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Abstract—Medical illustration has demonstrated its effectiveness to depict salient anatomical features while hiding the irrelevant
details. Current solutions are ineffective for visualizing fibrous structures such as muscle, because typical datasets (CT or MRI) do
not contain directional details. In this paper, we introduce a new muscle illustration approach that leverages diffusion tensor imaging
(DTI) data and example-based texture synthesis techniques. Beginning with a volumetric diffusion tensor image, we reformulate it
into a scalar field and an auxiliary guidance vector field to represent the structure and orientation of a muscle bundle. A muscle mask
derived from the input diffusion tensor image is used to classify the muscle structure. The guidance vector field is further refined to
remove noise and clarify structure. To simulate the internal appearance of the muscle, we propose a new two-dimensional example-
based solid texture synthesis algorithm that builds a solid texture constrained by the guidance vector field. Illustrating the constructed
scalar field and solid texture efficiently highlights the global appearance of the muscle as well as the local shape and structure of the
muscle fibers in an illustrative fashion. We have applied the proposed approach to five example datasets (four pig hearts and a pig
leg), demonstrating plausible illustration and expressiveness.

Index Terms—Illustrative Visualization, Diffusion Tensor Image, Muscle, Solid Texture Synthesis.

1 INTRODUCTION

Muscle, an important organ of the human body, produces force and
causes motion. Illustrating muscles [34] is useful in many applications
such as medical education, cardiology, functional human movement
prediction, and planning surgery for patients with musculoskeletal dis-
orders. The muscles in the human body can be classified into three
categories [5]: (1) skeletal muscles that are attached to bone by ten-
dons and influence skeletal movement, (2) cardiac muscle that makes
up the heart, and (3) smooth muscle that exists at various scales in
almost every organ. The structure of these three types of muscles is
quite different. Skeletal and cardiac muscles consist of highly regu-
lar bundles, yet smooth muscles do not have obvious fiber structures.
The isotropic patterns in smooth muscles can be simulated by stan-
dard solid texture synthesis techniques [24, 36]; whereas structural
muscles including skeletal and cardiac muscles require special consid-
eration because they are composed of a set of oriented fiber bundles.
The graphics and bio-mechanics communities have widely studied the
simulation of skeletal muscle by using geometric techniques [30, 37]
and anatomical information [5]. Their results are normally displayed
as geometric models and are not amenable for depicting internal ap-
pearance.

Another class of methods [13, 14] detects oriented edges from CT
or photographs and constructs a solid texture, opening new opportu-
nities for volumetric representation and simulation of muscles. Un-
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fortunately, the orientation information computed by edge detection
and Hough transformation may not be physically accurate, and the
employed texture synthesis technique tends to produce non-optimized
results, yielding vague fibrous structures.

Diffusion tensor imaging (DTI) has been shown to be able to recon-
struct 3D fibrous structures such as muscles [31, 32] and neural fibers
in the brain [12]. In this paper, we visualize muscles by leveraging the
DTI and example-based texture synthesis techniques with two main
contributions:

1. We reformulate the fiber bundles constructed from DTI data into
a volumetric representation and employ a new example-based
technique to synthesize a solid texture to encode the structure
and appearance of muscles.

2. We employ a line-based volume illumination equation modu-
lated with a synthesized volume and a solid texture to simultane-
ously depict the structure and appearance of muscles.

Our approach is conceptually different from appearance-oriented
volume synthesis approaches [24, 25, 26] because the generation of
the solid texture is guided by the principal vector field built from a DTI
data set. Our approach also takes a different form than the LIC-based
DTI visualization approach [20] in that ours facilitates characterizing
individualized muscle structure by means of a scalar field while pro-
viding contextual muscle appearance with the synthesized solid tex-
ture.

We consider setting up a framework for achieving realistic mus-
cle illustration as a major contribution of this paper. With our sys-
tem, we demonstrate how to construct illustrative depiction of fibrous
structures from 2D examples and DTI images. Our approach provides
an expressive visualization of muscle and is an effective complement
to previous geometry- and biomechanics-based visualization methods.
A cardiologist confirms that our method shows both the normal heart
muscle fibers and the infarcted areas well.

The rest of this paper is organized as follows. We discuss related
work in Section 2 and outline the algorithm in Section 3. Computing
two fields based on a DTI image is explained in Section 4. Section
5 describes the constrained solid texture synthesis and the illustrative
volume illustration of the constructed muscle volume. In Section 6,
we present the experimental results and discussions. Finally, Section
7 concludes the paper.

