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Abstract—Visual exploration is essential to the visualization and analysis of densely sampled 3D DTI fibers in biological speciments,
due to the high geometric, spatial, and anatomical complexity of fiber tracts. Previous methods for DTI fiber visualization use zooming,
color-mapping, selection, and abstraction to deliver the characteristics of the fibers. However, these schemes mainly focus on the
optimization of visualization in the 3D space where cluttering and occlusion make grasping even a few thousand fibers difficult. This
paper introduces a novel interaction method that augments the 3D visualization with a 2D representation containing a low-dimensional
embedding of the DTI fibers. This embedding preserves the relationship between the fibers and removes the visual clutter that is
inherent in 3D renderings of the fibers. This new interface allows the user to manipulate the DTI fibers as both 3D curves and 2D
embedded points and easily compare or validate his or her results in both domains. The implementation of the framework is GPU-
based to achieve real-time interaction. The framework was applied to several tasks, and the results show that our method reduces
the user’s workload in recognizing 3D DTI fibers and permits quick and accurate DTI fiber selection.

Index Terms—Diffusion Tensor Imaging, Fibers, Fiber Clustering, Visualization Interface.

1 INTRODUCTION

Diffusion tensor imaging (DTI) is a non-invasive magnetic resonance
imaging (MRI) technique that measures the speed and direction of wa-
ter diffusion in biological tissues. The characteristics of water diffu-
sion in a biological structure (e.g., heart) can be mathematically sum-
marized by a diffusion tensor field. By tracking the trajectories of
the fastest diffusion in a diffusion tensor field with streamline meth-
ods [2], a DTI dataset can be represented with a set of fiber tracts, or
three-dimensional pathways. This process, called tractography, shows
the connectivity and distribution of the fibers and has been widely used
in visualization and analysis of DTI datasets [15, 18, 27].

Exploring and analyzing fiber tracts in the three-dimensional space
is challenging due to the visual clutter caused by the complexity of
the geometry. For example, a fiber model for white matter may con-
tain more than ten thousand fibers, making it difficult to derive use-
ful insights from the dataset. A number of fiber clustering tech-
niques [5, 18, 20, 24, 26] have been used to group similar fibers
(i.e., fibers that lie close to one another and follow similar trajectories
through the tensor field) into automatically representative fiber bun-
dles. Graphical representations of such fiber bundles reduce the visual
complexity of the dataset thereby facilitating a user’s exploration of
the data and allow him or her to more quickly gain insights into the
structural integrity and connectivity of the fibers [6, 23]. However,
renderings of clustered bundles can still suffer from occlusion (i.e.,
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one cluster obscuring another) that impedes the perception of the DTI
fibers or the selection of specific fibers [3] for further analysis.

The ability for scientists to interactively explore and select DTI
fibers for inspection or for use in statistical analysis is critical for DTI
research. The difficulty of interacting with DTI fiber models highlights
the need for better visual representations and more convenient user in-
terfaces. Existing solutions attempt to solve the problem by employ-
ing new visual forms or novel interaction methods such as interactive
selection schemes [1, 3], dynamic query [23], geometric simplifica-
tion [6, 10], color-mapping [9, 8], texture patterning of fiber dissim-
ilarity [13], and uncertainty visualization [11]. These methods have
greatly improved 3D DTI fiber visualization. Nevertheless, most of
them operate in the three-dimensional space, where the geometry is
often occluded after being projected to a 2D viewport. To achieve sat-
isfactory results, a user must be trained to perform careful and efficient
exploration of the fiber model and to make anatomically correct fiber
tract selections: a learning curve that can be steep and time consuming.

The current situation in visualizing complex DTI fiber models
is analogous to the difficulty in exploring and visualizing volume
datasets. Transfer function design and statistical analysis tools [25]
have revolutionized volume rendering by facilitating user interactions
and promoting useful insights about the data. The reason behind the
success of the transfer functions in volume rendering includes the clar-
ity and simplicity of a 2D representation and its direct coupling with
3D representation. However, to our knowledge, a similar interaction
method has not been applied to DTI fiber tracts.

In this paper, we describe a novel DTI fiber exploration scheme that
builds upon recent methods for DTI data analysis and fiber exploration
techniques. The main contributions include:

• An effective interaction mode that combines 3D, 2D, and statis-
tical views to broaden the user’s exploratory space;

• A coherent local-dimensional embedding algorithm that pre-
serves the spatial relationships of the fiber tracts and provides
the user with an uncluttered 2D representation of the data; and

• A set of visualization, manipulation, and statistical analysis tools
that reduces the user time and mental workload in recognizing
3D DTI fibers.

