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Abstract: A dynamic network refers to a graph structure whose nodes and/or links will dynamically change
over time. Existing visualization and analysis techniques mainly focus on summarizing and revealing the primary
evolution patterns of the network structure. Little work focuses on detecting anomalous changing patterns in a
dynamic network, the rare occurrence of which could damage the development of the entire structure. In this paper,
we introduce the first visual analysis system RCAnalyzer designed for detecting rare changes of sub-structures in a
dynamic network. The proposed system employs a rare category detection algorithm to identify anomalous changing
structures and visualize them in context to help oracles examine the analysis results and label the data. In particular,
a novel visualization is introduced, which represents the snapshots of a dynamic network in a series of connected
triangular matrices. Hierarchical clustering and optimal tree cut are performed on each matrix to illustrate the
detected rare change of nodes and links in the context of their surrounding structures. We evaluate our technique
via a case study and a user study. The evaluation results verified the effectiveness of our system.
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1 Introduction a network behave normally, while a minority may

act differently from the others, indicating anoma-
In many cases, relations among objects can be

modeled as time-evolving networks, such as the col-

lous situations. Anomalies could be positive, such
as superstars in a collaboration network and recipi-

laborations among researchers, transactions among
traders, and communications in social networks.
These relations reflect how individuals act in a net-
work over time and reflect the goals of their activ-
ities (Jovanovic et al., 2015). Most individuals in

¥ Corresponding author
" This research is supported by National Natural Science Foun-
dation of China (U1866602,61772456)

ORCID: Jia-cheng PAN, https://orcid.org/0000-0002-8676-
9990
(© Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2018

ents or benefactors in a financial network, or nega-
tive enough to damage the development of the entire
graph, such as frauds in a trading network and crim-
inals or spies in a communication network. In either
case, finding these anomalous changing behaviors of
network structures is valuable.

Most of the existing anomaly detection algo-
rithms are automatic, and do not take human in-
sights into account. In contrast, active learning is a
special case of machine learning that improves auto-
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matic algorithms’ performance with human knowl-
edge. Following an active learning procedure, many
rare category detection (RCD) methods are thus de-
veloped following (He and Carbonell, 2009, 2008;
Huang et al., 2013, 2011; Pelleg and Moore, 2005),
i.e., candidates that are most likely to represent rare
categories are detected and shown to be labeled by
users. Rare category detection methods are one set
of anomaly detection algorithms which recognize ab-
normal individuals as rare categories because their
number is usually very small. Once labeled, the al-
gorithm will propagate the label to the nearby in-
stances which are similar to the labeled one in a
feature space. Those representative candidates are
usually centers of rare categories. This procedure has
one major limitation, i.e.,
to make a correct judgment (i.e., whether or not the
candidate represents a rare category) by only show-

it is still difficult for users

ing one single data instance to them with the entire
context information missing. This is particularly dif-
ficult for detecting rare categories from a dynamic
graph as both the temporal and structural informa-
tion need to be considered while labeling a candidate.
Therefore, visualization could be helpful in terms of
supporting the interactive data exploration and pro-
viding a rich context representation.

However, challenges exist in designing such a
visualization system to support the process of rare
category detection in a dynamic network. First, al-
though capturing the temporal dynamics of a chang-
ing structure itself is a problem that has been exten-
sively studied (Beck et al., 2014), none of the existing
techniques is developed to support the visualization
of rare categories. Second, capturing the changing
structures of rare categories in the context of a big
dynamic graph is challenging as the rare categories
are usually very small and their evolutions could be
very likely to be ignored. Third, to better support
the decision-making process, the visualization should
be able to differentiate different structures in detail,
and this is not easy to achieve.

To address the above challenges, in this paper,
we propose a novel visualization system called RC-
Analyzer. RCAnalyzer represents a large dynamic
network in the form of a series of connected tri-
angular matrices with each matrix representing a
snapshot (Fig. 1). A hierarchical clustering algo-
rithm and a tree cut algorithm are developed to

produce an adaptive focus-context view that ag-
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gregates the graph structure into a hierarchy so that
a large graph can be fully displayed while showing
the detailed structures of potential rare categories.
The proposed matrix based visualization facilitates
an in-context visual comparison of substructures in
a dynamic graph, thus helping with rare category
detection. In particular, this paper has the following
contributions:
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Fig. 1 The basic design of the matrices view is a
combination of matrix, Sankey diagram and dendro-
gram. Compared to a square matrix, triangles are
more space efficient.

e A novel tree cut algorithm that produces a
multi-focus view to illustrate the substructure
details of multiple rare categories in the context
of a big dynamic graph.

e A novel dynamic network visualization design
in the form of a series of connected triangular
matrices that highlights the detected rare cate-
gories in both the temporal and topological con-
text, facilitating the substructure comparison.

e An integrated visual analysis system that sup-
ports the detection of rare categories and facili-
tates rare category labeling.

The paper is organized as follows. Related work
is discussed in section 2. The BIRD algorithm and
analytical tasks are introduced in section 3. In sec-
tion 4 we introduce the design of our system. System
evaluations are introduced in section 5. We discuss
our work in section 6 and conclude the paper in sec-
tion 7.
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2 Related work
2.1 Dynamic network anomaly detection

Anomaly detection in dynamic networks refers
to the detection of anomalous nodes, edges, sub-
graphs, and time-evolving changes. Several existing
surveys have reviewed the most popular anomaly de-
tection methods used in dynamic networks (Bhuyan
et al., 2013; Ranshous et al., 2015). Ranshous
et al. categorized the existing methods into 5
types (Ranshous et al., 2015): community-based,
compression-based, decomposition-based, distance-
based, and probabilistic-model-based. For exam-
ple, based on compression based methods, a graph
stream can be divided into multiple segmentations
using the minimum description length (MDL) prin-
ciple. Anomaly changes can be then detected at the
time points when a new segment begins (Sun et al.,
2007). Probabilistic-model-based methods usually
construct a "normal" model and use it to detect
anomalies that deviate from the "normal" model.
For example, when the number of communications
deviates from the expected number generated by
conjugate Bayesian models, the time point would be
considered as an anomaly (Heard et al., 2010).