2 RELATED WORK

Muscle Visualization In the computer graphics community, the focus
of muscle visualization is on the boundary shapes of muscles and their
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animation. For instance, Scheepers et al. [30] considered the influence
of the musculature on surface and generated muscle models that react
automatically to changes in the posture of an underlying articulated
skeleton. To achieve high accuracy of muscle and tendon dynamic
deformation, Teran and his colleague [37] presented a framework for
extracting and simulating high-resolution musculoskeletal geometry
from the segmented Visible Human data set.

The internal structure and appearance of muscle is of great interest
for medical education, cardiology, and functional human movement
prediction. A common method is volumetric texture synthesis that is
capable of simulating the repeated patterns in solid objects [25, 26]. To
effectively depict the oriented fiber structures, Dong and his colleague
[13, 14] detected oriented edges from CT or photographs datasets and
employed a patch-based solid texture synthesis algorithm. Hsu [20]
utilized the local tensor information from a DTI dataset, and employed
a generalized line integral curve algorithm to visualize both the princi-
pal and second-order anisotropy of the cardiac muscle. Although the
texture can be displayed with volume rendering techniques, it is not
effective in illustrative rendering of individual fibers because the struc-
ture information encoded in the LIC texture is not sufficiently strong.
In this paper, we encode the DTI fibers in a scalar field to emphasize
the fibrous structures, and we apply a new solid texture synthesis tech-
nique to depict the internal appearance.

Alternatively, one can utilize the glyph- or streamline-based ren-
dering techniques to directly show the fiber structures [18, 27, 45].
Selected coloring schemes can be used to show the local tensor or
the spiral orientation information [45]. The results from the stream-
lines/streamtubes methods [29, 45] on heart muscle DTI data show the
orientation of the myocardial muscle fibers including the helical pat-
terns in the heart muscle. However, the concerns about the interactive
speed and the visual cluttering restrict the density of the streamtubes,
and the resulting streamtubes models do not emulate the appearance
of the muscle fibers. In this paper, we aim to emulate the appearance
of the muscle fibers as well as to represent their trajectories.
Volume Illustration Over the past decade, volume illustration has at-
tracted much attention [6, 15, 25] for its effectiveness to depict salient
anatomical features while hiding the unimportant details. Standard ap-
proaches take a volume dataset as input and exploit multi-dimensional
transfer function design to highlight important features and subjugate
insignificant details. More comprehensive effects can be achieved by
illustrating internal appearance [26] and volumetric manipulation [10]
and learning color, texture, or lighting styles from examples [25].
However, there is not an approach that is capable of visualizing the
fibrous structures of muscles in an illustrative fashion. Challenges for
this goal include how to construct the shape and structure of muscles
and how to illustrate the internal appearance with quality comparable
to hand-drawn illustrations.
Diffusion Tensor Imaging Visualization Fibrous structures such as
the muscle or the brain white matter constrain the water diffusion in the
directions orthogonal to the orientation of the fibers, or constrain the
diffusion such that it is mainly along the fiber directions. Therefore,
the diffusion information collected by DTI can be used to reconstruct
the trajectories of muscles and the neural fibers [3]. The reconstructed
fiber orientations have been validated in both cardiac muscle [31] and
skeletal muscle [32] and can be used for assessments of tissue health
like cardiac analysis [28]. Filters have been applied to remove noise in
diffusion-weighted imaging data [1, 4] or regularize diffusion tensor
imaging data [11, 38]. In this paper, we employ a simple filter to
enhance the illustration of the muscle fibers.

Various approaches have been applied to visualize 3D DTI data [40]
including glyphs [23], superquadric glyphs [18], volume render-
ing [22], streamlines/streamtubes [17, 27, 29, 39, 44], and the com-
bination of volume rendering and streamtubes methods [8, 42].
Volumetric Texture Synthesis Texture synthesis denotes the process
of algorithmically constructing a large texture from a small sample
texture by taking advantage of its structural content. As texture can be
arranged within a spectrum from stochastic to regular, most work on
2D texture synthesis can be classified into the non-parametric [16, 41]
and parametric [19] approaches. These 2D methods can be directly

extended to volumetric texture synthesis by taking 3D texture sam-
ples as the input. Representative work includes [25, 41]. Because 3D
texture samples are not easy to capture, it is preferable to employ 2D
examples as demonstrated in [9, 21, 24]. To depict the essential shape
character, several researchers [14] sought to perform the synthesis
guided by a directional field. Dong and his colleague [14] synthesized
a volumetric texture based on the extracted orientation field from the
Visible Human data. A more recent work [36] presents an interactive
modeling system for building spatially varying oriented solid textures
by repeatedly pasting 3D texture exemplars within a tetrahedral mesh.
We use diffusion tensor images to produce anatomically relevant re-
sults that allow visualization of muscle from multiple perspectives.