Figure 1 shows a screen-shot of the main interface of our system.
Our integrated system is GPU-accelerated and achieves interactive
performance. The rest of this paper is organized as follows. Section 2
provides a brief summary of related work; Section 3 and Section 4
describe the details of our method and its implementation; Section 5
demonstrates the efficiency of the new interface with several case stud-
ies and a user evaluation; and Section 6 presents our conclusions.
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Fig. 1: A snapshot of our DTI fiber exploration system. The figure shows a sagittal view fibers in the corpus callosum and cingulate bundle
(left-right orientation) of a human brain dataset (anterior is to the viewer’s left).

2 RELATED WORK

DTI fibers are usually integrated along the longest eigenvectors in a
tensor field [2]. They can be represented and displayed as stream-
lines [15], streamtubes and streamsurfaces [27]. The geometric shape
of a set of fibers can be further simplified to a more abstractive vi-
sual form such as wrapped streamlines [10] or topological simplifica-
tion [22] or by using hierarchical principal curves [6]. A novel set of
interaction techniques introduced in Sherbondy et al. [23] allows for
exploring brain connectivity and interpreting pathways. In [23], the
key operation offered to neuroscientists is the placement and manipu-
lation of box-shaped or ellipsoid-shaped regions in coordination with a
simple and flexible query language. A similar selection scheme is pre-
sented in Blaas et al. [3]. A clinical study shows that this approach is
highly reproducible for fractional anisotropy (FA) calculated over the
selected fiber bundles. To visually differentiate pathways, four differ-
ent pattern styles are used to encode the local dissimilarity information
of fibers, yielding an online navigation tool for fiber connectivity [13].
The dissimilarity within a group of fibers may be illustrated in cross
section with an appropriate coloring scheme [9, 8], making it easy to
discern a cluster by color. Other features derived from the fibers could
also be identified and visualized, such as the uncertainty arising from
noise and partial volume effects [11]. Most of these schemes focus on
the representation of DTI fibers in 3D space, limiting the amount of
information that can be shown and explored before excessive visual
clutter occurs. A recent work [14] proposes to link an embedding in
the plane and a hierarchical clustering tree with the 3D fiber tracts,
facilitating navigation through complex fiber tracts.

One application for our approach is DTI fiber clustering. By mea-
suring the proximity among fibers, a fiber set can be grouped into
anatomically meaningful fiber bundles. Different proximity measures
have been proposed such as the single-linkage hierarchical clustering
method. This method is based on the mean distance [26] and yields
excellent results in practice [18]. Various clustering schemes can be

chosen. Unsupervised partitions can be created by leveraging graph
theory like the normalized cut [5]. In addition, a manifold learning
scheme [24] can be used to construct proximity measures that cap-
ture the neighborhood structures in the high-dimensional data space.
Supervised clustering is an alternative choice. Possible approaches
include the identification of regions of interest (ROIs), fine-tuning of
clustering parameters, or direct manipulations of fiber tracts [3, 23].
To reduce user interaction time, a clustered atlas model can be em-
ployed to rapidly construct a set of clusters for a new dataset. The
clusters in the atlas model are augmented with expert anatomical la-
bels and are transferred to new models by spectral learning [20] or
affine registration [16].

3 METHOD

The key idea is that a useful coordination between a simplified feature
space view of fibers and the exact geometry in a standard 3D view
and the interaction between them is essential for exploring DTI fibers.
Many approaches have employed manifold learning algorithms to de-
fine a low-dimensional embedding of the fiber tracts that preserves the
neighborhood structures in the high-dimensional space [24]. These
embedding schemes have been mostly applied to DTI fiber cluster-
ing [20]. However, the clarity and efficiency of these techniques have
rarely been exploited in other aspects of DTI fiber study such as user-
drive interactive fiber tract selection. Our method makes use of both
the simplicity of the low-dimensional embedding and the fidelity of
the 3D fibers to enhance interaction, visualization, and exploration.

3.1 The Interface

The layout shown in Figure 1 is designed to enable efficient browsing,
manipulation, and quantitative analysis of DTI fiber tracts. It consists
of two main components. On the left side, a 3D view displays the
fiber tracts and provides interactions such as rotation, lens viewing,
coloring, slicing, and selection. On the right side, a 2D embedding of
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the DTI fibers is shown. The interface also contains several views that
enable interactive filtering and numerical analysis.

3.2 Proximity-preserving Two-dimensional Embedding
Our idea is inspired by multi-dimensional scaling (MDS) tech-
niques [12] that are designed to provide a visual representation of the
pattern of proximities. Given a set of points in a high-dimensional
space, MDS aims to compute another set of points X in a low-
dimensional (two or three) space such that the point distances in the
high-dimensional space are preserved as much as possible.