As we mentioned in Section 1, these anomaly
detection works do not capture user’s intention. In
contrast, rare category detection refers to a series
of active learning methods which incorporate human
knowledge. Many RCD methods requires prior in-
formation to detect the minority classes (Pelleg and
Moore, 2005; He and Carbonell, 2008; He et al., 2008,
2010; Zhou et al., 2015a, 2017, 2015b).
many data sets don’t have any prior information. To

However,

avoid this limitation, Huang et al. (Huang et al.,
2011, 2013), He et al. (He and Carbonell, 2009) pre-
sented a series of prior-free methods. Compactness-
assumption-based methods (He and Carbonell, 2008;
He et al., 2008; Zhou et al., 2015b, 2017) assume that
the distribution of the major categories is smooth
and compact and compactness-isolation-assumption-
based methods (Huang et al., 2013; Vatturi and
Wong, 2008) require the rare categories to be isolated
from the major category. Lin et al. present RCLens
(Lin et al., 2017), a visual analytics system support-
ing user-guided rare category exploration and iden-
tification. RCLens is able to support users identify
rare categories in a high dimensional dataset. How-
ever, it is not designed for rare category identification
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in dynamic networks.
2.2 Visualization of anomaly

Many visualization techniques have been devel-
oped to help the detection and analysis of anomalies
(Haberkorn et al., 2014; Liu et al., 2017; Chandola
et al., 2009; Zhang et al., 2017). Dimension reduc-
tion methods, such as principal component analy-
sis(PCA) (Jolliffe and Tan, 1986), and multidimen-
sional visualization techniques, such as parallel co-
ordinate plots (Inselberg, 2009) and DICON (Cao
et al., 2011), are commonly used to visualize the
data distribution and show outliers with abnormal
distribution. In ViDX (Xu et al., 2017), an extended
Marey’s graph is used to show outliers in the man-
ufacturing procedure. Anomalies in network traffic
data (Corchado and Herrero, 2011; Tsai et al., 2009;
Teoh et al., 2002) and social media data (Thom et al.,
2012; Zhao et al., 2014; Cao et al., 2016) have also
drawn a lot of attention. Fluxflow (Zhao et al., 2014)
detects the diffusion of anomalous information in so-
cial media and TargetVue (Cao et al., 2016) uses
glyph-based designs to show the anomalous behav-
iors in online communication systems based on an
unsupervised learning model. Wang et al. (Wang
et al., 2013) presented SentiView to visualize the
sentiment in internet topics and enables analysts to
monitor abnormal events on the internet. Fan et al.
(Fan et al.) presented an interactive visual analytics
approach which combines active learning and visual
interaction to detect anomalies.

Compared to the existing methods, our method
focuses on detecting the rare categories in dynamic
networks based on RCDs. To the best of our knowl-
edge, there isn’t an existing visualization system that
supports labeling users in analyzing and labelling
anomalies based on RCDs. Moreover, we developed
a series of interactions which enable users to compare
rare categories within entire dynamic networks.

2.3 Visualization of dynamic networks

Visualization of dynamic networks has had a
lot of study over the years. A fine survey by Beck
et al. (Beck et al., 2014) has reported the state of
art of dynamic network visualization. Beck et al.
classify the visualization techniques of dynamic net-
works into animated diagrams (Bach et al., 2013;
Yee et al., 2001) and timelines of a series of static
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charts, such as node-link diagrams or adjacency ma-
trices. Timelines with matrix-based and flow-based
representation methods are most relevant to our
work. Archambault et al. (Archambault et al., 2011)
found that small multiple-based techniques have bet-
ter performance than animation-based techniques.

Matrix-based techniques can be classified into
two categories. The first category embeds a time-
line into each cell of the matrix. Gestaltlines (Bran-
des and Nick, 2011), fingerprint glyphs (Oelke et al.,
2013), and the horizon graph (Burch et al., 2013)
are used to show the evolution of dyadic relations in
a matrix. However, this category of methods often
does not fit well with large data sets. The second
category lays a sequence of adjacency matrices in a
certain order (Bach et al., 2015, 2014; Zhao et al.,
2015). Van den Elzen et al. (Elzen et al., 2015) re-
duce the matrices into points and lay the points by
production methods. NodeTrix (Henry et al., 2007)
and Dendrogramix (Blanch et al., 2015) both visual-
ize a static graph by combining several visualization
representation. However, they are not designed for
visualizing dynamic networks and thus cannot show
the change of networks properly.

Flow-based techniques use flow metaphors to
represent the evolution of communities in networks
(Vehlow et al., 2015; Hlawatsch et al., 2014). Sankey
diagram (Richmann et al., 2005) and ThemeRiver
(Havre et al., 2000) are the most common methods
used. For example, Vehlow et al. (Vehlow et al.,
2015) use Sankey diagrams to show the changes of
community structures. Flow-based techniques ag-
gregate networks by group information, and thus of-
ten lack details of the local areas of the network.

In this paper, we combine adjacency matrices,
Sankey diagrams, and tree structures based on a
multi-focus tree cut algorithm and visualize focused
areas with fine-grained detail and unfocused areas
with coarse-grained detail within a sequence of ma-
trices.

3 Overview

Rare category detection (RCD) algorithms aim
to find an initial example of rare classes in the data
(Pelleg and Moore, 2005). To best of our knowl-
edge, Batch-update Incremental RCD (BIRD) (Zhou
et al., 2015b) is the first (and the only) work designed
for detecting rare categories in dynamic networks. It
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takes snapshots of dynamic network topology at two
different time steps as input and iteratively detects
rare category candidates, which potentially belong to
a rare category. In this section, we first introduce
related concepts of BIRD, and then introduce the
analytical tasks users should complete based on RC-
Analyzer to detect rare categories in dynamic net-
works.