3 THE KEY IDEA

The entire volume illustration approach consists of two stages. In the
first stage, we generate a binary volumetric mask that indicates the
muscle regions and compute the principal vector field from the input
diffusion tensor image. We also build a set of fiber tracts using a stan-
dard fiber tracking algorithm [40]. Then we convert the fibers into
a scalar field to represent the structure of fiber tracts and construct a
refined guidance vector field.

In the second stage, we synthesize a solid texture based on the guid-
ance vector field and an example texture. The scalar field and solid
texture constitute the final volume for illustrative rendering. Figure 1
depicts the entire pipeline.

Tracking & Masking 

2D Examples

Texture Synthesis

Scalar Field Refined Guidance Field

Mask 

Refining  & Masking

Solid Texture

Voxelization

Fibers

Binary Mask

Guidance Vector FieldDTI Image

Vector computing  

Building the muscle volume 
& Illustrative rendering

Fig. 1. The pipeline of muscle volume illustration from DTI images

4 COMPUTING THE SCALAR AND GUIDANCE FIELDS

In this section we describe how to generate a scalar field and a refined
guidance field to encode the needed muscle information.

4.1 The Mask Volume
The conventional DTI fiber model gives a geometric abstraction of
the input DTI and forms a continuous representation of the muscle.
However, some fibers may result from non-muscular tissues or noise.

To specify the muscular regions, we build a binary mask volume
based on the input DTI in three steps. First, we apply the Brain Ex-
traction Tool [33] to the T2 non-diffusion-weighted image to exclude
noise from the air surrounding the subject. Second, we set a thresh-
old tm on the T2 non-diffusion-weighted image to exclude fluid in the
data volume. Third, we exclude voxels whose linear anisotropy (de-
fined in [43]) is below 0.1. The remaining voxels after these steps are
assigned 1 in the mask volume. Other voxels are assigned 0.

DTI fibers are generated by integrating curves in the principal
eigenvector field of the diffusion tensor field [44]. The integration
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is restricted to the regions where the masks are 1. The culling distance
between fibers (Dt in [44]) was set to 1.0 mm. The minimum distance
threshold (Tt in [40]) was set to 0.5 mm.

4.2 The Scalar Field
Each generated fiber is represented with a set of line segments and is
sequentially voxelized within a volume dataset. We first convert each
line segment into a sequence of points with a 3D digital differential
algorithm (DDA). Then, each point p is splattered into the volume
space. The voxels whose distances to p are less than a given threshold
ts (typical choice for ts is 3 times the dimension of a voxel) form an
influence field of p. We loop over all voxels v in the influence field
and compute the distance dv from v to the underlying line segment. A
scalar value is computed for each voxel:

sv =
1
τ2 e−ks

2d2
v /τ2

(1)

Here, τ denotes the standard deviation of the exponential kernel. A
typical choice is 1.0. ks is a parameter to modulate the attenuation of
the exponential kernel. It could be larger or smaller, depending on the
distribution density of fibers and the volume resolution. For a dense
fiber distribution and a volume resolution of 5123, ks = 2.0.

The collection of sv of all voxels encodes the fibrous structure of
the muscle. It is denoted as the scalar field (see Figure 1), where each
voxel records a scalar value.

For efficient abstraction, we neglect fibers whose total lengths are
less than a unit voxel length at the given volume resolution. We also
perform simplification to each individual fiber by joining adjacent line
segments whose orientations are very similar: two line segments are
joined if the cosine of the angle between them is larger than 0.98.

4.2.1 Overcoming Ambiguity
If two fibers are spatially close, it is very likely that a voxel belongs
to the influence fields of both fibers. We overcome this ambiguity by
sequentially determining conflicting fibers and removing them in each
fiber bundle. For each fiber, we check its distance to other fibers. If the
largest one is less than 0.85ts, we remove this fiber and continue the
removal operation for the remaining fibers until all fibers are checked.
On average, about 5% of the fibers are removed using this criterion.
Figure 2 (b) illustrates a case in which the yellow one is removed from
Figure 2 (a).