With a set of fibers F = { fi, i = 1,2,3, ...,n} that can be regarded
as points in a high-dimensional space, a proximity measure produces
a distance matrix G = {δi j, i, j = 1,2,3, ...,n}, of which δi j is the
distance between fi and f j. Using the standard MDS algorithm [4],
one can compute a set of two-dimensional points X = {pi = (xi,yi) ∈
R2, i = 1,2,3, ...,n} by minimizing a badness-of-fit measure (called
raw stress):

σr (X) = ∑
i< j

(
di j −δi j

)2 (1)

where di j denotes the Euclidean distance between pi and p j , and pi
and p j are the corresponding points of fi and f j respectively.

(a) (b)

Fig. 2: (a) A pig heart dataset with 1,725 fiber tracts; (b) The two-
dimensional MDS representation of (a) with respect to the mean dis-
tance [27]. The color (smooth transition from (1,1,0) to (1,0,1)) and
size of each point are encoded to be proportional to the fractional
anisotropy and the length of its corresponding fiber tract respectively.

The designed stress can be minimized by the steepest descent algo-
rithms or iterative majorization approaches [4]. We chose one of the
latter approaches called “Scaling by Majorizing a Complicated Func-
tion” (SMACOF). For details, please refer to [4].

The point set X = {pi = (xi,yi)} computed by minimizing Equa-
tion 1 has an one-to-one correspondence to the input fiber model
F = { fi, i = 1,2,3, ...,n}. Drawing these points constructs a 2D em-
bedding of the fiber set, as shown in Figure 2 (a-b). Each point in the
2D plane corresponds exactly to a fiber. The properties of each point
such as the size and color can be mapped to the properties of its corre-
sponding fiber, such as the average fractional anisotropy, the average
relative anisotropy, the length, the average curvature, or the clustering
membership. Using MDS yields the following benefits:

• The proximity between any pair of fiber tracts is ideally identical
or close to the one between their counterparts in the 2D space.

• The fiber properties can be encoded with the size, color, glyph,
or texture pattern of the points.

• Multiple feature vectors and distance matrices can be used in
MDS. This flexibility expands the possibility of data exploration.

• It is easier to view the 2D embedding of the fiber tracts and ex-
plore their relationships in a single 2D plane compared to the
fiber exploration in the 3D space.

Table 1 lists selected proximity measures provided in our framework.
Specifically, the user is allowed to adjust the weights α , β , and γ for
determining dW (Q,R). Figure 3 shows the MDS representations of a
brain dataset under different proximity measures. They exhibit similar

distributions but have small differences in regions, for example the
bottom left-hand corner. In the last two rows of Table 1, characteristics
of DTI fibers such as the fractional anisotropy, the length, the discrete
curvature, and the linear anisotropy can be incorporated into the 2D
embedding by modifying the distance term with respect to the chosen
proximity measure (see Equation 1). Depending on applications, more
properties from DTI data can be employed.

Mean dMC(Q,R) = dm(Q,R)+dm(R,Q)
2

with dm(Q,R) = meana∈Q minb∈R ‖a−b‖
Minimum dSC(Q,R) = MIN(dm(Q,R)+dm(R,Q))
Weighted dW (Q,R) = αdMC(Q,R)+β |AN(Q)−AN(R)|+ γ |AC(G)−AC(R)|

with AN := FA =
√

3
2

√
(λ1−λ∗)2+

√
(λ2−λ∗)2+

√
(λ3−λ∗)2√

λ 2
1 +λ 2

2 +λ 2
3

or AN := RA =
√

(λ1−λ∗)2+
√

(λ2−λ∗)2+
√

(λ3−λ∗)2√
3λ∗

Table 1: Examples of proximity measures for two fiber tracts Q and
R. λ1, λ2 and λ3 are three real eigenvalues of a diffusion tensor, and
λ ∗ = λ1+λ2+λ3

3 . FA, RA, and AC denote the averages of the fractional
anisotropy, the relative anisotropy, and the discrete curvature along
the fiber respectively. The three parameters α , β and γ can be inter-
actively adjusted by the user.

(a) (b)

(c) (d)

Fig. 3: The MDS representations of a pig heart dataset with various
proximity measures. (a) The minimum distance; (b) Weighted with
α = 0.2, β = 0.8, and γ = 0.0; (c) Weighted with α = 0.6, β = 0.0,
and γ = 0.4; (d) Weighted with α = 0.0, β = 0.3, and γ = 0.7. To
be consistent with (a), (b-d) are generated with the consistent MDS
representation scheme, easing the recognition of their differences.