3.1 Batch-update incremental RCD (BIRD)

Here, we review the key ideas of the incremen-
tal rare category detection algorithm - BIRD (Zhou
et al., 2017, 2015b), which pave the way for our forth-
coming introduction of the rare category visual ana-
lytic system.

The Batch-update incremental Rare Category
Detection (BIRD) algorithm aims to detect rare cat-
egories in dynamic networks. According to BIRD, a
pair of nodes is closely connected if their transition
probability is high. Therefore, the BIRD algorithm
believes the transition probability of nodes in one
rare category should have a lower bound and the
transition probability of nodes in different rare cate-
gories should have an upper bound (He et al., 2008).
Therefore, a rare category is a group of connected
nodes that possess the following two features: (1)
These nodes form a compact structure, which means
they are closely connected. The transition probabili-
ties among these nodes are relatively high and larger
than the lower bound. (2) The compact structure
should have a clear border. The transition probabili-
ties among the nodes in this structure (rare category)
and the other rare categories are relatively low and
smaller than the upper bound. There are two visual
examples showing these two features intuitively in
Fig. 2.

BIRD is an iterative algorithm.
ation, it detects a node whose neighborhood den-
sity changes significantly between two given adjacent
time steps in a dynamic network. This node is po-

In each iter-

tentially a representative node of a rare category.

Similar to the existing graph-based RCD algo-
rithms (He and Carbonell, 2008; He et al., 2008; Zhou
et al., 2015a), the BIRD algorithm can be mainly
separated into the following two parts:

1. Compute the global similarity matrix A,

A=(I—-aW) ! (1)
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Fig. 2 The compact neighborhood structures of D.,
J.and S., A. (A) and I., P. (B).

where I is an identity matrix, W denotes the
transition probability matrix of the given graph
G, and « is a positive discounting constant in the
range of (0,1). Note that the global similarity
matrix A helps sharpen the changes of the local
density near the boundaries of each class. This
considerably reduces the workload of identifying
rare categories in the query process.

2. Update the query score iteratively based on the
labeling information from users and return the
example with the largest query score to users for
inspection. In general, the query process selects
the examples from regions where local density
changes the most, and thus the queried exam-
ples tend to have a high probability of hitting
the regions of rare categories.

Before algorithm BIRD (Zhou et al., 2017,
2015b), previous studies (Pelleg and Moore, 2005;
He and Carbonell, 2008; He et al., 2008, 2010) were
For this reason, BIRD
extends the problem to the dynamic setting and ef-
ficiently updates the RCD model by using the local
changes to avoid reconstructing it from scratch. To
be specific, the BIRD algorithm (1) efficiently up-
dates the global similarity matrix A® at each time
step t based on the global similarity matrix A1)
at previous time step ¢ — 1 and the updated edges
in current time step ¢; (2) locally updates the query
scores of the examples which may be infected by the
changes in current time step t.

all built for static graphs.

The original BIRD algorithm outputs the rare
category candidate with the highest query score and
waits for users to label the candidate. The query
process might repeat many times. Thus, we slightly
modify the BIRD algorithm by making the algorithm
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output candidates with top k£ query scores, where k
is a manually set parameter.

The workflow of analyzing rare categories in dy-
namic networks with BIRD contains three stages.
First, users set parameters and select two adjacent
snapshots to initialize BIRD. Second, users analyze
and identify rare categories based on the candidates
detected by BIRD. Third, users label the candidates.
The label result is returned to BIRD. When users
think that all rare categories between the two snap-
shots are found, they can select other time steps and
repeat the workflow to analyze other rare categories.

3.2 Analytical tasks

According to the analysis workflow, we summa-
rize what analytical tasks should be completed by
users based on these data as follows:

T1 Set parameters to initialize BIRD. Users need to
set a series of parameters before BIRD can detect
rare category candidates. The most important
parameters are the starting time step and the
ending time step, which determine G; used for
initialization of BIRD.

T2 Identify new rare categories from the examples
detected by BIRD. After BIRD is initialized,
it will iteratively output detected rare category
candidates. Users first identify candidates that
truly belong to rare categories by analyzing their
neighborhood structure. Then users compare
the detected rare category with labeled rare cat-
egories to determine whether it is a new rare
category.

T3 Label the examples based on analysis results. Af-
ter analyzing rare category candidates, users la-
bel each candidate by a specific number. Labels
are then returned to BIRD.

4 System design

In this section, we first introduce the design re-
quirements of the RCAnalyzer for completing the
analytical tasks, and then we introduce the design of
the RCAnalyzer in detail.

4.1 Design requirements

We identify the following design requirements
that the RCAnalyzer should fulfill based on the an-
alytical tasks.
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Fig. 3 User interface of RCAnalyzer. (a) the timeline view; (b) the matrices view; (c)the instance view;
(d) the sub-network view; (e) the label result view; (f) the parameter panel; (g) the encoding panel; and
(h) the information panel. BIRD detects W. D., X. W., and H. L. between 2014 and 2015. (i) the compact
neighborhood structures formed by them and their surrounding area in the sub-network view; (j) the small
community constituted by them and their surrounding area in 2013; (k) the same area as (j) in 2014; (1) a
dense structure appeared beside (k); (m) two nodes in (k) have a lot of connections to nodes in (1); (n) the
Sankey diagram shows 8 nodes in (1) are nodes in 2014. (1) indicates the existence of a paper with lots of
coauthors, which might be a result of multilateral cooperation. The abnormal change of the surrounding areas
of W. D., X. W., and H. L. make them a rare category.