The fiber distance based scheme cannot guarantee that all conflicts
are eliminated. In those cases, we preserve both fibers and simply
assign the values with larger sv (see Equation 1) to the underlying
voxels. An example of this type of case is the pair of the red and
green fibers shown in Figure 2 (b).

(a) (b)

Fig. 2. Illustrating the fiber conversion in 2D. Each filled sphere denotes
a fiber tract. (a) The initial result; (b) The yellow one is removed to
overcome ambiguity.

4.3 The Guidance Vector Field
We extract the eigenvector associated with the maximum eigenvalue
of the tensor in each voxel. The set of eigenvectors constructs a vec-
tor field, called the guidance vector field. Artifacts may appear in the

synthesized solid texture where the guidance vectors are not defined
due to noise or error in the data. Because our goal is to enhance the
appearance of the illustration, we choose to use a rather simple filter-
ing method over the guidance vector field instead of regularizing the
diffusion tensor field.

4.3.1 Refining the Guidance Vector Field
Computing a smooth and continuous vector field consists of three
steps: outlier removal, resampling, and smoothing. In the first step,
we seek to remove the voxels whose guidance vectors are significantly
inconsistent with their neighborhoods. We loop over each individ-
ual voxel v whose mask is 1 and build its 9 × 9 × 9 neighborhood
N(v) = vi(i = 1,2, ...729). For the guidance vectors �li with respect
to the voxels�vi (i = 1,2, ...k) in N(v) whose masks are 1, we compute
a vector�lr by finding a voxel vr:

r = argmini {di, di = median(||�li −�l j||, j = 1,2, ...k, j �= i)} (2)

where median(·) denotes the median value among a set of values.
A voxel vi is defined as an outlier voxel if ||�li −�lr|| > K dr where

K is an adjustable threshold and is set to be rather large (e.g., 20.0)
to allow for the inclusion of anatomically reasonable changes in the
guidance vector field in our experiments.

Removing the outlier voxels may cause small holes in the muscle.
Meanwhile, the regions where the masks are zero normally contain
disordered vectors. Thus, to enable smooth boundaries around the
muscle regions in the synthesized solid texture, we additionally per-
form a resampling process. For each voxel v whose mask is zero or
each outlier voxel v whose mask is non-zero, we determine Nr (set to
be 10) nearest voxels that are not outlier voxels and whose masks are
non-zero. We compute a set of weighting coefficients:

αi = exp(−d2
i

d2 ),βi =
αi

∑Nr
i=1 αi

,0 < αi,βi < 1,
Nr

∑
i=1

βi = 1, i = 1,2, ...,Nr

(3)

where di is the distance from the ith voxel to v, and d2 denotes the
average of the set of di

2.
Then, we compute the guidance vector�l of v by�l = ∑Nr

i=1 βi�li.
Finally, we perform a global Gaussian smoothing operation to make

the vector field smoother and more continuous. The width gw of the
Gaussian smoothing is set to be 5. Figure 3 demonstrates the effects of
these refinements by visualizing the vector fields with the line integral
convolution (LIC) [7] technique. Note that, only the regions whose
masks are 1 in the refined guidance vector field are used in the volume
illustration stage.

5 VOLUME ILLUSTRATION OF MUSCLES

5.1 Constrained Solid Texture Synthesis
In [24], a non-parametric algorithm for synthesizing a solid texture
from 2D examples is proposed. It is computationally efficient and
well suited for synthesizing multichannel textures, with or without
correlation between the color channels. Here we show how to make
it amenable for synthesizing muscle textures constrained by a given
vector field.

5.1.1 Iterative Solid Texture Synthesis
For the sake of clarity, we first briefly summarize the algorithm pre-
sented in [24]. The synthesis begins with a volume whose colors are
randomly chosen from the 2D example. A two-phase optimization is
iteratively carried out to minimize the sum of the difference under r
norm (r is set to be 0.8) between each local region svi(i = x,y,z) of a
voxel sv and corresponding region evi in the 2D example E:

E(s,e) = ΣvΣi∈x,y,z||sv,i−ev,i||r. (4)

In the first phase, the matching neighborhood of each voxel is fixed,
and each voxel is optimized. The second phase searches the best
matching exemplar neighborhoods for each voxel. For more details,
please refer to [24].
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(b)(a) (c)

(d) (e)

Fig. 3. Demonstration of the vector field refinement with a phantom
model. (a) The input is a 3D vector field at the resolution of 2563; (b)
A randomly distorted vector field based on (a); (c) The result after re-
finement. Three vector fields are visualized with the LIC technique. (d)
A slice from the input guidance vector field of a normal pig heart. The
yellow sticks denote the ones whose masks are 0. The corresponding
slice in the synthesized solid texture is shown in the right part. (e) The
corresponding results after the refinement to the vector field.

