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Abstract: A dynamic network refers to a graph structure whose nodes and/or links will dynamically change
over time. Existing visualization and analysis techniques mainly focus on summarizing and revealing the primary
evolution patterns of the network structure. Little work focuses on detecting anomalous changing patterns in a
dynamic network, the rare occurrence of which could damage the development of the entire structure. In this paper,
we introduce the first visual analysis system RCAnalyzer designed for detecting rare changes of sub-structures in a
dynamic network. The proposed system employs a rare category detection algorithm to identify anomalous changing
structures and visualize them in context to help oracles examine the analysis results and label the data. In particular,
a novel visualization is introduced, which represents the snapshots of a dynamic network in a series of connected
triangular matrices. Hierarchical clustering and optimal tree cut are performed on each matrix to illustrate the
detected rare change of nodes and links in the context of their surrounding structures. We evaluate our technique
via a case study and a user study. The evaluation results verified the effectiveness of our system.
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1 Introduction

In many cases, relations among objects can be
modeled as time-evolving networks, such as the col-
laborations among researchers, transactions among
traders, and communications in social networks.
These relations reflect how individuals act in a net-
work over time and reflect the goals of their activ-
ities (Jovanovic et al., 2015). Most individuals in
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a network behave normally, while a minority may
act differently from the others, indicating anoma-
lous situations. Anomalies could be positive, such
as superstars in a collaboration network and recipi-
ents or benefactors in a financial network, or nega-
tive enough to damage the development of the entire
graph, such as frauds in a trading network and crim-
inals or spies in a communication network. In either
case, finding these anomalous changing behaviors of
network structures is valuable.

Most of the existing anomaly detection algo-
rithms are automatic, and do not take human in-
sights into account. In contrast, active learning is a
special case of machine learning that improves auto-
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matic algorithms’ performance with human knowl-
edge. Following an active learning procedure, many
rare category detection (RCD) methods are thus de-
veloped following (He and Carbonell, 2009, 2008;
Huang et al., 2013, 2011; Pelleg and Moore, 2005),
i.e., candidates that are most likely to represent rare
categories are detected and shown to be labeled by
users. Rare category detection methods are one set
of anomaly detection algorithms which recognize ab-
normal individuals as rare categories because their
number is usually very small. Once labeled, the al-
gorithm will propagate the label to the nearby in-
stances which are similar to the labeled one in a
feature space. Those representative candidates are
usually centers of rare categories. This procedure has
one major limitation, i.e., it is still difficult for users
to make a correct judgment (i.e., whether or not the
candidate represents a rare category) by only show-
ing one single data instance to them with the entire
context information missing. This is particularly dif-
ficult for detecting rare categories from a dynamic
graph as both the temporal and structural informa-
tion need to be considered while labeling a candidate.
Therefore, visualization could be helpful in terms of
supporting the interactive data exploration and pro-
viding a rich context representation.

However, challenges exist in designing such a
visualization system to support the process of rare
category detection in a dynamic network. First, al-
though capturing the temporal dynamics of a chang-
ing structure itself is a problem that has been exten-
sively studied (Beck et al., 2014), none of the existing
techniques is developed to support the visualization
of rare categories. Second, capturing the changing
structures of rare categories in the context of a big
dynamic graph is challenging as the rare categories
are usually very small and their evolutions could be
very likely to be ignored. Third, to better support
the decision-making process, the visualization should
be able to differentiate different structures in detail,
and this is not easy to achieve.

To address the above challenges, in this paper,
we propose a novel visualization system called RC-
Analyzer. RCAnalyzer represents a large dynamic
network in the form of a series of connected tri-
angular matrices with each matrix representing a
snapshot (Fig. 1). A hierarchical clustering algo-
rithm and a tree cut algorithm are developed to
produce an adaptive focus+context view that ag-

gregates the graph structure into a hierarchy so that
a large graph can be fully displayed while showing
the detailed structures of potential rare categories.
The proposed matrix based visualization facilitates
an in-context visual comparison of substructures in
a dynamic graph, thus helping with rare category
detection. In particular, this paper has the following
contributions:

Matrix Sankey Diagram

Dendrogram

Fig. 1 The basic design of the matrices view is a
combination of matrix, Sankey diagram and dendro-
gram. Compared to a square matrix, triangles are
more space efficient.

� A novel tree cut algorithm that produces a
multi-focus view to illustrate the substructure
details of multiple rare categories in the context
of a big dynamic graph.

� A novel dynamic network visualization design
in the form of a series of connected triangular
matrices that highlights the detected rare cate-
gories in both the temporal and topological con-
text, facilitating the substructure comparison.