For setting parameters to initialize BIRD (T1), R3 Reveal the features of detected examples.

we identify the following design requirements: It is essential to show the features of the sur-

R1 Provide an overview of dynamic networks. rounding area of candidates to identify rare cat-
Users need to first explore the entire dynamic egories. The features include the ego network of
networks and understand the overall change of the instance and the similar nodes detected by
dynamic networks. With an overview, users can BIRD.
decide on which time periods they would focus R4 Reserve the context of labeled rare cate-
on. gories. The system should remind users what
To identify examples belonging to rare cate- kind of rare categories are detected and support

gories among all detected examples (T2), we identify the comparison between new candidates and la-

the following design requirements: beled categories.

R2 Capture the changing structures of rare To label the examples based on analysis results
categories in the context of dynamic net- (T3), we identify the following design requirements:
works. It is necessary to show the evolution of R5 Enable users to set and reset the labels of
candidates in the background of the entire net- candidates. The system should enable users to
work. This helps users to identify the differences label rare categories and change labels of rare

between the instance and the majority class. categories when they make mistakes.
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4.2 System pipeline

From the design requirements, we designed the
user interface of the RCAnalyzer (see Fig. 3). It con-
sists of a) a timeline view, which shows a high-level
overview of dynamic networks (R1); b) the matrices
view, which shows the aggregated adjacency matrix
of dynamic networks at each time segment initially
(R1) and shows the details of the neighborhood of
multiple vertices after node selection (R2); ¢) the ex-
ample view, which shows the feature of candidates
(R3) and the query history of BIRD (R4); d) the
label result view, which shows the historical label
result and enables users to reset labels of labeled
categories (R5 and R4).

Based on the analytical tasks, we design the
architecture of the RCAnalyzer, as shown in Fig. 4.

Data Analysis Visualization
¢ Hierarchical > Matrices
N Clustering Sequence
Neodj > °

- Oracles,
Dynamic
Network

i

BIRD — Label Result

Fig. 4 System pipeline.

The RCAnalyzer consists of three major mod-
ules, a data storage module, a data analysis module,
and a frontend visualization module. We use neo4j
to store the dynamic networks in the data storage
module. The data analysis module contains four
components, consisting of BIRD, a hierarchical clus-
tering algorithm, a tree cut algorithm and a bundle
BIRD detects candidates of
the rare categories iteratively. The hierarchical clus-
tering algorithm extracts a tree structure from the
network topology and the tree cut algorithm groups

of statistics metrics.

nodes to clusters based on the tree structure and the
network topology. The statistics metrics measure
the macro condition of the dynamic network.

The visualization module contains four major
views: a timeline view, which shows the variation of
network statistics and assist users select, merge, and
filter time steps; a matrices view, which visualizes
the network dynamics based on the tree cut result;
an instance view, which displays the features of the
rare category candidates detected by BIRD; a label
result view, which reminds users what rare categories
have been discovered.
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4.3 The timeline view

The timeline view provides a highly abstracted
overview of the dynamic network (R1). Metrics in-
cluding betweenness centrality, closeness centrality,
clustering coefficient, degree assort coefficient, den-
sity, edge number, node number, average degree, and
transitivity are calculated to show the state of dy-
namic networks at each time stamp. The timeline
view contains two parts, an interactive time axis,
and a pixel map. The pixel map visualizes met-
rics, which helps users to find interesting snapshots
of dynamic networks. The interactive time axis (see
Fig. 3 (A)) enables users to select different snap-
shots (R1). After the time periods are submitted,
the selected snapshots are extracted and merged ac-
cordingly. The data of merged snapshots are then
visualized in the Matrices View to show the network
data in detail.

Design Considerations We considered using
three different visual designs in the timeline view
to visualize the metrics: a line chart, a pixel map,
and a glyph design. A line chart is intuitive to show
time-varying data, while it lacks space efficiency. Us-
ing glyphs to show the metrics at each time stamp
individually is space efficient while lacking intuitive-
ness. Thus, we choose to use a pixel map to show the
metrics because a pixel map is more space efficient
than line charts and more intuitive than a series of

glyphs.

4.4 The matrices view

After time periods are selected in the timeline
view, the data analysis module first aggregates snap-
shots of the dynamic network according to the se-
lected time periods. The matrices view is designed
for showing the dynamics of the network topology
and the dynamics of selected rare category candi-
dates. A hierarchical clustering algorithm (Newman
and Girvan, 2004), which builds a dendrogram based
on network topology, is applied on each aggregated
snapshot to reduce the number of entries in each ma-
trix because a large matrix can hardly be visualized
in a limited space with satisfactory detail.
clusters at different time stamps are linked together
to show the dynamics of the network. However, users
cannot really explore and compare the neighborhood
of rare category candidates in aggregated matrices
because of the lack of detail.

Same

Therefore, a multi-
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focus tree cut algorithm is applied to each dendro-
gram to provide fine-grained detail of user-selected
candidates and coarse-grained detail of other nodes.
In this way, users are able to observe and compare the
evolution pattern of rare category candidates (R2)

4.4.1 Multi-focus tree cutting

When users are interested in one or more rare
category candidates, the dynamics of neighborhoods
of these candidates are shown in the matrices view
to support users to explore, compare, and identify
rare categories among these candidates. We design
a multi-focus tree cut algorithm to enable the ma-
trices view to provide fine-grained details around se-
lected nodes and coarse-grained details around un-
related nodes, which supports users in identifying
rare categories among candidates (T2) by compar-
ing the features of candidates, labeled rare cate-
gories and non-rare categories. Different from exist-
ing multi-focus+context approaches (Gansner et al.,
2005; Feng et al., 2012; Sundarararajan et al., 2013),
which work on the layout result of networks, our
method directly works on the network topology and
thus does not depend on the layout of networks.