3.3 Consistent Two-dimensional Representations

Hierarchical fiber clusters and principal fibers [6, 10] are effective in
representing the structure of the DTI fibers in multiple levels of de-
tail. The exploration of hierarchical principal fibers could be assisted
by the 2D DTI fiber embedding. Although different levels share some
common points and the point distributions appear to have similar pat-
terns, the point locations can be inconsistent (see Figure 4 (a-c)) be-
cause the MDS algorithm randomly sets an initial value for each low-
dimensional point. In addition, the atlas-based manipulation suffers
from the same problem, i.e., two datasets may have quite different
point layouts, resulting in inconsistent representations.
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(a) (b)

(c) (d)

Fig. 4: (a) A fiber cluster (left) and its principal curve (right) in a
pig leg model; (b) The MDS representations of the model, where the
points indicated by a yellow circle correspond to the cluster shown in
(a); (c) Applying the MDS representation to a model that is simplified
from the input model. Notice that (b) and (c) show distinctive layouts.
The purple point indicated by the yellow circle is the embedding of the
simplified curve in (a); (d) Our consistent scheme yields an aligned
layout with respect to (b) for two models.

The inconsistency can be addressed by a simple scheme. Assume
we have two fiber models F1 and F2, which have a logically common
subset F∗ = {k|p2

k ∈ F2, p2
k ≈ p1

jk ∈ F1}. Here, p2
k ≈ p1

jk means that
p2

k may not be identical to p1
jk but is logically close to it. One example

is the principal fiber computed from a fiber cluster. It could be some
fiber in the cluster but may also be a different one that is very close to
some fiber. To have a coherent 2D MDS layout of F2 with respect to
the 2D MDS layout X1 of F1, a new stress for computing X2 is:

σr

(
X2

)
= ∑

i< j

(
di j

(
X2

)
−δ 2

i j

)2
+ ∑

p2
k∈X2,k∈F∗

(p2
k − p1

jk )
2 (2)

Solving Equation 2 is similar to that for Equation 1. Figure 4 (d)
shows a corrected MDS layout with respect to Figure 4 (b-c).

3.4 Two-dimensional Interactions
The MDS-based 2D embedding is shown in a window on the right side
of the interface, providing a clear and simple 2D view of the embedded
points. Possible interactions in this 2D view include coloring, glyph
shape mapping, and texture mapping, In addition, the following two
interactions are helpful for interactive exploration (see Figure 5):

• Selection While DTI fiber clustering in the 3D space requires ei-
ther drawing multiple regions of interest or individually picking
the fibers, in the 2D view the embedded points can be simul-
taneously scanned by eye, allowing simple manipulation. For
instance, the user can intuitively draw a closed curve to select
a list of closely located embedded points inside the curve. The
selection will be immediately highlighted in the 3D view.

• Clustering A good MDS representation preserves the proximity
between the high-dimensional DTI fibers. Thus, DTI fiber clus-
tering in the 2D embedded space might also yield meaningful
results. The results can be visually inspected using the 2D space
without visual clutter. Furthermore, the 2D clustering results can
be immediately reflected in 3D, enabling detailed inspection in
the 3D space.

(a) (b)

(c) (d)

Fig. 5: Interactive two-dimensional motifs demonstrated with a pig leg
dataset. (a) A lens viewing window is shown in the top right corner
to depict the details in the user-specified region (the small rectangle);
(b) Free selection with a closed stroke; (c) Applying K-means to the
2D points shown in (a); (d) Applying K-means to the 2D MDS of a
hierarchical simplified version of the input dataset.

3.5 Numerical Exploration Views
To allow for interactive exploration of derived characteristics of the
DTI fibers, additional histogram windows are added. Possible input
properties include the fiber length, the average linear anisotropy (LA),
the average fractional anisotropy (FA), and the average curvature along
each fiber tract. Clipping on the one-dimensional histograms filters out
DTI fibers whose properties are not in the meaningful ranges. The se-
lected fibers can be colored to highlight the result. The clipping can
also be applied to the results from selection, clustering, or other ma-
nipulations in the 2D and 3D views to assist insights into underlying
anatomy or pathological changes. Figure 6 demonstrates a simple fil-
tering process with a heart dataset.

3.6 Three-dimensional Interactions
To provide the flexibility of interactive exploration in the 3D space,
easy selection operations are supported (see also Figure 7):

• Individual fiber specification A user can select a single fiber
by mouse clicking and specify its membership to an underlying
cluster.

• Free fiber selection A user can choose a list of fibers by drawing
strokes onto the visualization of the 3D fibers.