(a) (b)

Sv,z

e v,z

Sv,z

x

y

z

g v,z

g v

e v,z

Fig. 4. Matching the neighboring region (along z axis) in the 2D example
with standard solid texture synthesis (a) and constrained solid texture
synthesis approaches (b)

5.1.2 Vector Field Guided Solid Texture Synthesis
The key idea of vector field guided synthesis is straightforward: in the
searching phase, the employed local region evi(i = x,y,z) is rotated
around its center by an angle. The angle is decided by the associated
guidance vector in the given location. In practice, we pre-compute a
sequence of rotated images from the input 2D example and perform
the search among these rotated versions. Typically 60 pre-computed
directions are adequate. Given a guidance vector �gv in voxel v, we
choose a local region e∗vi

from three 2D examples Ei, which are rotated
from E by three angles θvi ,(i = x,y,z):

θvx = arctan(
�gv,y

�gv,z
),θvy = arctan(

�gv,x

�gv,z
),θvz = arctan(

�gv,x

�gv,y
) (5)

To ensure the rotated example has a rectangular shape, we enlarge
the size of each rotated example by

√
2, as demonstrated in the top left

of Figure 4 (b). When �gv is a zero vector (θvi = 0(i = x,y,z)), we use
the input two-dimensional example.

This scheme is simple and efficient if two requirements are met.
First, the variations of the guidance vectors in a local region are ad-
equately small. When the guidance vectors are non-smooth or even
discontinuous, searching the neighborhood in the rotated 2D examples
will lead to conflicting results. We address this problem by perform-
ing a smoothing operation to the guidance-vector field, as described
in Section 4.3.1. Second, the input 2D example implicitly contains
a unique global orientation so that one of its rotations approximately

(a) (b)

(c)

Fig. 5. (a) An example texture and the result from a solid texture syn-
thesis [24]. Even though the example is applied in three directions, the
internal appearance exhibits some distortions. (b) An example texture
and the result with our approach. This result clearly depicts a concentric
spherical solid pattern that matches the input guidance vector field. (c)
An example texture with red and white stripes; a guidance vector field
produced from the input principal vector field (each vector is visualized
with a color-mapped stick glyph); the synthesized solid texture under a
cutting plane view. The solid texture pattern closely follows the integral
curves of the DTI dataset.

matches a guidance vector. Our system allows the user to specify a
2D example and compute a principal axis for each input 2D example,
which is then rotated to align its principal axis with the x (or y) axis.

Figure 5 (a-b) compares the effects by the algorithm in [24] and our
approach with a phantom model. For the former, a concentric circle
pattern image is used as the input example. Even though the example
is applied in three directions, the result is unsatisfying. Our approach
employs a red-white stripe image, and an additional guidance vector
field, whose vectors point inside to a spherical center. The synthesized
result clearly depicts a concentric spherical solid pattern. Based on the
same red and white stripe image and a guidance vector field induced
from a real DTI dataset, a DTI-driven solid texture is generated as
described in Figure 5 (c).

5.2 Illustrative rendering of muscle volume
We pack the synthesized volume texture and the scalar field into a solid
volume. The volume illustration of the muscles consists of two parts,
namely, the internal appearance from a solid texture Cs and a gradient-
modulated lighting Cl based on the fiber structure embedded in the
scalar field. For Cl at each sampling point, we adopt the line-based
illumination model in [2]:

Cl = ka +Ct(kd( m
√

1− (�v ·�L)2)+ks(
n
√

1− (�v · �H)2)), αl = αt (6)

where ka, kd , and ks are the coefficients for ambient, diffuse, and spec-
ular components. (Ct ,αt) is the color and opacity determined from the
user-adjustable 2D transfer function that is dependent on the density
and gradient magnitude of the computed scalar field (see Section 3.2).
A typical choice for the 2D transfer function is a Gaussian function
embedded in a rectangle that covers the valid region of the underlying
scalar field in its 2D histogram. The three vectors �v,�L, and �H denote
the fiber tract direction stored in the shape volume, the light direction,
and the halfway vector between the lighting and viewing directions.
The two constants m and n express the excess-brightness diffuse and
shininess exponents respectively.