Tree Cut Result Boundary

Neighbor Relationship /

[Galaal

@ Topologically Neighbor Node @ DOINode @ Other Nodes

@ Focused Node

Fig. 5 First stage of the tree cut algorithm: keep the
details of all focused nodes.

Suppose we are given a dynamic network,
which consists of a series of snapshots, G =
{G',G?,...,G'}. The multi-focus tree cutting algo-
rithm works on each snapshot. The algorithm con-
sists of two stages. In the first stage, details around
all focused nodes are cut out from the tree; in the sec-
ond stage, a merge operation is applied to prevent the
result containing too many non-relevant single-node
clusters.

First stage: multi-focus tree cutting. The

2018 19(1):1-5

procedure of the first stage is shown in Fig. 5. For
a specific snapshot G* = (V, E), hierarchical cluster-
ing is applied first to obtain a tree structure based
on modularity (Newman and Girvan, 2004). In or-
der to cut the tree with multiple-focused nodes, we
modified the original modularity. The set of focused
nodes can be written as F' = {n|focused nodes}.
The cut of the tree structure is an optimization of
an energy function based on the tree structure and
the network topology. Suppose the cutting result is
C = {N1, Ny, ..., Ny}, where N; is a group of nodes
in the tree. Then

C=argminX;—1 2. n(E(NV;)) 2)
where
E(N) = EeeNW _ EEEN(S‘(&JI\())Q
D(e,N) = Weight(e), ifvv€eve N
0, else.
S(e,N) = Weight(e), ifdveenveN
0, else.

(3)
We defined the weight of an edge as the
minimum of the weights of the node it links:
suppose e = (vl,v2), then Weight(e) =
min(Weight(vl), Weight(v2)). The weight of a
node is defined based on the distance between the
node and the focus nodes both in the tree structure
and the network topology:

Weight(v) =
Wpor(v) =
WTOpology(”) =

a1tWpor (U) + O‘2WTopology(v)
minnep (DDO[(TL, U))
mmneF(DTopology(n7 v))

(4)
, where Dpor(n,v) is the degree of interest distance
between n and focused node v in the tree structure,
Dropotogy(n,v) is the shortest distance between n
and focused node v in the network topology, and oy
and as are weights of the two distances.

SR RFTE

Fig. 6 Second stage of tree cut algorithm: re-group
the unrelated nodes according to the network struc-
ture.

Second stage: re-clustering of non-

relevant nodes in the partial structure. When
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the structure of a hierarchical clustering tree is par-
tial and the focused nodes are deep in the tree, a
large number of non-relevant nodes might be cut
out from the tree, which makes the cut result tall.
To avoid this problem, we apply a re-cluster pro-
cedure to the non-relevant nodes. The continuous
non-relevant single node sequences are first detected
and cut out from the tree. Then the tree cut algo-
rithm is applied again to the sub-tree based on the
network topology. Last, hierarchies are inserted back
into the tree. The procedure of this stage is shown
in Fig. 6.

4.4.2 Visual designs in the matrices view

We use a combination of matrix, Sankey dia-
gram and dendrogram as the basic representation of
dynamic networks(see Fig. 1). Sankey diagrams are
added between each pair of adjacent matrices to show
the evolution of these groups. The hierarchy of clus-
ters represents the relationships among clusters and
the structure of the network. In the RCAnalyzer,
all networks are treated as undirected networks, and
thus the adjacent matrices are symmetric. We use
dendrograms to replace the upper (lower) triangular
matrices and show the hierarchy of clustering result
for space efficiency. The sequence of upper and lower
triangular matrices are laid in a zigzag shape (see
Fig. 1).

Due to the tree cut algorithm, there are different
granularity details. This leads to different numbers
of nodes in different clusters. The opacity and color
of triangles on the diagonal of matrices encode the
number of nodes, as shown in Fig. 7. We use blue
and red (shown in Fig. 7) to distinguish a group
of nodes and a single node. The gradient of blue
in Fig. 7 is used to encode the number of nodes in
groups. Rectangles inside matrices represent three
categories of connections: a single node to a single
node, a single node to a group of nodes, and a group
of nodes to a group of nodes. For consistency, we
use blue to encode group-to-group relations, orange
to encode one-to-one relations, and purple to en-
code one-to-group relations. The gradient of colors
(Fig. 7) represents the actual number of connections
between the corresponding nodes.

Due to the importance of node anomalies in this
work, we decide to use the size of triangles on the
diagonal of matrices to encode the anomalous scores
output by the BIRD algorithm (R3). If a large num-
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ber of clusters is generated by the tree cut algorithm,
sizes of single node clusters will be small under the
limited size of matrices, which impedes the analysis
of the nodes in which users are interested. We use
three methods simultaneously to solve this problem.
First, freely zooming and dragging are supported in
this view. When the matrices are enlarged, the se-
quence of matrices cannot be fully displayed because
of the limitation of space. Thus, we implement a spe-
cial scale interaction with the scale functions shown
in Fig. 8 to enable local scaling without changing the
size of matrices.

O N Score
Opacity

Border Opacity: the score of the cluster

Triangles: clusters Rectangle: links

the cluster with only one n " .
¢ clust only one node WE multiple nodes to multiple nodes
EEE one node to multiple nodes

one node to one node

the cluster with multiple nodes
A opacity: the include nodes’s count

size: the score of the cluster Focused Cluster

Fig. 7 Visual encodings inside a matrix. Triangles
represent a single node (red) or a group of nodes
(gradient blue showing size). A red rectangle rep-
resents the connection between two single nodes; a
purple rectangle represents the connections between
a single node and a group of nodes; a blue rectan-
gle represents the connections between two groups of
nodes. Scores are encoded both by size of rectangles
and triangles and the color on the matrix border.

When the scale interaction is activated, the dis-
tortion of the size of the triangles and rectangles
may mislead users, although we maintain the size
ratio in the scaled local area. Thus, we encode the
scores on the borders of the matrices by color, which
brings two benefits: 1. users will clearly distinguish
to which clusters the bands in Sankey diagrams be-
long when matrices are sparse; 2. users will observe
the changes of scores over time stamps more easily.

