], [56], [57], [58] and outlier detec-
tion [59], [60], [61]. As shown in Figure 13 (b), we design a pro-
totype to support visual exploration and summarization of large-
scale subspace projections. In the main view (b.1), the scatterplots
of corresponding subspace are initially projected in accordance
with their perceptual similarities derived from ScatterNet. The
users are able to discover clusters and outliers of these scatterplots
to find subspaces with similar or unique data distributions. By
clicking on a scatterplot, the users can select or remove attributes
in order to change the represented subspace of the scatterplot in
the attribute selection view (b.2). Additional annotation means
in Figure 13 (b.3) such as textual labels and cluster markers are
provided to facilitate recording their discovered patterns.
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a.1
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b.1
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(b)(a)

Fig. 13. Two use cases of ScatterNet. (a) The interface of the image search engine. A user can upload an image in the query field (a.1), and the
search results are listed below in the result view (a.2). (b) Visual exploration of subspace projection scatterplots: (b.1) Main view, (b.2) Attribute
selection view, and (b.3) Annotation view.

5.4 Limitations
There are some limitations in the data annotation and model
training stages. Deep learning models usually demand a large
amount of labeled data to achieve desirable prediction accuracy
and generalization ability. Thus, training triplets requires massive
time cost on data labeling. Unlike decision trees or support vector
machines, a deep neural network often takes hours or even days
to fit enormous numbers of training data instances, hence it is
hard to provide interaction-level response for the user. In specific
scenarios where the users want to re-annotate triplets based on
analytical tasks or domain knowledge, the process could be time-
consuming. Concerning model parameters such as the number of
convolution layers and corresponding kernel sizes, there might be
extra effort for tuning these values when the visual encoding or
analytical tasks are changed.

As discussed in Section 5.2, the sparsity of data instances
in scatterplots is another issue that affects the performance of
ScatterNet. The CNN layers transform scatterplots that contain
few points into a small region in the vector space, making
themselves indistinguishable from each other. Thus, ScatterNet
works well when the point distributions of scatterplots for training
and prediction are relatively dense.

5.5 Future Work
In the future, we would like to further investigate the following
issues. One promising extension of our work is to consolidate
the user evaluation of our method by using rating scales. In the
first user study, we mainly focus on comparing ScatterNet with
two existing methods. To inspect the matching level between
similarities perceived by human users and the computed results,
rating scales like Likert scale can be utilized. Another extension
of our work is to capture asymmetric similarity in scatterplots.
In classical cognitive psychology, asymmetries exist in similarity
judgment tasks [62]. As described in Section 3.3, currently we
use Euclidean distance as the optimization target for the feature
extraction layers in the deep neural network. However, asymmetry
cannot be handled by metric distances such as Euclidean distance.
A feasible solution is to design an alternative distance function
that handles asymmetric distances well. The loss function should
be modified as well to match the optimization goal.

The combination of visualization, perception, and computer
vision raises exciting research trends. For defining similarities,
semantic information, and domain knowledge can be involved in
users’ annotations of how similar two scatterplots are, which may
lead to completely different presentations of similarity measures.
Furthermore, by regarding visualization results as images, is it
feasible that computer vision methods can assist in recognizing
interesting regions? In our work we only take scatterplots into con-
sideration. For other types of statistical charts or visual designs,
is it possible to retrieve useful information from the images with
deep learning methods to partly facilitate users’ repetitive work on
visual exploration and investigation? These challenges will have a
positive influence on the design of automated information retrieval
approaches in visualization results.

6 CONCLUSION

In this paper we propose a novel approach for characterizing
perceptual similarities between scatterplots. Motivated by the
success of deep neural networks in image recognition, we design
a user-oriented data annotation stage to generate a set of triplets
that convey human perception on the similarity of scatterplots.
It is then used for training ScatterNet, a deep learning model
to capture the similarity from scatterplot images. We carry out
quantitative experiments and user studies on our trained model as
well as a comparison with existing measures. The result indicates
that ScatterNet outperforms existing solutions.
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