The weighted composition of Cs and Cl yields the illumination
C = wCs + (1− w)Cl and opacity α = wαl + (1 −w). The contri-
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(a) Line rendering (b) Illustration, w=0.0

(c) Illustration, w=0.5 (d) Illustration, w=0.75

(e) Illustration, w=0.5 (f) Illustration, w=0.0

Fig. 6. Visualization of a normal pig heart. (a) Illuminated line rendering;
(b-d) Cutting plane views of the volume illustration with different weights:
0.0, 0.5, and 0.75. (e-f) Another view to the volume illustration with
different weights: 0.5, and 0.0. The composition of the solid texture in
(e) makes the fiber structure easier to be recognized, and shows the
orientation of the major eigenvectors in the part of the DTI field where
the fibers do not exist due to the thresholding or culling process, as
demonstrated in the regions with yellow circles.

butions of all sampling points are composed in the order of back to
front by means of the 3D texture slicing volume rendering algorithm.
Figure 6 (b-d) demonstrates the volume illustrations for a DTI dataset
of a normal pig heart. A red and white strip picture and the computed
guidance-vector field of the DTI data are used. From (b) to (d), the
weight w is 0.0, 0.5, and 0.75 respectively. By adjusting the composi-
tion of the solid texture and the volume illumination, it is convenient
to depict the line structure and appearance pattern (see Figure 6 (e-f)).

6 RESULTS AND DISCUSSIONS

We have tested our algorithm on a sequence of datasets, including four
pig hearts and a pig leg. Among the four heart examples, two hearts are
from normal pigs, and the other two suffer from induced myocardial
infarctions.

Our co-authors include one cardiologist, three doctors of veterinary
medicine, and a bio-mechanics researcher. They have tested the pre-
sented approach and studied the results. They were generally satisfied
with the performance and the interactivity of our visualization system.

We include some of their specific comments in the following sections.

6.1 Performance and Parameter Controlling
The implementation was built upon the IVIS volume illustration sys-
tem [35], whose rendering kernel is a GPU-based 3D texture slicing
volume rendering algorithm with the Nvidia Cg language. The slicing
number is set to be 800 to obtain high rendering quality. We utilize
two-dimensional transfer functions to modulate the line-based volume
illumination and compose the results with those from the solid tex-
ture. All results in this paper and the companion video are rendered at
the image resolution of 600×600 on a PC with an Intel 2.6 GHZ CPU,
3.0G RAM, and Nvidia Geforce 280 video card (1.0G video memory).
For each dataset, preprocessing including fiber tracking and filtering,
generating the guidance-vector field, and synthesizing a 2563 (5123)
solid texture, costs 50 minutes, 2 minutes, and 10 minutes (50 min-
utes) respectively. The performances for visualizing datasets at the
resolutions of 2563 and 5123 are 12 fps and 3 fps respectively.

There are many parameters involved in our pipeline. However, only
some of these parameters are normally adjusted by the user. The other
system parameters are set to stably generate reasonable results like
the r-norm in Equation 4 and the number of pre-computed directions
(set to be 60) used for the vector field guided solid texture synthesis.
Table 1 lists important parameters. To ease user interaction, one or
multiple default values are predetermined.

Table 1. Important parameters in the algorithm pipeline

Usage Section Parameters Default
Tractography 4.1 Minimum Linear

Anisotropy 0.1
Culling Distance

(Dt in [44]) 1.0 mm
Minimum Distance

Threshold (Tt in [44]) 0.5 mm
Mask Volume 4.1 Threshold tm 0.5
Scalar Volume 4.2 Threshold ts and ks 3.0/2.0

4.2 τ 1.0
Outlier Detection 4.3 K 20.0

Resampling 4.3 Nr 10
Gaussian Smoothing 4.3 gw 5

Solid Texture 5.1 #Iteration 10
Neighborhood Size 9×9

PCA Variance 0.95
Pyramid Levels 2
Histogram Bins 16
ANN Search ε 1.0

Volumetric Shading 5.2 ka/kd /ks 0.3/1.0/3.0
m/n 2.0/20.0

Volume illustration 5.2 Weighting w of Cs and Cl [0.0,1.0]

6.2 The Cardiac Muscle Examples
3D DTI has previously been used to image cardiac muscle [28]. This
method has proven capable of generating images showing cardiac fiber
structure. Here, we examine the ability of 3D DTI to detect infarcted
myocardium by analyzing the disruption in fiber structure 48 hours
post infarct. 3D DTI was in fact able to detect infarcted myocardium
and may hold promise as a noninvasive imaging modality requiring no
radioisotopes, contrast agents, or radiation to assess myocardial infarct
size and disruption of cardiac fiber structure. In conjunction with other
imaging modalities, it may also hold promise in identifying viable my-
ocardium by identifying areas of preserved cardiac fiber structure but
abnormal wall motion.