• Multiple-box ROIs determination Three (or more) boxes can
be interactively placed, sized, and translated, forming a multiple-
box ROI. The fiber tracts passing through these boxes can be
highlighted and chosen as a new bundle. The specification, scal-
ing, and movement of these boxes can be conveniently manip-
ulated with the interface, making the fiber selection convenient
because more than one constraints on location are imposed onto
the intended fiber bundles. Note that in some situations, a single
box is adequate for choosing a bundle (see Figure 7 (c)), while
multiple boxes are required in other cases (see Figure 7 (d)).

3.7 Linked Interaction
The 2D embedding of the DTI fibers is simple and clear but does not
represent the shapes of the 3D fibers accurately. The 3D representation
describes the shapes and distribution of fibers well, which is usually
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(a) (b)

(c) (d)

Fig. 6: Progressive filtering to a pig heart dataset. (a) 6,644 fiber
tracts; (b) 3,506 fiber tracts after applying the length filter; (c) 2,218
fibers by choosing the ones whose FAs are larger than 0.1. (d) 592
fibers by culling the ones whose average curvature is smaller than 0.3.

complicated and hard to manipulate. Either mode by itself may pose
problems for DTI fiber perception and exploration. The combination
of the 2D and 3D views in our interface facilitates fast and accurate
DTI fiber analysis by providing multiple interaction means.

Coupled Selection Fibers can be selected in the 3D space with spa-
tial constraints, e.g., the multiple-box selection mode. Direct manipu-
lation in the three-dimensional view is supported. Interactive selection
could also be performed on the two-dimensional view or the numeri-
cal exploration views. Any selection operation in one view will evoke
the visualization of selected objects in all views. This helps harness
the human brain’s ability for parallel processing and association in ex-
ploring the DTI fibers.

Cross Validation Many operations are coupled between the 2D
and 3D views. Zooming, rotating, coloring, selecting, and abstract-
ing techniques are present in both the two-dimensional and three-
dimensional views. The operation in one view can be validated and
corrected in other views. For instance, the 3D fiber clustering can be
fine-tuned by identifying and removing outliers in either the 2D or 3D
view. The user can freely switch between the views to achieve his or
her goals and, at the same time, check the validity of the operation in
other views. This will likely increase the time efficiency of the opera-
tion and decrease the probability of error.

Atlas-based Manipulation When many subjects are to be inves-
tigated, we can employ an atlas model to learn common structures
present across subjects. Our specific interface for comparative visual-
ization opens new opportunities to align, compare, and analyze multi-
ple DTI fiber data.

In particular, our interface provides three clustering schemes that
will be demonstrated in Section 5.

• The first mode solely performs automatic or semi-supervised
clustering in the 3D space. This mode has been widely used
in the DTI tractography community.

• The 2D embedding of DTI fibers allows for direct manipulation
and clustering in the 2D plane, given that the 2D MDS configu-
ration faithfully captures the characteristics of the fibers.

• One distinctive feature of our interface is the comprehensive de-
piction to the fiber model in multiple aspects. A new dual domain
clustering mode is enabled by freely switching between views
and combining compatible operations.

(a) (b)

(c) (d)

Fig. 7: 3D interactive selection. (a) Free selection; (b) A lens viewing
window is used to depict the details in the small yellow rectangle; (c) A
fiber bundle selected with a box; (d) A fiber bundle in purple is selected
with three boxes. The red, yellow, and green boxes determine fibers
that consist of the bundle in purple and the bundles in red, yellow, and
green respectively. One box cannot accomplish this task.

4 IMPLEMENTATION

We implemented the user interface with Microsoft Visual C++ 2008
and OpenGL and tested it in a PC equipped with an Intel Core 2 Duo
2.4 GHz CPU, 2G host memory, and a Nvidia GTX 280 graphics card.
In the interface, a single view is divided into multiple viewports to sup-
port multiple views in a single window. The fiber selection is achieved
with the pick and selection features of OpenGL.

The rendering of DTI fibers utilized a GPU-accelerated illuminated
line algorithm [17]. The visualization, manipulation, and naviga-
tion of DTI fibers are in real-time. The implementation of the semi-
supervised clustering is adequately rapid for interactions: it takes only
1 second for a model with 4,000 fibers. However, computing the dis-
tance matrix and the MDS configuration is much more time consum-
ing. Considering the data-parallel nature of matrix multiplications in-
volved in these computations, a parallel acceleration scheme was em-
ployed by using the CUDA BLAS language [19]. The acceleration
achieved for the construction of the distance matrix and the solving of
MDS is more than 5 folds, as shown in Table 2.