Design Considerations Node-link Diagram
and matrix representation are two common tech-
niques to visualize networks. We choose the matrix
as the basic representation of networks instead of
the node-link diagram because the matrix represen-
tation can be better combined with a dendrogram.
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Although same clusters or nodes can be linked to-
gether in a series of node-link diagrams to visualize
a dynamic network, overlap of lines in this solution
will be severe and significantly reduce the readability
of the visualization.

—
Scale Rate
L ~

Scale Rate
%
100%

A A
Focus on border: Single Amplified Area

* Mouse Center  |_f Scale Function

To be Amplified Area Amplified Area

* — *

Scale Rate Scale Rate
1 o(wz|> ---------------------------- 100% L ----------------------------

A B A B

General Condition: Two Amplified Area

Fig. 8 Scale functions when focus on the border of a
matrix and focus inside a matrix.

4.5 The rare category candidates view

The rare category candidates view is designed
to reveal the features of candidates (R3). It con-
tains two components: small multiples of candidate
feature panels, which visualize the neighborhood in-
formation of candidates, and a sub-network view,
which shows the sub-network formed by all detected
candidates and their first-hop friends.

Representation of Ego Network of candi-
dates consists of two visualization forms: a node-link
diagram and a matrix. The coexistence of node-link
diagrams and matrices is not considered as redun-
dant because we think the two visualization forms
have different emphases: the former emphasizes ver-
tices while the latter emphasizes links.
BIRD detects rare categories between two time steps,
changes of the candidates’ ego networks at the two
time steps are shown in Fig. 3. The state of ver-
tices and links are encoded by colors: blue indicates

Because

appearance, green indicates disappearance, and grey
indicates fixedness.

Sub-network of Candidates shows the query
process of BIRD by visualizing all the candidates to-
gether with their first-hop-neighbors (R3) and helps
users to compare the candidates in the local area of
the network. The color encoding is similar to the en-
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coding in ego networks. Except for the color of links
and nodes, we use red border of nodes to demonstrate
the candidates detected in the current iteration and
light red border of nodes to demonstrate the can-
didates detected in previous iterations. When an
instance is hovered, both itself and its KNN will be
enlarged, as shown in Fig. 9.

0ld Node New Node @ Hover Center Node Similar Nodes

0Old Link New Link O Recommend Node Previous Iteration Recommend Node

Fig. 9 The sub-network view shows the query process
of the BIRD algorithm by a node-link diagram formed
by all the candidates ever queried by BIRD.

4.6 Other panels

The Label Result View The label result view
shows detected rare categories by recording label re-
sults of rare category candidates in a list of candidate
feature panels (R4), as shown in Fig. 3. Users can re-
view the detected rare categories at any time during
the analysis procedure.

The encoding panel shows the color encod-
ings used in the system (see Fig. 3 (G)). The infor-
mation panel shows the detail information of se-
lected blocks in the matrices view, as shown in Fig. 3
(H). When hovering on triangles on the diagonal of
a matrix, node count and node list are shown in the
panel. When hovering on rectangles inside a matrix,
the information panel is divided into two parts, each
of which shows the node count and the nodes that
have connections to the other cluster. The link count
between two clusters is also shown(see Fig. 3 (H)).

4.7 User interaction

The system implements a series of user interac-
tions to support users to analyze the rare categories.

Detail on demand The instance view and the
matrices view show the information of rare candi-
dates at different levels of detail. Once nodes are
selected in the instance view, the tree cut algorithm
will be applied and the detail information of the
selected candidates and their related nodes will be
shown in the matrices sequence view with the con-

text of the entire dynamic network.
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Highlighting & Pinning All views in the RC-
Analyzer are linked. Whenever and wherever a node
is hovered over by users, other views will highlight
the node and its related nodes. Users can pin the
block by clicking on it and then explore the details
in the information panel.

Dragging & Zooming The matrices view sup-
ports users in freely dragging and zooming the ma-
trices sequence.

Rare Category Labeling Users can label each
candidate with a specific number, which helps BIRD
distinguish different rare categories in the feature
panel.

5 System evaluation

In this section, we conducted one use scenario
and a controlled user study to demonstrate the ef-
fectiveness of the RCAnalyzer. The use scenario is
based on a dynamic network extracted from the col-
laboration among authors of visualization publica-
tions (Isenberg et al., 2017).

We developed a prototype system to do all the
experiments. The RCAnalyzer is a web application
which supports multiple users in analyzing the rare
categories in dynamic networks. The front-end vi-
sualization is implemented by AngularJS, D3, and
CSS. The back-end server is implemented by Python
with Flask, Neo4J, numpy, igraph, and networkx.
Use scenarios and the user study run on a PC with
Intel(R) Core(TM) i7-4770 CPU, 20 GB RAM, and
Windows10.

5.1 Use scenario: collaboration network in vi-
sualization publications

Dataset We extract all co-authorship in IEEE
VIS dataset (Isenberg et al., 2017) from 1990 to 2015.
An incremental collaboration network is constructed
based on co-authorship, in which a link at timestamp
t indicates two authors have coauthored at ¢ or be-
fore t. We filtered the authors by taking the largest
connected component in 2015 and there are 3640 au-
thors left in the network. The number of links varies
from 43(1990) to 11848(2015).

The timeline view and the matrices view show
the basic information of the network (see Fig. 3 (a)
and (b)). Note that the time axis is initially divided
into 5 segments to show the condition of the dynamic
network in periods of time. The heatmap and the
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matrices show that before 2000, both the number
and the increment of nodes and links are small; after
2000, the network grows faster, and after 2004, the
network grows significantly.