A pig was anesthetized and underwent an echocardiographic exam-
ination. Left ventricular structure and function were confirmed to be
grossly normal. A myocardial infarction was then induced in the pig
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by inserting a balloon-tipped catheter in a branch of one of the coro-
nary arteries and inflating the balloon for 60 minutes to occlude flow.
Two days following the catheter inflation procedure, the pig underwent
a repeat echocardiographic examination. An area of hypokinesis was
noted in the posterior wall of the left ventricle. The pig was then eu-
thanized. The heart was removed and placed in cardioplegia solution
at 4◦C and taken to the MRI machine for the 3D DTI scan. Gross ex-
amination of the heart showed several areas of discoloration indicative
of ischemic injury including one area in the posterior wall of the left
ventricle. Histological analysis of this region of the heart confirmed
the presence of a myocardial infarction (see Figure 7).

Fig. 7. Histology of the tissue samples in the native region (a) and the
infarcted region (b). (b) confirms the myocardial infarction in the heart.

A GE 3T MRI scanner was used for imaging. A data volume of
128×128×34 was acquired with a voxel size of 1.86×1.86×2.4 mm.
This data was then scaled to a volume of 256×256×180 with a voxel
size of 0.93×0.93×0.93 mm. DTI fibers were generated by uniformly
seeding in the data volume with a high seeding density (1/0.93 mm3

and jittering in order to cover the entire data volume without aliasing
artifacts. The DTI fibers were then culled to remove those that were
too similar to others [44].

Figure 6 shows the geometric rendering and volume illustration of
a normal pig heart. Possible visual clutter due to high fiber density
may appear from geometric rendering. Volume illustration can reveal
hidden structure and the internal appearance by means of appropriate
transparency assignment or cutting plane viewing. For instance, Fig-
ure 8 illustrates the same model with interactive cutting through the z
axis (from apex to atrium). Several different layers of muscle fibers
could be seen through the left ventricular wall as seen on earlier histo-
logical analysis (Figure 7).

Left ventricle

0 1.00.2 0.4 0.6 0.80 20 2

Right ventricle Left ventricle

0 1.00.2 0.4 0.6 0.80 40 4

(a) (b)

Right ventricle Left ventricle

0 1.00.2 0.4 0.6 0.800

Left ventricleRight ventricle

0 1.00.2 0.4 0.6 0.866

(c) (d)

Fig. 8. The layered slicing view for a normal pig heart data from the
apex (a) toward the atrium (d). The weight w is set to be 0.2.

The volume illustration provided the opportunity to view multiple
cross-sectional images, which allows for an accurate determination of
the size and location of the infarct. The induced myocardial infarction
can be seen when compared to similar images from a normal heart
(Figure 9). In Figure 9 (b) and (c), two datasets show different fiber
density, which would usually indicate some abnormality of the dataset
shown in (b). The abnormality can be further examined by viewing
cross-sectional images as shown in (d) and (e). An area of the left
ventricle is absent (yellow circle) in (d) corresponding to the histolog-
ically proven infarct zone. In contrast, the corresponding region of the
normal heart is visualized in (e).

6.3 The Skeletal Muscle Example
We tested our method on skeletal muscles. We have scanned a foreleg
and a hind leg from a sacrificed pig with a voxel size of 1.86×1.86×6
mm and a data volume of 128 × 128 × 34. The pig was positioned
so that its legs were included in the field-of-view. A GE diffusion
tensor imaging protocol was used, with two b values (0, 1000) in 25
directions. The data were then scaled to a volume of 256×256×180
with a voxel size of 0.93×0.93×0.93 mm.

DTI fibers were generated by uniformly seeding in the data volume
with a high seeding density (1/0.99 mm3) and jittering in order to
cover the entire data volume without aliasing artifacts. The minimum
linear anisotropy was set to 0.05. The DTI fibers were then culled to
remove those that were too similar to others. The culling distance was
set to 1.0 mm. The minimum culling distance was set to 0.5 mm.