� An integrated visual analysis system that sup-
ports the detection of rare categories and facili-
tates rare category labeling.

The paper is organized as follows. Related work
is discussed in section 2. The BIRD algorithm and
analytical tasks are introduced in section 3. In sec-
tion 4 we introduce the design of our system. System
evaluations are introduced in section 5. We discuss
our work in section 6 and conclude the paper in sec-
tion 7.
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2 Related work

2.1 Dynamic network anomaly detection

Anomaly detection in dynamic networks refers
to the detection of anomalous nodes, edges, sub-
graphs, and time-evolving changes. Several existing
surveys have reviewed the most popular anomaly de-
tection methods used in dynamic networks (Bhuyan
et al., 2013; Ranshous et al., 2015). Ranshous
et al. categorized the existing methods into 5
types (Ranshous et al., 2015): community-based,
compression-based, decomposition-based, distance-
based, and probabilistic-model-based. For exam-
ple, based on compression based methods, a graph
stream can be divided into multiple segmentations
using the minimum description length (MDL) prin-
ciple. Anomaly changes can be then detected at the
time points when a new segment begins (Sun et al.,
2007). Probabilistic-model-based methods usually
construct a "normal" model and use it to detect
anomalies that deviate from the "normal" model.
For example, when the number of communications
deviates from the expected number generated by
conjugate Bayesian models, the time point would be
considered as an anomaly (Heard et al., 2010).

As we mentioned in Section 1, these anomaly
detection works do not capture user's intention. In
contrast, rare category detection refers to a series
of active learning methods which incorporate human
knowledge. Many RCD methods requires prior in-
formation to detect the minority classes (Pelleg and
Moore, 2005; He and Carbonell, 2008; He et al., 2008,
2010; Zhou et al., 2015a, 2017, 2015b). However,
many data sets don't have any prior information. To
avoid this limitation, Huang et al. (Huang et al.,
2011, 2013), He et al. (He and Carbonell, 2009) pre-
sented a series of prior-free methods. Compactness-
assumption-based methods (He and Carbonell, 2008;
He et al., 2008; Zhou et al., 2015b, 2017) assume that
the distribution of the major categories is smooth
and compact and compactness-isolation-assumption-
based methods (Huang et al., 2013; Vatturi and
Wong, 2008) require the rare categories to be isolated
from the major category. Lin et al. present RCLens
(Lin et al., 2017), a visual analytics system support-
ing user-guided rare category exploration and iden-
ti�cation. RCLens is able to support users identify
rare categories in a high dimensional dataset. How-
ever, it is not designed for rare category identi�cation

in dynamic networks.

2.2 Visualization of anomaly

Many visualization techniques have been devel-
oped to help the detection and analysis of anomalies
(Haberkorn et al., 2014; Liu et al., 2017; Chandola
et al., 2009; Zhang et al., 2017). Dimension reduc-
tion methods, such as principal component analy-
sis(PCA) (Jolli�e and Ian, 1986), and multidimen-
sional visualization techniques, such as parallel co-
ordinate plots (Inselberg, 2009) and DICON (Cao
et al., 2011), are commonly used to visualize the
data distribution and show outliers with abnormal
distribution. In ViDX (Xu et al., 2017), an extended
Marey's graph is used to show outliers in the man-
ufacturing procedure. Anomalies in network tra�c
data (Corchado and Herrero, 2011; Tsai et al., 2009;
Teoh et al., 2002) and social media data (Thom et al.,
2012; Zhao et al., 2014; Cao et al., 2016) have also
drawn a lot of attention. Flux�ow (Zhao et al., 2014)
detects the di�usion of anomalous information in so-
cial media and TargetVue (Cao et al., 2016) uses
glyph-based designs to show the anomalous behav-
iors in online communication systems based on an
unsupervised learning model. Wang et al. (Wang
et al., 2013) presented SentiView to visualize the
sentiment in internet topics and enables analysts to
monitor abnormal events on the internet. Fan et al.
(Fan et al.) presented an interactive visual analytics
approach which combines active learning and visual
interaction to detect anomalies.

Compared to the existing methods, our method
focuses on detecting the rare categories in dynamic
networks based on RCDs. To the best of our knowl-
edge, there isn't an existing visualization system that
supports labeling users in analyzing and labelling
anomalies based on RCDs. Moreover, we developed
a series of interactions which enable users to compare
rare categories within entire dynamic networks.