Tasks/#fibers 128 256 512 1024 2048 4096
Distance Matrix (GPU) 0.08 0.12 0.2 0.83 1.6 3.4
Distance Matrix (CPU) 0.3 0.92 3.3 19.3 77.5 309.9
MDS (GPU) 0.38 0.45 1.2 67.0 256.0 1225.0
MDS (CPU) 8.8 13.6 45.7 1200.0 2456.0 6310.0

Table 2: Time statistics in seconds with GPU and CPU

In addition to the tractography, other DT-MRI visualization
schemes were incorporated into the 3D view of our interface, includ-
ing the ellipsoidal glyphs [15], streamtube [27], and HyperLIC [28]
representations. The streamtube representation has the same 2D em-
bedding as the streamline representation, while the other two cannot.

5 RESULTS AND DISCUSSIONS

Three co-authors including two neuropsychologists and one cardiolo-
gist have tested our system with a sequence of datasets: four human
brain datasets, two pig heart datasets, and one pig leg model. The
DTI resolutions for the these datasets are 1.7mm × 1.7mm × 1.7mm
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for the brain datasets, 1.17mm× 1.17mm× 2.4mm for the pig hearts,
and 0.938mm × 0.938mm × 6mm for the pig leg. The fiber numbers
for the datasets are 13,644, 12,121, 13,169, 3,520 (for the four brain
datasets), 6,644, 2,717 (for the two pig heart datasets), and 6,097 (for
the pig leg dataset) respectively. After a short practice with a user
manual on the software, each user individually conducted several case
studies. In general, the users were satisfied with the interactivity and
performance of the user interface.

5.1 Embedded DTI Fiber Clustering on a Pig Leg Dataset
For some models, the 2D embedding by MDS exhibits clear patterns
and are suitable for rapid classification. Figure 8 illustrates a cluster-
ing process of a pig leg dataset (Figure 8 (a)) with our interface. To
investigate, the user first used the length and curvature filters to hide
the extremely short curves and the curves with very high average cur-
vatures (Figure 8 (b)). Then, a 2D embedding was produced. The
user navigated the embedding fiber tracts on the 2D view and used the
K-means algorithm to perform clustering in the 2D space (Figure 8
(c)). If the initial results were overly segmented, the user would then
manually merge or correct the embedded fibers in the 2D plane to get
a satisfactory result (Figure 8 (d)). The entire process including the
MDS computation took about 20 minutes.

(a) (b)

(c) (d)

Fig. 8: A simple and effective clustering for a pig leg model

5.2 Dual Domain Clustering for a Pig Heart Model
Cardiac muscles are naturally grouped into layers and tracts [21]. Vi-
sualization of these layers and tracts could be helpful for a cardiologist
examining the localized effects of various heart diseases. However, the
heart model consists of many spatially close muscle fibers, the group-
ing of which is more challenging than the pig leg muscle. Using the
2D embedding process alone can hardly get a reasonable result. There-
fore, more user interactions are needed. From an in-depth examination
of the 3D view, the orientations and shapes of the various fiber bun-
dles are significantly different, as shown in Figure 9 (a). This inspec-
tion in conjunction with the anatomical knowledge of the cardiologist
induced a feasible solution for clustering the fiber tracts.

The entire process was divided into three stages. At the beginning, a
length-based filtering was used to remove very short fiber tracts, most
of which were likely the result of noise. Then, the user carefully stud-
ied possible types of fiber bundle structures by performing coupled
query and selection. The user found that the curvature-based measure
(i.e., let γ be 1.0 in the weighted proximity measure presented in Ta-
ble 1) is effective in distinguishing fiber tracts and yielded four types
of fiber bundles. The user then manually labeled some fiber tracts in

(a) (b)

(c) (d)

(e) (f)

Fig. 9: A dual domain clustering for (a) a pig heart model with 2,717
fibers; (b) Noisy data is removed by using the length filter; (c) Us-
ing the curvature filter, some fiber bundles are clearly formed; (d) The
MDS with respect to (c); (e) Manual labeling on some potential fiber
bundles, which can be used as the input for a semi-supervised cluster-
ing process; (f) 13 clusters were generated after refinement.

potential fiber bundles. Subsequently, the user-specified labels were
propagated to all other fibers by leveraging a semi-supervised learning
approach [30]. Note that the mean distance [27] was used for the prox-
imity measure at this stage. Figure 9 shows the exploration process
accomplished in 30 minutes. The analysis allowed for the tentative
identification of a papillary muscle in one of the hearts examined. DTI
analysis identified fiber tracts suggesting muscle fibers running from
the apex toward the base of the heart along with the more abundant
concentric muscle fibers.