After initializing the BIRD with the data in 2014
and 2015, W. D., X. W., and H., L. are selected to
be the focused nodes in the instance view, as shown
in Fig. 3. They and their neighbors form a compact
area in the sub-network view (Fig. 3 (i)). Their sur-
rounding areas from 2013 to 2015 are shown in the
matrices view. Focused nodes are highlighted by the
blue lines. Area (j) in Fig. 3 is their surrounding area
in 2013. The large link density in this area indicates
that nodes in this area have close collaboration re-
lationships. Thus, these nodes can be regarded as
a small collaboration group. The Sankey diagram
between 2013 and 2014 shows area (k) is almost the
same as area (j).
peared beside area (k). Meanwhile, area (m) shows
that two nodes, including X. W., in area (k) connect
to most nodes in area (1). The blank of the Sankey
diagram (labeled by (n)) on the left of the matrix in
2014 indicates that 8 nodes in area (1) are new nodes.
The clique structure in area (1) indicates these nodes
collaborated in the same paper. Large numbers of
authors of the paper indicates that the paper might

A dense structure in area (1) ap-

be the result of multilateral cooperation. The ap-
pearance of this uncommon cooperation causes W.
D., X. W., H. L. to be identified as a rare category.

Between 2012 and 2013, D. J.,; S. A., and 1. P.
constitute a large and dense sub-network (Fig. 2).
However, there is a small gap between the first three
authors (Fig. 2 (A)) and the last author (Fig. 2 (B)).
Thus, whether they belong to the same category can-
not be decided. The matrices view shows the dy-
namic changes in surrounding areas around them .
In 2011, I, P. is in the area (A), and D., J. and S.,
A. are in area (B). It is clear that these two areas
have no connections. In 2012, area (C) shows that
the two areas in 2011 merged into one because of the
new connections in area (D). However, a large num-
ber of new connections appeared in area E in 2013.
From the Sankey diagram between 2013 and 2014,
we know that authors newly connected to D., J. and
S., A. in 2013 also appeared in the area G in 2014.
From the matrix of 2014, we can see that area G
and area H are separated from each other. Thus, the
merging and splitting behaviors of the surrounding
areas of D. J., S. A., and I. P. along time are the
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reasons why D. J., S. A., and I. P. are identified as a
rare category.

5.2 User Study

We conducted a user study to verify the usabil-
ity of the RCAnalyzer. We introduce the user study
following the order of assumptions, datasets, partic-
ipants, procedure, and result.

Assumptions.
supporting similar tasks to the RCAnalyzer, we do
not use a baseline system in this user study and only
test if the RCAnalyzer could help users to explore,
analyze, and identify rare categories in dynamic net-

As there is no existing work

works and collect users’ qualitative feedback. We

first make three assumptions about the usability of

the RCAnalyzer.

1 RCAnalyzer helps users identify examples of rare
categories among the query result of the BIRD
algorithm in each iteration.

2 RCAnalyzer helps users distinguish examples of
rare categories and examples of major categories.

3 RCAnalyzer helps users distinguish examples of
different rare categories.

For a dataset with ground truth, we can count
the minimal number of iterations within which the
BIRD algorithm can detect at least one example in
each of the rare categories in the dataset. By com-
paring this minimal number and the actual number
of iterations users use in the study, we can validate
the assumption 1. If the number of iterations used
by users is close to the minimal number, the RC-
Analyzer efficiently supports users to identify rare
categories. We validate assumption 2 and 3 by cal-
culating the accuracy of the rare categories labels
labeled by users in the user study.

Synthetic Data. Because of the high com-
plexity of the real datasets used in the case studies,
it is hard to control the test and quantify the ac-
tual efficiency of rare category detection with the
RCAnalyzer. Thus, we use synthetic datasets in the
user study. All the synthetic datasets have two time
stamps. Each synthetic dataset is constructed by the
following procedure: 1) generating a grid network
with NV nodes at each time stamp; 2) adding edges
among nodes in the network to form four different
special structures: a clique, a bipartite graph, a star
structure, and a circle, at the second time stamp.
Special structures are treated as rare categories and
other nodes are treated as the major category. We
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constructed four synthetic datasets with N = 100,
200, 500, and 1000. The dataset with N = 100 is
used in the tutorial of the user study. The minimal
numbers of iterations on datasets with N = 200, 500,
and 1000 are 5, 5, and 11 respectively.
Participants. We recruited 12 participants for
the evaluation, including 9 males and 3 females. All
of them have background in visualization, and one of
them has a background in anomaly detection.
Tasks. The participants are asked to complete
the following tasks in the user study:
T1 Identify rare categories in the examples detected
by BIRD in each iteration.
T2 Label examples identified as rare categories.
Procedure. The user study has three stages.
In the first stage, we introduce the basic concept of
this work and the tasks of the user study to partici-
pants with a 10-minute tutorial. In the second stage,
we introduce the RCAnalyzer to participants and let
them explore the system with the synthetic dataset
with N = 100 for 15 minutes. Participants are al-
lowed to ask any questions about the system and the
tasks in the first and the second stages. In the third
stage, participants are asked to analyze the synthetic
datasets with N =200, 500, and 1000, label rare cat-
egories they identified in the RCAnalyzer, and write
down their labeling results on an answer sheet. In or-
der to ensure that participants will not give answers
arbitrarily, they are asked to describe the reason why
a detected example is identified as a rare category.
Result The accuracy of labeling rare categories
is shown in Table 1. The results show that the de-
tection of the clique, bipartite graph, and star graph
is accurate (86.11%, 86.11%, and 91.67%) while the
accuracy of detection of the circle is not very good
(77.87%). Detection of a circle structure is really
hard because the surrounding area of a node on the
circle is unobtrusive in the matrices view and nodes
on the circle are queried by BIRD discontinuously,
forming several segments of line instead of a circle in
the sub-network view. To identify the circle struc-
ture, participants need to select a series of instances
on the circle, but some of the participants missed
too many instances on the circle, and thus were not
able to label the circle structure correctly. The dis-
tribution of participants’ query number is shown in
Fig. 10. The result shows that participants can finish
the labeling process in 4-5 iterations in datasets with
200 and 500 nodes. For the dataset with 1000 nodes,
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Table 1 Accuracy of labeling.