2.3 Visualization of dynamic networks

Visualization of dynamic networks has had a
lot of study over the years. A �ne survey by Beck
et al. (Beck et al., 2014) has reported the state of
art of dynamic network visualization. Beck et al.
classify the visualization techniques of dynamic net-
works into animated diagrams (Bach et al., 2013;
Yee et al., 2001) and timelines of a series of static
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charts, such as node-link diagrams or adjacency ma-
trices. Timelines with matrix-based and �ow-based
representation methods are most relevant to our
work. Archambault et al. (Archambault et al., 2011)
found that small multiple-based techniques have bet-
ter performance than animation-based techniques.

Matrix-based techniques can be classi�ed into
two categories. The �rst category embeds a time-
line into each cell of the matrix. Gestaltlines (Bran-
des and Nick, 2011), �ngerprint glyphs (Oelke et al.,
2013), and the horizon graph (Burch et al., 2013)
are used to show the evolution of dyadic relations in
a matrix. However, this category of methods often
does not �t well with large data sets. The second
category lays a sequence of adjacency matrices in a
certain order (Bach et al., 2015, 2014; Zhao et al.,
2015). Van den Elzen et al. (Elzen et al., 2015) re-
duce the matrices into points and lay the points by
production methods. NodeTrix (Henry et al., 2007)
and Dendrogramix (Blanch et al., 2015) both visual-
ize a static graph by combining several visualization
representation. However, they are not designed for
visualizing dynamic networks and thus cannot show
the change of networks properly.

Flow-based techniques use �ow metaphors to
represent the evolution of communities in networks
(Vehlow et al., 2015; Hlawatsch et al., 2014). Sankey
diagram (Riehmann et al., 2005) and ThemeRiver
(Havre et al., 2000) are the most common methods
used. For example, Vehlow et al. (Vehlow et al.,
2015) use Sankey diagrams to show the changes of
community structures. Flow-based techniques ag-
gregate networks by group information, and thus of-
ten lack details of the local areas of the network.

In this paper, we combine adjacency matrices,
Sankey diagrams, and tree structures based on a
multi-focus tree cut algorithm and visualize focused
areas with �ne-grained detail and unfocused areas
with coarse-grained detail within a sequence of ma-
trices.

3 Overview

Rare category detection (RCD) algorithms aim
to �nd an initial example of rare classes in the data
(Pelleg and Moore, 2005). To best of our knowl-
edge, Batch-update Incremental RCD (BIRD) (Zhou
et al., 2015b) is the �rst (and the only) work designed
for detecting rare categories in dynamic networks. It

takes snapshots of dynamic network topology at two
di�erent time steps as input and iteratively detects
rare category candidates, which potentially belong to
a rare category. In this section, we �rst introduce
related concepts of BIRD, and then introduce the
analytical tasks users should complete based on RC-
Analyzer to detect rare categories in dynamic net-
works.

3.1 Batch-update incremental RCD (BIRD)

Here, we review the key ideas of the incremen-
tal rare category detection algorithm - BIRD (Zhou
et al., 2017, 2015b), which pave the way for our forth-
coming introduction of the rare category visual ana-
lytic system.

The Batch-update incremental Rare Category
Detection (BIRD) algorithm aims to detect rare cat-
egories in dynamic networks. According to BIRD, a
pair of nodes is closely connected if their transition
probability is high. Therefore, the BIRD algorithm
believes the transition probability of nodes in one
rare category should have a lower bound and the
transition probability of nodes in di�erent rare cate-
gories should have an upper bound (He et al., 2008).
Therefore, a rare category is a group of connected
nodes that possess the following two features: (1)
These nodes form a compact structure, which means
they are closely connected. The transition probabili-
ties among these nodes are relatively high and larger
than the lower bound. (2) The compact structure
should have a clear border. The transition probabili-
ties among the nodes in this structure (rare category)
and the other rare categories are relatively low and
smaller than the upper bound. There are two visual
examples showing these two features intuitively in
Fig. 2.

BIRD is an iterative algorithm. In each iter-
ation, it detects a node whose neighborhood den-
sity changes signi�cantly between two given adjacent
time steps in a dynamic network. This node is po-
tentially a representative node of a rare category.

Similar to the existing graph-based RCD algo-
rithms (He and Carbonell, 2008; He et al., 2008; Zhou
et al., 2015a), the BIRD algorithm can be mainly
separated into the following two parts:

1. Compute the global similarity matrix A,

A = ( I � �W ) � 1 (1)
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Fig. 2 The compact neighborhood structures of D.,
J. and S., A. (A) and I., P. (B).

where I is an identity matrix, W denotes the
transition probability matrix of the given graph
G, and � is a positive discounting constant in the
range of (0; 1). Note that the global similarity
matrix A helps sharpen the changes of the local
density near the boundaries of each class. This
considerably reduces the workload of identifying
rare categories in the query process.