Figure 10 shows the visualizations of a pig hind leg. Solely employ-
ing a solid texture (Figure 10 (c)) presents some structural patterns yet
yields dim effects because no lighting is applied. Among all three re-
sults achieved by means of different blending weights, the one (b) that
mixes the solid texture and the volume illumination effects provides a
better insight to the internal muscle fiber orientation of the leg.

(a) (b) (c)

Fig. 10. Results for a pig leg dataset. From left to right, the weight w is
0.0, 0.3, and 1.0 respectively.

6.4 Comparison and Discussion
We have implemented and tested other visualization approaches in the
same platform. Figure 11 gives an example of the comparisons among
the glyph representation [40] (a), the illuminated line rendering [27]
(b), the colored streamline rendering [45] (c), the streamtube render-
ing [44] (d), the Hsu approach [20] (e), and our approach (f). All of
them were accelerated with GPU. Table 2 lists the performance statis-
tics for the selected methods.
Comparison with geometric rendering The glyph rendering can
show the individual local tensor information well but can not effec-
tively depict the connectivity of muscle fibers. The illuminated fibers
show the orientation of the muscle fibers just as the geometric fiber
rendering does, but the volume illustration provides a more complete
depiction of the muscle appearance by simulating the internal appear-
ance. In addition, possible visual clutter due to high fiber density
may appear in the geometric rendering with the glyph, streamline,
and streamtube representations. Moreover, the volume illustration
could be modulated to visualize other properties like the fractional
anisotropy [8].
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Fig. 9. Comparison of an abnormal pig heart and a normal pig heart. (a) A photograph of the abnormal pig heart. (b-c) The entire view of
the abnormal and normal pig heart datasets, respectively. (d-e) The layered slicing view (another viewpoint) of the abnormal and normal hearts,
respectively. For (b-e), the weight w is set to be 0.3. The differences are indicated by yellow circles.

Table 2. Performance statistics in FPS with respect to the fiber density

#Fibers 100 1000 10000
Ellipsoid (each with 400 triangles) 100.0 18.5 3.2
Illuminated Line 100.0 70.0 16.1
Streamtube (each with 32 triangles) 100.0 30.4 9.8
Hsu’s (1283/2563/5123) 60/20/12 60/20/12 60/20/12
Ours (1283/2563/5123) 40/15/5 36/13/4 33/12/3

The rendering performance of volume illustration is approximately
proportional to the volume resolution regardless of the fiber density,
while the performance of the geometric rendering is approximately
proportional to the fiber density.
Comparison with texture-based methods The LIC-based ap-
proach [20] is designed to visualize the first and second vector fields.
In contrast, our solid texture synthesis approach is suitable for sim-
ulating the muscle appearance to provide contextual illustration. Al-
though the LIC-based texture can be displayed with volume rendering
techniques, it is not clear how effective the LIC-based method is in
3D.

Compared to the work presented in Dong and Clapworthy [14], our
approach shows two distinct differences. On one hand, we employ
DTI images to compute the fiber orientations. The fiber orientation
information provided by DTI images cannot be retrieved from CT or
Visible Human datasets used in Dong and his colleagues [14]. On the
other hand, our solid texture synthesis algorithm requires only a 2D
example, making the construction more flexible and easier to use than
a 3D volume sample as suggested by Dong and his colleagues [14].
Discussion Our approach is different from standard DTI fiber visual-
ization algorithms [42, 45]. Typically, DTI fiber visualization aims at
reproducing the fiber structures by strictly obeying the fiber distribu-
tions extracted from the DTI images. Volume illustration of muscle
requires us to incorporate certain aesthetics by means of solid texture
synthesis and shape volume generation. Furthermore, the appearance
of the rendered objects with volume illustration can be copied from 2D
examples, thereby providing opportunities for 3D muscle visualization
to achieve the effects of the hand-drawn illustrations.

7 CONCLUSION

In this paper we have introduced a novel approach for illustrating vol-
umetric muscle models that are generated from DTI images and 2D
examples. With our system, we demonstrate how to construct fibrous
structures and how to produce an expressive visualization of the mus-
cle. The experiments show that our approach compares favorably with
existing alternatives. We believe that our approach is an effective com-
plement to previous geometry- or biomechanics-based muscle simula-
tion methods.
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