5.3 Atlas-based Clustering for Brain Models
Comparative visualization and exploration are essential for cross val-
idation and decision making. Exploring brain models is indeed a
time-consuming procedure of trial and error for clinical researchers.
In addition to the interactive exploration, we designed a comparative
interface that allows two models to share a common workspace en-
abling comparative analysis with other methods. Figure 10 illustrates
an atlas-based clustering pipeline, which is explained below.

This study began with a clustered (abbr. A) and an unclustered
(abbr. B) brain model. Models were scanned and processed with the
same set of settings and parameters. The main steps were sequen-
tially performed as follows: (a) An abstractive representation for A
with the principal fiber algorithm was computed [6]; (b) the two mod-
els were interactively aligned with a set of transformation widgets; (c)
short fibers in B were removed with the length filter; (d) B was merged
with the principal fibers of A, yielding B∗; (e) the added fibers from A
were regarded as user-specified labeling information; (f) B∗ was then
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Fig. 10: The pipeline of an atlas-based clustering

clustered by means of a semi-supervised learning algorithm [30]; (g)
unusual results were culled using the coupled query; (h) results were
refined interactively. The process took an experienced neuropsychol-
ogist 40 minutes, and the result was appropriate for further analysis.

5.4 Expert Evaluation
A preliminary user test was conducted to evaluate the capability of our
interface for improving the efficiency of cerebral white matter tract se-
lection. The goal was to identify well-known fiber tracts and test for
the efficiency of tract selection and tract refinement (e.g., the ease with
which erroneous fibers are identified on visual inspection and removed
or the ease with which inadvertently removed fibers can be added
back). This initial test focused on the basic manipulation tools (e.g.,
brush tool, single-fiber selection tool) and box tools with an emphasis
on the utility of the novel 2D MDS. The evaluation was performed by
two clinical researchers with considerable knowledge of white matter
anatomy and experience with other tract selection platforms. The fiber
model was generated from a healthy elderly subject who is part of a
research study database. The research study was approved by the In-
stitutional Review Board at Butler Hospital, Providence, RI, and the
participant provided written informed consent.

Fiber tracts selected by the clinical researchers for interface evalu-
ation included the corpus callosum, bilateral cingulate bundles, right
superior longitudinal fasciculus, right uncinate fasciculus, and bilat-
eral corticospinal tract (superior to the pyramidal decussation). They
were selected because the users are familiar to them and they repre-
sent a combination of commissural, association, and projection fibers.
Moreover, the users deliberately chose some tracts that are relatively
easy to select because their fibers are generally oriented mainly in a
single plane (e.g., anterior-posterior in the case of the cingulate bun-
dles) and others with trajectories that pass through several planes (e.g.,
uncinate fasciculus). The users spent approximately 30 minutes gain-
ing a familiarity with the software.

The specific tasks performed by the users to identify tracts var-
ied by user and tract but the broad operations employed were similar
across tracts, and involved initial selection, refinement, and classifica-
tion. The users first inspected a fiber model interactively by rotating
it and then decided on an optimal starting orientation for selecting a
particular target tract. Then, specific tools were used depending on
the trajectory of the tract and the user’s preference. In general, the
users found the brush tool to be very helpful for initial tract selection
and removing unwanted fibers particularly when the unwanted fibers
had a similar orientation. The box tool was helpful for making initial
selections of curved tracts (e.g., uncinate fasciculus).

At first, the 2D MDS display seemed irrelevant to the process of
tract selection. This initial impression was due to the lack of the aware-
ness of the mapping of the spatial arrangement of the dots in 2D MDS
space and the users‘ internal representation of brain anatomy. How-
ever, the users quickly learned the general mapping of the 2D MDS
space onto the 3D anatomical space such that anterior regions were
represented by dots in the upper part of the array whereas dots cor-
responding to posterior fibers were at the bottom of the display; dots
near the midline of the 3D model were at the midline of the dot array
and left and right were mapped intuitively.

With this insight, the utility of the 2D MDS panel emerged rather
quickly. Large regions containing multiple fibers can be quickly se-
lected for inclusion or removal. For example, removal of an entire
hemisphere of fibers is particularly useful when selecting an associa-
tion tract unilaterally (e.g., superior longitudinal fasciculus). The his-
togram controls (e.g., length) were useful for reducing clutter initially
or after first approximating a selection. The MDS can be monitored
while setting thresholds with histogram tools to avoid removal of fibers
that might be obscured in the 3D space. In certain situations, it was
easier to detect and select errant fibers in the MDS than in the 3D dis-
play. The MDS is particularly useful for identifying fibers that were
captured by the brush that run in a direction that is orthogonal to that
of the desired fibers or that may be hidden from view in the 3D space
because they lie in the opposite hemisphere and are thus obscured by
other fibers. Fibers selected on the basis of the MDS can be refined
using the 3D manipulation tools to obtain an optimal representation
of a desired track. Fibers that are grossly inaccurate typically appear
as “outlier” dots on the MDS layout. These outliers can be easily and
quickly selected in the MDS and removed from the model.