2. Update the query score iteratively based on the
labeling information from users and return the
example with the largest query score to users for
inspection. In general, the query process selects
the examples from regions where local density
changes the most, and thus the queried exam-
ples tend to have a high probability of hitting
the regions of rare categories.

Before algorithm BIRD (Zhou et al., 2017,
2015b), previous studies (Pelleg and Moore, 2005;
He and Carbonell, 2008; He et al., 2008, 2010) were
all built for static graphs. For this reason, BIRD
extends the problem to the dynamic setting and ef-
�ciently updates the RCD model by using the local
changes to avoid reconstructing it from scratch. To
be speci�c, the BIRD algorithm (1) e�ciently up-
dates the global similarity matrix A ( t ) at each time
step t based on the global similarity matrix A ( t � 1)

at previous time step t � 1 and the updated edges
in current time step t; (2) locally updates the query
scores of the examples which may be infected by the
changes in current time stept.

The original BIRD algorithm outputs the rare
category candidate with the highest query score and
waits for users to label the candidate. The query
process might repeat many times. Thus, we slightly
modify the BIRD algorithm by making the algorithm

output candidates with top k query scores, wherek
is a manually set parameter.

The work�ow of analyzing rare categories in dy-
namic networks with BIRD contains three stages.
First, users set parameters and select two adjacent
snapshots to initialize BIRD. Second, users analyze
and identify rare categories based on the candidates
detected by BIRD. Third, users label the candidates.
The label result is returned to BIRD. When users
think that all rare categories between the two snap-
shots are found, they can select other time steps and
repeat the work�ow to analyze other rare categories.

3.2 Analytical tasks

According to the analysis work�ow, we summa-
rize what analytical tasks should be completed by
users based on these data as follows:

T1 Set parameters to initialize BIRD. Users need to
set a series of parameters before BIRD can detect
rare category candidates. The most important
parameters are the starting time step and the
ending time step, which determineGt used for
initialization of BIRD.

T2 Identify new rare categories from the examples
detected by BIRD. After BIRD is initialized,
it will iteratively output detected rare category
candidates. Users �rst identify candidates that
truly belong to rare categories by analyzing their
neighborhood structure. Then users compare
the detected rare category with labeled rare cat-
egories to determine whether it is a new rare
category.

T3 Label the examples based on analysis results. Af-
ter analyzing rare category candidates, users la-
bel each candidate by a speci�c number. Labels
are then returned to BIRD.

4 System design

In this section, we �rst introduce the design re-
quirements of the RCAnalyzer for completing the
analytical tasks, and then we introduce the design of
the RCAnalyzer in detail.

4.1 Design requirements

We identify the following design requirements
that the RCAnalyzer should ful�ll based on the an-
alytical tasks.
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Fig. 3 User interface of RCAnalyzer. (a) the timeline view; (b) the matrices view; (c)the instance view;
(d) the sub-network view; (e) the label result view; (f ) the parameter panel; (g) the encoding panel; and
(h) the information panel. BIRD detects W. D., X. W., and H. L. between 2014 and 2015. (i) the compact
neighborhood structures formed by them and their surrounding area in the sub-network view; (j) the small
community constituted by them and their surrounding area in 2013; (k) the same area as (j) in 2014; (l) a
dense structure appeared beside (k); (m) two nodes in (k) have a lot of connections to nodes in (l); (n) the
Sankey diagram shows 8 nodes in (l) are nodes in 2014. (l) indicates the existence of a paper with lots of
coauthors, which might be a result of multilateral cooperation. The abnormal change of the surrounding areas
of W. D., X. W., and H. L. make them a rare category.

For setting parameters to initialize BIRD (T1),
we identify the following design requirements:
R1 Provide an overview of dynamic networks.

Users need to �rst explore the entire dynamic
networks and understand the overall change of
dynamic networks. With an overview, users can
decide on which time periods they would focus
on.
To identify examples belonging to rare cate-

gories among all detected examples (T2), we identify
the following design requirements:
R2 Capture the changing structures of rare

categories in the context of dynamic net-
works. It is necessary to show the evolution of
candidates in the background of the entire net-
work. This helps users to identify the di�erences
between the instance and the majority class.

R3 Reveal the features of detected examples.
It is essential to show the features of the sur-
rounding area of candidates to identify rare cat-
egories. The features include the ego network of
the instance and the similar nodes detected by
BIRD.

R4 Reserve the context of labeled rare cate-
gories. The system should remind users what
kind of rare categories are detected and support
the comparison between new candidates and la-
beled categories.
To label the examples based on analysis results

(T3), we identify the following design requirements:
R5 Enable users to set and reset the labels of

candidates. The system should enable users to
label rare categories and change labels of rare
categories when they make mistakes.
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