Size  Clique Bipartite Star Circle
200  91.67%  83.33% 83.33%  58.33%
500 83.33%  83.33%  100.00% 91.67%
1000 83.33%  91.67% 91.67%  83.33%
Avg. 86.11%  86.11% 91.67%  77.78%

many of the participants can finish the labeling pro-
cessing in 11 to 15 iterations, while two outliers fin-
ished the labeling process in 2 and 6 iterations. This
was because they labelled normal nodes as rare cate-
gories. Some of the participants finished the labeling
result after over 20 iterations. This is because they
did not label the rare categories promptly. Overall,
the accuracy and the average query numbers show
that most of the participants are able to identify
rare categories promptly and correctly.

Query Times

25
20
15 Outlier:8
10 Outlier:6 Max: 7
5 | Qas. o Maxs Q3:6 Med:5 .
Ol:4 Med:5 QL 57 Min: 5
) Min: 3 OQutlier:2 ¢
200 500 1000 Test Case

Fig. 10 The query numbers of participants when they
labeled all rare categories in the data.

Qualitative feedback In order to assess the
learnability, usability and other perception aspects
of the RCAnalyzer, users were asked to give some
qualitative feedback after the formal user study. The
most frequent complaint was that the encodings in
our matrices view were too complex. We used both
the size and the color of each cell to encode different
information. Users had to recognize all the encodings
at the beginning of the user study. It would lead to
confusion because they would forget the encodings.
Some users said that the parameters were hard to
comprehend. They said that it was hard to learn
what will happen if the parameters were adjusted. It
took a long time for them to learn how the system
worked. Learnability and usability were both impor-
tant problems which were hard to cover. One of the
solutions for improvement is to reduce the complex-
ity of our visual design. However, it takes much more
time to know which visual design is less efficient and
can be abandoned. In the future, we will redesign
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our visual design based on more user behaviors. For
example, the color encoding on the border can be
removed if users do not care about the border color
encoding.

6 Discussion

Generalizability In our paper, we used a col-
laboration network to evaluate our system. However,
the RCAnalyzer supports rare category analysis in
other networks.Although we only support the BIRD
algorithm in our system, the RCAnalyzer can work
based on other RCD algorithms as long as they are
based on the topology of dynamic networks. The
matrices view with the tree cut algorithm can be
applied in other applications for analyzing dynamic
networks. For example, tracking the time-varying
pattern of multiple nodes and comparing the change
of ego-networks of multiple nodes. We believe that
the combination of matrix sequence and multi-focus
tree cut algorithm is a useful method as it enables
simultaneous comparison of multiple nodes.

Scalability In use scenarios, we tested the effec-
tiveness of the RCAnalyzer on a network with 8319
nodes, 210625 edges, and 6 time steps, which indi-
cates that the RCAnalyzer has good scalability on
large datasets. As for larger datasets, the major bot-
tleneck would be the running time of initialization
of the BIRD algorithm and tree cut algorithm due
to the limitation of execution efficiency of Python.
In the future, we plan to use pre-computation and
server-side cache to support the analysis of larger
datasets. As for the scalability of our visual design,
it is related to the granularity of our tree cut algo-
rithm, and the scale of the input dynamic network.
From our experience, it is hard to show more than
6 time-steps with around 50 rows in each matrix at
the same time in the matrices view (with 1,360 x
635 pixels). Interactions such as dragging and zoom-
ing to improve the readability of matrices have been
discussed in 4.4.2. For dynamic graphs with more
time-steps, the tree cut algorithm should be more
coarse-grained to show all time-steps in the mean-
time. However, the coarse-grained tree cut algorithm
reduces the information of the dynamic networks.

Limitations Although the RCAnalyzer is able
to help users to analyze and label rare categories
in dynamic networks, it still has several limitations.
First, more interactions should be supported, such



14 Pan at al. / Front Inform Technol Electron Eng

as querying and filtering. Interactions in the the
RCAnalyzer are enough to support the detection of
rare categories, but more complete interactions can
Second, the
process of interactions and visual encodings in the
RCAnalyzer are a little complicated. During the
user study, it takes 15-25 minutes to train subjects

to let them fully understand how to use the system.

significantly improve user experience.

Third, the RCAnalyzer only supports screens with
1920 x 1080 resolution. More adaptive layout should
be supported to enable users to label rare categories
at different resolutions.

Future Work First, we plan to add context
information of nodes in the RCAnalyzer. The RC-
Analyzer is based on the topology of dynamic net-
works currently because the BIRD algorithm detects
rare categories by checking the changes of topologi-
cal structure around nodes. However, nodes with the
same topology may have completely different con-
We believe context information
will help users distinguish different rare categories.
Second, we plan to add data filtering to the RCAna-
lyzer. Sometimes, users might be interested in only a

text information.

special area in the network. A data filtering module
can help them analyze the desired areas of data.

7 Conclusion

In this paper, we present the RCAnalyzer, a
novel visual analytics system which helps oracles to
analyze the result of RCD methods and label the
rare categories in dynamic networks. It consists of
five linked views: a timeline view, a matrices view,
an instance view, a sub-network view, and a label
result view, and it shows the information of rare cat-
egories in different levels of detail. In addition, we
present a multi-focus tree cut algorithm and a tree-
structure constrained layout optimization algorithm
to support the comparison of instances in the con-
text of their surrounding structures. We use one use
scenario, and one user study to demonstrate the us-
ability and effectiveness in analyzing rare categories
in dynamic networks.
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