The MDS layout was less helpful when fine tuning a tract selection
by removing or adding fibers that are similar in terms of their trajectory
and curvature. In cases of similar curvature and trajectory, dots in
the MDS panel appear very closely placed and are thus difficult to
differentiate. In these situations, fine tuning is best done by judicious
use of the brush and single fiber tools. The reader is referred to the
accompanying video of the dual interface for additional understanding
of how the various tools work.

Quantitative tests of intra- and inter-rater reliability were not con-
ducted as part of this test. However, visual inspection of the selections
indicated a high degree of agreement within and between raters.

The users found that many of the interactive tools were similar to
those found in other software packages such as Brown University’s
in-house DTI software (BrainApp) [7, 27] (e.g., box-based selection),
CINCH [1, 23] (e.g., brush-like tool), and MedINRIA (http://www-
sop.inria.fr/asclepios/) (e.g., box tools, FA thresholding). The 2D
MDS display was clearly new. The users found the combination of
many tools in a single package to be very convenient, and this added
to the overall utility of the new interface. Surely, some tools or fea-
tures that are part of the other software packages but not incorporated
in the dual interface may be useful.

A more rigorous test of the interface would have involved having
multiple raters select a pre-specified set of fibers, using multiple soft-
ware platforms and multiple datasets. Ideally, the raters would be un-
familiar with the packages used in such a study to control for familiar-
ity bias, and time to practice would be standardized across platforms.
Moreover, the raters would be blind to which software was being eval-
uated. Dependent measures would be time to select each fiber bundle,
accuracy, and confidence and ease-of-use ratings. In this preliminary
user test, direct comparisons with other software packages were not
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performed as such a test would have necessarily been vulnerable to
experimenter bias given the users were not blind to the “hypothesis”
that the interface has advantages over other interfaces and due to their
prior experience with multiple platforms.

Prior work in our lab, however, provides useful comparisons across
several software platforms [29]. In this prior study, four experienced
raters (including one in this user study) with good knowledge of white
matter anatomy were asked to identify the corpus callosum (in its
entirety), the cingulum bundle (unilateral), the superior longitudinal
fasciculus (unilateral), and the uncinate fasciculus (unilateral) using
BrainApp, CINCH, and MedINRIA. Outcome measures were time to
complete the selection and raters’ confidence in the accuracy of their
selections. The raters were given up to 30 minutes to familiarize them-
selves with the programs if needed. Average time to complete tract
selection ranged from 3 minutes (superior longitudinal fasciculus us-
ing CINCH) to 6.25 minutes (cingulum bundle using BrainApp). For
each tract, selection times were faster using CINCH than BrainApp
and with selection times for MedINRIA being intermediate between
the two. Confidence ratings were generally high.

In contrast, time to select these same bundles in our interface was
not more than 3 minutes per fiber bundle for each rater with similarly
high confidence in the accuracy of selection. The raters clearly pre-
ferred this tool to BrainApp, and the one rater who participated in the
user study described above preferred this tool to all three of the tools
used in that study, although the preference was not as great in compar-
ison to CINCH.

In short, the users found that the software was quite useful for fiber
selection and that time and ease in selecting all target tracts was greatly
reduced and the results were superior in terms of precision-time trade-
offs when compared to other platforms with which they were familiar.
The users agreed that although the 2D MDS display was initially not
recognized to be of additional benefit, its utility was quickly appre-
ciated. The 2D MDS display clearly provides a useful complement
to the other tract selection tools. In certain situations, it provides a
rapid method for identifying and removing unwanted fibers and a use-
ful means of ensuring that wanted fibers are not inadvertently removed.
The interface also appeared to hold promise for improving reliability
in DTI fiber tract selection. That is, both raters were able to replicate
their own and their counterparts’ selections quickly and consistently.
6 CONCLUSION

We have presented a novel interface that allows for effective represen-
tation and intuitive exploration of fiber tracts. At the core of our work
is the embedding of the DTI fiber tracts to a 2D space that preserves
the characteristics of the fiber tracts. The users can interact with DTI
fibers in this 2D space and view, validate, and compare the results of
the interaction in both views. Several case studies have verified the
efficiency and reliability of the proposed approach.
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